Questions – Major Scale Characteristics

Total Page:16

File Type:pdf, Size:1020Kb

Questions – Major Scale Characteristics 1 Questions – Major Scale Characteristics Directions: The following questions are multiple choice. Circle the a- b- c- d of the correct response. All answers can be found on the Characteristics of Major Scales handout. 1. How many different key signatures exist that can be used to construct a major scale? a. six (6) b. fifteen (15) c. twelve (12) d. seven (7) 2. All of the notes in a major scale exists within a. one octave b. a perfect fifth c. two octaves d. a perfect fourth 3. The top note/pitch of a major scale has the same pitch name as a. the second note/pitch of the scale b. the relative minor scale c. the first note/pitch of the scale d. the octave of the third note 4. Each major scale has a(an) __________ key signature that is not shared with any other major scale. a. unique b. parallel c. relative d. none of the above 5. All major scales follow _________ order using the common pitch names: A B C D E F G starting over on A following G. a. reverse b. retrograde c. sequential d. alphabetical 6. No two major scales share a. a common key signature b. the same characteristic sound c. the same required time signature d. an exact relative range 2 7. There are _____ different major scales that have flats in the key signature. a. twelve (12) b. one (1) c. fifteen (15) d. seven (7) 8. The are _____ different major scales that have sharps in the key signature. a. six (6) b. one (1) c. seven (7) d. fifteen (15) 9. The ______ major scale has no sharps or flats in the key signature. a. G b. C flat c. F d. C 10. The order in which flats add to the key signatures of major scales is a. F C G D A E B b. A B C D E F G c. B E A D G C F d. G F E D C B A 11. With regard to all major scales, sharps and flats a. can be mixed in a major scale b. are commonly mixed in the key signature of a major scale c. can never be mixed in the key signature of a major scale d. are only mixed in the key signature of a major scale when enharmonic spellings are used 12. The absence of any sharps or flats in the key signature of a major scale indicates a. the key of C major b. the key of C sharp major c. the key of F major d. the key of G major 13. What gives the major scale its characteristic sound? a. the standard key signature b. the series of whole steps and half steps inherent in all of the major scales c. the seven intervals that exists in a major scale with regard to the tonic d. the rhythm that is used to perform the scale 3 14. The order in which sharps add to the key signatures of major scales is a. F C G D A E B b. A B C D E F G c. B E A D G C F d. G F E D C B A 15. When a major scale is enharmonic with another major scale a. the two scales use reverse pitches b. the two scales share the same exact pitches but utilize different key signatures and pitch names c. the two scales use inverse pitches with reversed root pitches d. the two scales share similar pitches but utilize the same key signatures and pitch names 16. How many of the major scales are enharmonic? a. fifteen (15) b. twelve (12) c. six (6) d. seven (7) 17. Sharps and flats found in the key signatures of the major scales a. must be added in a certain and consistent order b. can be added to a key signature without regard for order c. can be mixed to create unique sounding key signatures d. none of the above 18. Regardless of the key of your instrument, the name of the major scale that will be performed is a. the same as the first note of the scale you are performing on your instrument b. indicative of the concert pitch of the major scale c. different than the first note of the major scale you are performing on your instrument d. none of the above 19. Of the four key signatures listed below, which key signature cannot exist? a. B flat, E flat, and A flat b. F sharp and G sharp c. B flat d. B flat, E flat, A flat, and D flat 4 20. What are the only two pitches in a major scale that will share the same pitch name? a. the root and the octave of the root b. the first note of the scale and the fifth note of the scale c. the actual pitch and the concert pitch d. none of the above 21. Which sequence below is the correct whole step / half step sequence for the major scale? a. whole / half / half / whole / whole / whole / whole b. whole / half / whole / whole / whole / half / whole c. half / half / whole / half / half / half / whole d. whole / whole / half / whole / whole / whole / half 22. Which statement(s) below describe(s) the characteristics between a major scale and a concert major scale? a. The scales are all major scales, but concert pitch is used to adjust for the differences in the keys of the instruments. b. A player would simply play the major scale on his/her instrument that corresponds to the concert pitch. c. Concert pitch is an adjustment that is made so that all instruments will play in unison regardless of the key of the instrument; therefore, the actual major scale that a performer would play on a given instrument is adjusted so that a major scale can be played in unison by all of the instruments in the ensemble. d. all of the above 23. What specifically gives all of the major scales their characteristic and identifiable sound? a. the beginning note b. the whole step / half step sequence c. the first and the last notes d. the order in which the scales are played 24. If a key signature has three flats, which example below would represent the correct flats in the key signature in the correct order? a. Bb, Eb, and Db b. Bb, Eb, and Ab c. Eb, Ab, and Db d. Bb, Ab, and Gb 5 25. If a key signature has four sharps, which example below would represent the correct sharps in the key signature in the correct order? a. B, E, A, and D b. F, C, G, and D c. B, C, D, and E d. C, D, F, and G .
Recommended publications
  • Chords and Scales 30/09/18 3:21 PM
    Chords and Scales 30/09/18 3:21 PM Chords Charts written by Mal Webb 2014-18 http://malwebb.com Name Symbol Alt. Symbol (best first) Notes Note numbers Scales (in order of fit). C major (triad) C Cmaj, CM (not good) C E G 1 3 5 Ion, Mix, Lyd, MajPent, MajBlu, DoHar, HarmMaj, RagPD, DomPent C 6 C6 C E G A 1 3 5 6 Ion, MajPent, MajBlu, Lyd, Mix C major 7 C∆ Cmaj7, CM7 (not good) C E G B 1 3 5 7 Ion, Lyd, DoHar, RagPD, MajPent C major 9 C∆9 Cmaj9 C E G B D 1 3 5 7 9 Ion, Lyd, MajPent C 7 (or dominant 7th) C7 CM7 (not good) C E G Bb 1 3 5 b7 Mix, LyDom, PhrDom, DomPent, RagCha, ComDim, MajPent, MajBlu, Blues C 9 C9 C E G Bb D 1 3 5 b7 9 Mix, LyDom, RagCha, DomPent, MajPent, MajBlu, Blues C 7 sharp 9 C7#9 C7+9, C7alt. C E G Bb D# 1 3 5 b7 #9 ComDim, Blues C 7 flat 9 C7b9 C7alt. C E G Bb Db 1 3 5 b7 b9 ComDim, PhrDom C 7 flat 5 C7b5 C E Gb Bb 1 3 b5 b7 Whole, LyDom, SupLoc, Blues C 7 sharp 11 C7#11 Bb+/C C E G Bb D F# 1 3 5 b7 9 #11 LyDom C 13 C 13 C9 add 13 C E G Bb D A 1 3 5 b7 9 13 Mix, LyDom, DomPent, MajBlu, Blues C minor (triad) Cm C-, Cmin C Eb G 1 b3 5 Dor, Aeo, Phr, HarmMin, MelMin, DoHarMin, MinPent, Ukdom, Blues, Pelog C minor 7 Cm7 Cmin7, C-7 C Eb G Bb 1 b3 5 b7 Dor, Aeo, Phr, MinPent, UkDom, Blues C minor major 7 Cm∆ Cm maj7, C- maj7 C Eb G B 1 b3 5 7 HarmMin, MelMin, DoHarMin C minor 6 Cm6 C-6 C Eb G A 1 b3 5 6 Dor, MelMin C minor 9 Cm9 C-9 C Eb G Bb D 1 b3 5 b7 9 Dor, Aeo, MinPent C diminished (triad) Cº Cdim C Eb Gb 1 b3 b5 Loc, Dim, ComDim, SupLoc C diminished 7 Cº7 Cdim7 C Eb Gb A(Bbb) 1 b3 b5 6(bb7) Dim C half diminished Cø
    [Show full text]
  • Enharmonic Substitution in Bernard Herrmann's Early Works
    Enharmonic Substitution in Bernard Herrmann’s Early Works By William Wrobel In the course of my research of Bernard Herrmann scores over the years, I’ve recently come across what I assume to be an interesting notational inconsistency in Herrmann’s scores. Several months ago I began to earnestly focus on his scores prior to 1947, especially while doing research of his Citizen Kane score (1941) for my Film Score Rundowns website (http://www.filmmusic.cjb.net). Also I visited UCSB to study his Symphony (1941) and earlier scores. What I noticed is that roughly prior to 1947 Herrmann tended to consistently write enharmonic notes for certain diatonic chords, especially E substituted for Fb (F-flat) in, say, Fb major 7th (Fb/Ab/Cb/Eb) chords, and (less frequently) B substituted for Cb in, say, Ab minor (Ab/Cb/Eb) triads. Occasionally I would see instances of other note exchanges such as Gb for F# in a D maj 7 chord. This enharmonic substitution (or “equivalence” if you prefer that term) is overwhelmingly consistent in Herrmann’ notational practice in scores roughly prior to 1947, and curiously abandoned by the composer afterwards. The notational “inconsistency,” therefore, relates to the change of practice split between these two periods of Herrmann’s career, almost a form of “Before” and “After” portrayal of his notational habits. Indeed, after examination of several dozens of his scores in the “After” period, I have seen (so far in this ongoing research) only one instance of enharmonic substitution similar to what Herrmann engaged in before 1947 (see my discussion in point # 19 on Battle of Neretva).
    [Show full text]
  • Finale Transposition Chart, by Makemusic User Forum Member Motet (6/5/2016) Trans
    Finale Transposition Chart, by MakeMusic user forum member Motet (6/5/2016) Trans. Sounding Written Inter- Key Usage (Some Common Western Instruments) val Alter C Up 2 octaves Down 2 octaves -14 0 Glockenspiel D¯ Up min. 9th Down min. 9th -8 5 D¯ Piccolo C* Up octave Down octave -7 0 Piccolo, Celesta, Xylophone, Handbells B¯ Up min. 7th Down min. 7th -6 2 B¯ Piccolo Trumpet, Soprillo Sax A Up maj. 6th Down maj. 6th -5 -3 A Piccolo Trumpet A¯ Up min. 6th Down min. 6th -5 4 A¯ Clarinet F Up perf. 4th Down perf. 4th -3 1 F Trumpet E Up maj. 3rd Down maj. 3rd -2 -4 E Trumpet E¯* Up min. 3rd Down min. 3rd -2 3 E¯ Clarinet, E¯ Flute, E¯ Trumpet, Soprano Cornet, Sopranino Sax D Up maj. 2nd Down maj. 2nd -1 -2 D Clarinet, D Trumpet D¯ Up min. 2nd Down min. 2nd -1 5 D¯ Flute C Unison Unison 0 0 Concert pitch, Horn in C alto B Down min. 2nd Up min. 2nd 1 -5 Horn in B (natural) alto, B Trumpet B¯* Down maj. 2nd Up maj. 2nd 1 2 B¯ Clarinet, B¯ Trumpet, Soprano Sax, Horn in B¯ alto, Flugelhorn A* Down min. 3rd Up min. 3rd 2 -3 A Clarinet, Horn in A, Oboe d’Amore A¯ Down maj. 3rd Up maj. 3rd 2 4 Horn in A¯ G* Down perf. 4th Up perf. 4th 3 -1 Horn in G, Alto Flute G¯ Down aug. 4th Up aug. 4th 3 6 Horn in G¯ F# Down dim.
    [Show full text]
  • Written Vs. Sounding Pitch
    Written Vs. Sounding Pitch Donald Byrd School of Music, Indiana University January 2004; revised January 2005 Thanks to Alan Belkin, Myron Bloom, Tim Crawford, Michael Good, Caitlin Hunter, Eric Isaacson, Dave Meredith, Susan Moses, Paul Nadler, and Janet Scott for information and for comments on this document. "*" indicates scores I haven't seen personally. It is generally believed that converting written pitch to sounding pitch in conventional music notation is always a straightforward process. This is not true. In fact, it's sometimes barely possible to convert written pitch to sounding pitch with real confidence, at least for anyone but an expert who has examined the music closely. There are many reasons for this; a list follows. Note that the first seven or eight items are specific to various instruments, while the others are more generic. Note also that most of these items affect only the octave, so errors are easily overlooked and, as a practical matter, not that serious, though octave errors can result in mistakes in identifying the outer voices. The exceptions are timpani notation and accidental carrying, which can produce semitone errors; natural harmonics notated at fingered pitch, which can produce errors of a few large intervals; baritone horn and euphonium clef dependencies, which can produce errors of a major 9th; and scordatura and C scores, which can lead to errors of almost any amount. Obviously these are quite serious, even disasterous. It is also generally considered that the difference between written and sounding pitch is simply a matter of transposition. Several of these cases make it obvious that that view is correct only if the "transposition" can vary from note to note, and if it can be one or more octaves, or a smaller interval plus one or more octaves.
    [Show full text]
  • Tuning Forks As Time Travel Machines: Pitch Standardisation and Historicism for ”Sonic Things”: Special Issue of Sound Studies Fanny Gribenski
    Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies Fanny Gribenski To cite this version: Fanny Gribenski. Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies. Sound Studies: An Interdisciplinary Journal, Taylor & Francis Online, 2020. hal-03005009 HAL Id: hal-03005009 https://hal.archives-ouvertes.fr/hal-03005009 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tuning forks as time travel machines: Pitch standardisation and historicism Fanny Gribenski CNRS / IRCAM, Paris For “Sonic Things”: Special issue of Sound Studies Biographical note: Fanny Gribenski is a Research Scholar at the Centre National de la Recherche Scientifique and IRCAM, in Paris. She studied musicology and history at the École Normale Supérieure of Lyon, the Paris Conservatory, and the École des hautes études en sciences sociales. She obtained her PhD in 2015 with a dissertation on the history of concert life in nineteenth-century French churches, which served as the basis for her first book, L’Église comme lieu de concert. Pratiques musicales et usages de l’espace (1830– 1905) (Arles: Actes Sud / Palazzetto Bru Zane, 2019).
    [Show full text]
  • Major and Minor Scales Half and Whole Steps
    Dr. Barbara Murphy University of Tennessee School of Music MAJOR AND MINOR SCALES HALF AND WHOLE STEPS: half-step - two keys (and therefore notes/pitches) that are adjacent on the piano keyboard whole-step - two keys (and therefore notes/pitches) that have another key in between chromatic half-step -- a half step written as two of the same note with different accidentals (e.g., F-F#) diatonic half-step -- a half step that uses two different note names (e.g., F#-G) chromatic half step diatonic half step SCALES: A scale is a stepwise arrangement of notes/pitches contained within an octave. Major and minor scales contain seven notes or scale degrees. A scale degree is designated by an Arabic numeral with a cap (^) which indicate the position of the note within the scale. Each scale degree has a name and solfege syllable: SCALE DEGREE NAME SOLFEGE 1 tonic do 2 supertonic re 3 mediant mi 4 subdominant fa 5 dominant sol 6 submediant la 7 leading tone ti MAJOR SCALES: A major scale is a scale that has half steps (H) between scale degrees 3-4 and 7-8 and whole steps between all other pairs of notes. 1 2 3 4 5 6 7 8 W W H W W W H TETRACHORDS: A tetrachord is a group of four notes in a scale. There are two tetrachords in the major scale, each with the same order half- and whole-steps (W-W-H). Therefore, a tetrachord consisting of W-W-H can be the top tetrachord or the bottom tetrachord of a major scale.
    [Show full text]
  • When the Leading Tone Doesn't Lead: Musical Qualia in Context
    When the Leading Tone Doesn't Lead: Musical Qualia in Context Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Claire Arthur, B.Mus., M.A. Graduate Program in Music The Ohio State University 2016 Dissertation Committee: David Huron, Advisor David Clampitt Anna Gawboy c Copyright by Claire Arthur 2016 Abstract An empirical investigation is made of musical qualia in context. Specifically, scale-degree qualia are evaluated in relation to a local harmonic context, and rhythm qualia are evaluated in relation to a metrical context. After reviewing some of the philosophical background on qualia, and briefly reviewing some theories of musical qualia, three studies are presented. The first builds on Huron's (2006) theory of statistical or implicit learning and melodic probability as significant contributors to musical qualia. Prior statistical models of melodic expectation have focused on the distribution of pitches in melodies, or on their first-order likelihoods as predictors of melodic continuation. Since most Western music is non-monophonic, this first study investigates whether melodic probabilities are altered when the underlying harmonic accompaniment is taken into consideration. This project was carried out by building and analyzing a corpus of classical music containing harmonic analyses. Analysis of the data found that harmony was a significant predictor of scale-degree continuation. In addition, two experiments were carried out to test the perceptual effects of context on musical qualia. In the first experiment participants rated the perceived qualia of individual scale-degrees following various common four-chord progressions that each ended with a different harmony.
    [Show full text]
  • HOW to FIND RELATIVE MINOR and MAJOR SCALES Relative
    HOW TO FIND RELATIVE MINOR AND MAJOR SCALES Relative minor and major scales share all the same notes–each one just has a different tonic. The best example of this is the relative relationship between C-major and A-minor. These two scales have a relative relationship and therefore share all the same notes. C-major: C D E F G A B C A-minor: A B C D E F G A Finding the relative minor from a known major scale (using the 6th scale degree) scale degrees: 1 2 3 4 5 6 7 1 C-major: C D E F G A B C A-(natural) minor: A B C D E F G A A-minor starts on the 6th scale degree of C-major. This relationship holds true for ALL major and minor scale relative relationships. To find the relative minor scale from a given major scale, count up six scale degrees in the major scale–that is where the relative minor scale begins. This minor scale will be the natural minor mode. 1 2 3 4 5 6 C-D-E-F-G-A The relative minor scale can also be found by counting backwards (down) by three scale degrees in the major scale. C-major: C D E F G A B C ←←← count DOWN three scale degrees and arrive at A 1 2 3 C-B-A Finding the relative major from a known minor scale (using the 3rd scale degree) scale degrees: 1 2 3 4 5 6 7 1 A-(natural) minor: A B C D E F G A C-major: C D E F G A B C C-major starts on the 3rd scale of A-minor.
    [Show full text]
  • Pedagogical Practices Related to the Ability to Discern and Correct
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2014 Pedagogical Practices Related to the Ability to Discern and Correct Intonation Errors: An Evaluation of Current Practices, Expectations, and a Model for Instruction Ryan Vincent Scherber Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF MUSIC PEDAGOGICAL PRACTICES RELATED TO THE ABILITY TO DISCERN AND CORRECT INTONATION ERRORS: AN EVALUATION OF CURRENT PRACTICES, EXPECTATIONS, AND A MODEL FOR INSTRUCTION By RYAN VINCENT SCHERBER A Dissertation submitted to the College of Music in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2014 Ryan V. Scherber defended this dissertation on June 18, 2014. The members of the supervisory committee were: William Fredrickson Professor Directing Dissertation Alexander Jimenez University Representative John Geringer Committee Member Patrick Dunnigan Committee Member Clifford Madsen Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii For Mary Scherber, a selfless individual to whom I owe much. iii ACKNOWLEDGEMENTS The completion of this journey would not have been possible without the care and support of my family, mentors, colleagues, and friends. Your support and encouragement have proven invaluable throughout this process and I feel privileged to have earned your kindness and assistance. To Dr. William Fredrickson, I extend my deepest and most sincere gratitude. You have been a remarkable inspiration during my time at FSU and I will be eternally thankful for the opportunity to have worked closely with you.
    [Show full text]
  • Automatic Music Transcription Using Sequence to Sequence Learning
    Automatic music transcription using sequence to sequence learning Master’s thesis of B.Sc. Maximilian Awiszus At the faculty of Computer Science Institute for Anthropomatics and Robotics Reviewer: Prof. Dr. Alexander Waibel Second reviewer: Prof. Dr. Advisor: M.Sc. Thai-Son Nguyen Duration: 25. Mai 2019 – 25. November 2019 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Interactive Systems Labs Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Title: Automatic music transcription using sequence to sequence learning Author: B.Sc. Maximilian Awiszus Maximilian Awiszus Kronenstraße 12 76133 Karlsruhe [email protected] ii Statement of Authorship I hereby declare that this thesis is my own original work which I created without illegitimate help by others, that I have not used any other sources or resources than the ones indicated and that due acknowledgement is given where reference is made to the work of others. Karlsruhe, 15. M¨arz 2017 ............................................ (B.Sc. Maximilian Awiszus) Contents 1 Introduction 3 1.1 Acoustic music . .4 1.2 Musical note and sheet music . .5 1.3 Musical Instrument Digital Interface . .6 1.4 Instruments and inference . .7 1.5 Fourier analysis . .8 1.6 Sequence to sequence learning . 10 1.6.1 LSTM based S2S learning . 11 2 Related work 13 2.1 Music transcription . 13 2.1.1 Non-negative matrix factorization . 13 2.1.2 Neural networks . 14 2.2 Datasets . 18 2.2.1 MusicNet . 18 2.2.2 MAPS . 18 2.3 Natural Language Processing . 19 2.4 Music modelling .
    [Show full text]
  • The Major Scale Music Sounds the Way It Does Has to Do with the Group of Notes the Composer Decided to Use
    music theory for musicians and normal people by toby w. rush one of the reasons that a particular piece of The Major Scale music sounds the way it does has to do with the group of notes the composer decided to use. 2 2 , 17 bach na e bachr a magdal ian jo t a ann bas m G for se n i ann ook oh eb inuett j M no œ#œ œ œ œ œ œ &43 œ œ œ œ œ œ œœœ œ œ œ œ œ œ œ œ œ œ œ œ œ œ ˙. take this melody, for example... let’s first remove all the duplicate notes, regardless of which octave they’re in. œ#œ œ &43 œ œ œ œ next, let’s put the notes in alphabetical order, œ #œ œ starting on the note œ #œ œ œ œ œ that the melody sounded œ œ œ œ like it was centering on. œ œ what we end up with there are actually many is the for “palette” different types of scales, this particular piece... each with a different pattern of whole steps and half steps. œ œ œ #œ œ œ œ œ a half step is the distance between like the board on which a painter holds two adjacent keys the bits of paint being used in the painting on the piano keyboard, being created. regardless of color. in music, this “palette” is called a scale. though we usually write scales from low to high, the order is actually unimportant; it’s the notes contained in the scale that help make a piece sound the way it does.
    [Show full text]
  • 11-Music Scales
    Scales in Music Gary Hardegree Department of Philosophy University of Massachusetts Amherst, MA 01003 1. Introduction......................................................................................................................................1 2. The Fundamental Unit – The Octave...............................................................................................2 1. An Aside on Logarithmic Scales .........................................................................................5 2. Cents and Sensibility............................................................................................................6 3. The Pythagorean Construction of the Major Scale..........................................................................7 4. Ptolemaic Tuning...........................................................................................................................10 5. Mean-Tone Temperament (Tuning by Major Thirds) ...................................................................11 6. Problems with Perfect Tuning........................................................................................................12 1. An Aside on The Circle of Fifths and the Circle of Thirds................................................14 2. Back to the Problem of Tuning by Fifths...........................................................................14 3. Ptolemaic Tuning Makes Matters Even Worse! ................................................................15 4. Mean-Tone Temperament’s Wolves..................................................................................17
    [Show full text]