Ontogenetic Niche Shifts in Megaherbivorous Dinosaurs of Late Cretaceous North America and Their Ecological Implications

Total Page:16

File Type:pdf, Size:1020Kb

Ontogenetic Niche Shifts in Megaherbivorous Dinosaurs of Late Cretaceous North America and Their Ecological Implications Ontogenetic niche shifts in megaherbivorous dinosaurs of Late Cretaceous North America and their ecological implications by Taia Wyenberg-Henzler A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Carleton University Ottawa, Ontario © 2020, Taia Wyenberg-Henzler Abstract Despite megaherbivore ontogeny being relatively well-studied, little research has been conducted on the ecological implications of growth stages. Using ecomorphological dietary correlates, investigations into potential ecological differences between mature and immature ceratopsids and hadrosaurids were undertaken. The results suggest that juvenile megaherbivores selectively consumed softer, lower-growing vegetation than their adult counterparts, which likely reduced intra-specific competition. Ecomorphological investigations into the potential for competition between juvenile megaherbivores and small ornithischians, and investigations into relative abundances, were conducted to test the competition and taphonomic hypotheses. An overlap in results indicated a potential for competition between juvenile megaherbivores and leptoceratopsids, and as predicted by the competition hypothesis small ornithischians were generally less abundant than megaherbivores. Other groups showed separation in the ecomorphospace and some distributions showed similar abundances between groups as predicted by the taphonomic hypothesis. Thus, size differences were important for resource partitioning, and competition and taphonomy both influenced observed Late Cretaceous size distributions. ii Acknowledgements I would like to than Dr. Jordan Mallon and Dr. Tim Patterson for their supervision and guidance throughout this project, and Dr. Gabriel Blouin-Demers, Dr. Michael Ryan and Dr. Andrew Simons for their feedback. I would also like to thank Dr. Danielle Fraser and Dr. Nicolas Campione for their help and suggestions with R. Thanks to staff and students of Carleton University, especially my colleagues in the Carleton University Palaeontology program, for their support and encouragement. I would like to acknowledge NSERC, the Dinosaur Research Institute and Jurassic Foundation as funding sources that made the travel necessary for the completion of this project possible. My thanks also goes to the curators and assistants at the American Museum of Natural History, Museum of the Rockies, Royal Ontario Museum, Royal Tyrrell Museum of Palaeontology, Smithsonian National Museum of Natural History and University of Alberta Laboratory for Vertebrate Palaeontology for providing access to their collections. I thank Dr. Corwin Sullivan, Dr. David Evans, Amanda Millhouse and David Trexler for providing and/or facilitating access to restricted-access specimens. Thanks to Andrew Knapp for providing CT data on AMNH 5401 and AMNH 5402, Dr. Michael Ryan for photos of the MNHCM Prenoceratops from which measurements were taken, and staff at the Canadian Museum of Nature, Dr. Michael Ryan and Dr. Frank Varriale for providing help and suggestions on methods to remove bubbles from epoxy casts. Special thanks goes to my family who helped and supported me throughout this entire process. iii Institutional Abbreviations ACM, Beneski Museum of Natural History, Amherst College, Amherst; AMNH, American Museum of Natural History, New York, New York; ANSP, Academy of Natural Sciences of Philadelphia, Philadelphia, Pennsylvania; BHI, Black Hills Institute, Hill City, South Dakota; BMNH, British Museum of Natural History, London, U.K.; CMN, Canadian Museum of Nature, Ottawa, Ontario; CM, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania; CCM, Carter County Museum, Ekalaka, Montana; DMNH, Denver Museum of Nature and Science, Denver, Colorado; FMNH, Field Museum of Natural History, Chicago, Illinois; GPDM, Great Plains Dinosaur Museum, Malta, Montana; IMNH, Idaho Museum of Natural History, Pocatello, Idaho; LACM, Natural History Museum of Los Angeles County, Los Angeles, California; MNHCM, Mokpo Natural History and Culture Museum, Mokpo, Korea; MCSNM, Museo Civico di Storia Naturale di Milano, Milan, Italy; MOR, Museum of the Rockies, Bozeman, Montana; NCSM, North Carolina Museum of Natural Sciences, Raleigh, North Carolina; NHMUK and NHM Natural History Museum, London, U.K; NMMNH, New Mexico Museum of Natural History, Albuquerque, New Mexico; NSM PV and NMST, National Museum of Nature and Science, Tokyo, Japan; OTM, Old Trail Museum, Choteau, Montana; RAM, Raymond M. Alf Museum of Paleontology, Claremont, California; ROM, Royal Ontario Museum, Toronto, Ontario; RSM, Royal Saskatchewan Museum, Regina, Saskatchewan; SM – Senckenberg Museum, Frankfurt, Germany; TMM, Texas Memorial Museum, Austin, Texas; TMP, Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta; TLAM, Timber Lake and Area Museum, Timber Lake, South Dakota; TCMI, The Children’s Museum of Indianapolis, Indianapolis, Indiana; UALVP, iv University of Alberta, Edmonton, Alberta; UC, University of Calgary, Calgary, Alberta; UCMP, University of California Museum of Paleontology, Berkeley, California; UMMP, University of Michigan Museum of Paleontology, Ann Arbor, Michigan; USNM, Smithsonian Institution, National Museum of Natural History, Washington, D.C.; UTEP, University of Texas, El Paso, Texas; YPM, Peabody Museum of Natural History, Yale University, New Haven, Connecticut; YPM PU, Peabody Museum of Natural History, Yale University, New Haven, Connecticut, Princeton University Collection. v Table of Contents Abstract .............................................................................................................................. ii Acknowledgements .......................................................................................................... iii Institutional Abbreviations ............................................................................................. iv Table of Contents ............................................................................................................. vi List of Tables ..................................................................................................................... x List of Illustrations .......................................................................................................... xii List of Appendices .......................................................................................................... xvi Chapter 1: Introduction ................................................................................................ 18 1.1 Background................................................................................................................... 18 1.2 Taxonomy ..................................................................................................................... 19 1.3 Coexistence................................................................................................................... 22 1.4 Ontogenetic Niche Shifts .............................................................................................. 23 1.4.1 Ontogenetic Niche Shifts in Extant Taxa ................................................................. 25 1.4.2 Ontogenetic Niche Shifts in Dinosaurs .................................................................... 29 1.5 Structure and Aims of Thesis ....................................................................................... 33 Chapter 2: Ontogenetic niche shifts in hadrosaurids of Late Cretaceous North America ............................................................................................................................ 34 2.1 Introduction .................................................................................................................. 34 2.1.1 What is a hadrosaurid? ............................................................................................. 34 2.1.2 Hadrosaurids and ontogenetic niche shifts ............................................................... 35 2.1.3 Chapter goals ............................................................................................................ 38 2.2 Methods ........................................................................................................................ 39 2.2.1 Skull allometry ......................................................................................................... 40 2.2.2 Snout shape .............................................................................................................. 46 vi 2.2.3 Tooth wear analysis .................................................................................................. 49 2.3 Results .......................................................................................................................... 53 2.3.1 Skull allometry ......................................................................................................... 53 2.3.2 Snout shape .............................................................................................................. 58 2.3.3 Microwear ................................................................................................................ 58 2.3.3.1 Scratch orientation and distribution ................................................................. 61 2.3.3.2 Scratches and pits ............................................................................................ 65 2.4 Discussion....................................................................................................................
Recommended publications
  • Soil Survey and Reclamation Suitability Evaluation of the Proposed Nova Gas Transmission Ltd
    NOVA Gas Transmission Ltd. Environmental and Socio-Economic Assessment Norma Transmission Pipeline Project February 2013/8660 APPENDIX 3 SOIL SURVEY AND RECLAMATION SUITABILITY EVALUATION OF THE PROPOSED NOVA GAS TRANSMISSION LTD. NORMA TRANSMISSION PIPELINE PROJECT Page A3-1 SOIL SURVEY AND RECLAMATION SUITABILITY EVALUATION of the PROPOSED NOVA GAS TRANSMISSION LTD. NORMA TRANSMISSION PIPELINE Prepared for: TERA ENVIRONMENTAL CONSULTANTS On behalf of: NOVA GAS TRANSMISSION LTD. Prepared by: MENTIGA PEDOLOGY CONSULTANTS LTD. A.G. Twardy, M.Sc., P.Ag. B. Chernipeski, B.Sc., P.Ag. February 2013 11037B.1 TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................. 1 2.0 THE STUDY AREA .......................................................................................................... 3 2.1 Location and Extent ............................................................................................ 3 2.2 Bedrock Geology ................................................................................................ 3 2.3 Surficial Materials and Landform ........................................................................ 3 2.4 General Soil Patterns .......................................................................................... 4 2.5 Present Land Use ............................................................................................... 4 3.0 SOILS ...................................................................................................................
    [Show full text]
  • Post-Carboniferous Stratigraphy, Northeastern Alaska by R
    Post-Carboniferous Stratigraphy, Northeastern Alaska By R. L. DETTERMAN, H. N. REISER, W. P. BROSGE,and]. T. DUTRO,JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 886 Sedirnentary rocks of Permian to Quaternary age are named, described, and correlated with standard stratigraphic sequences UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Post-Carboniferous stratigraphy, northeastern Alaska. (Geological Survey Professional Paper 886) Bibliography: p. 45-46. Supt. of Docs. No.: I 19.16:886 1. Geology-Alaska. I. Detterman, Robert L. II. Series: United States. Geological Survey. Professional Paper 886. QE84.N74P67 551.7'6'09798 74-28084 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-02687-2 CONTENTS Page Page Abstract __ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ _ _ __ 1 Stratigraphy__:_Continued Introduction __________ ----------____ ----------------____ __ 1 Kingak Shale ---------------------------------------- 18 Purpose and scope ----------------------~------------- 1 Ignek Formation (abandoned) -------------------------- 20 Geographic setting ------------------------------------ 1 Okpikruak Formation (geographically restricted) ________ 21 Previous work and acknowledgments ------------------ 1 Kongakut Formation ----------------------------------
    [Show full text]
  • New Heterodontosaurid Remains from the Cañadón Asfalto Formation: Cursoriality and the Functional Importance of the Pes in Small Heterodontosaurids
    Journal of Paleontology, 90(3), 2016, p. 555–577 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2016.24 New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids Marcos G. Becerra,1 Diego Pol,1 Oliver W.M. Rauhut,2 and Ignacio A. Cerda3 1CONICET- Museo Palaeontológico Egidio Feruglio, Fontana 140, Trelew, Chubut 9100, Argentina 〈[email protected]〉; 〈[email protected]〉 2SNSB, Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU München, Richard-Wagner-Str. 10, Munich 80333, Germany 〈[email protected]〉 3CONICET- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca (predio Marabunta), Cipolletti, Río Negro, Argentina 〈[email protected]〉 Abstract.—New ornithischian remains reported here (MPEF-PV 3826) include two complete metatarsi with associated phalanges and caudal vertebrae, from the late Toarcian levels of the Cañadón Asfalto Formation. We conclude that these fossil remains represent a bipedal heterodontosaurid but lack diagnostic characters to identify them at the species level, although they probably represent remains of Manidens condorensis, known from the same locality. Histological features suggest a subadult ontogenetic stage for the individual. A cluster analysis based on pedal measurements identifies similarities of this specimen with heterodontosaurid taxa and the inclusion of the new material in a phylogenetic analysis with expanded character sampling on pedal remains confirms the described specimen as a heterodontosaurid. Finally, uncommon features of the digits (length proportions among nonungual phalanges of digit III, and claw features) are also quantitatively compared to several ornithischians, theropods, and birds, suggesting that this may represent a bipedal cursorial heterodontosaurid with gracile and grasping feet and long digits.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 61. NUMBER 5 A NEW DINOSAUR FROM THE LANCE FORMATION OF WYOMING BY CHARLES W. GILMORE (Publication 2184) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 24, 1913 Z2>c £or6 <§aitimoxt (press BALTIMORE, Ml)., U. S. A. A NEW DINOSAUR FROM THE LANCE FORMATION OF WYOMING By CHARLES W. GILMORE ASSISTANT CURATOR OF FOSSIL RF.PTILES, U. S. NATIONAL MUSEUM INTRODUCTION In July, 189 1, Messrs. J. B. Hatcher and W. H. Utterback dis- covered in Wyoming an articulated skeleton of a small Orthopodous dinosaur. Until quite recently this specimen had remained in the original packing boxes and it was in the nature of a surprise upon first examination to discover that it represented an undescribed form. I therefore propose to make this animal the type of the new genus, Thescelosaurus. The present paper may be considered preliminary, as upon the completion of the preparatory work now in progress a more detailed account of the skeletal anatomy, and a discussion of its affinities, will be given. THESCELOSAURUS, new genus In the present communication the characters of this genus are included in the description that follows of Thescelosaurus neglcctus, the type species. THESCELOSAURUS NEGLECTUS, new species Type.—Cat. No. 7757, U. S. N. M. This specimen consists of a nearly complete articulated skeleton, the skull and neck being the only important parts missing. Type-locality.—Doegie Creek, Converse County, Wyoming. Paratype.—Cat. No. 7758, U. S. N. M. A second individual con- sisting of a few cervical, dorsal, and caudal vertebrae, portions of both scapulae, ribs, bones of fore and hind feet, and portions of limb bones.
    [Show full text]
  • A Revision of the Ceratopsia Or Horned Dinosaurs
    MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY VOLUME III, 1 A.R1 A REVISION orf tneth< CERATOPSIA OR HORNED DINOSAURS BY RICHARD SWANN LULL STERLING PROFESSOR OF PALEONTOLOGY AND DIRECTOR OF PEABODY MUSEUM, YALE UNIVERSITY LVXET NEW HAVEN, CONN. *933 MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY Volume I. Odontornithes: A Monograph on the Extinct Toothed Birds of North America. By Othniel Charles Marsh. Pp. i-ix, 1-201, pis. 1-34, text figs. 1-40. 1880. To be obtained from the Peabody Museum. Price $3. Volume II. Part 1. Brachiospongidae : A Memoir on a Group of Silurian Sponges. By Charles Emerson Beecher. Pp. 1-28, pis. 1-6, text figs. 1-4. 1889. To be obtained from the Peabody Museum. Price $1. Volume III. Part 1. American Mesozoic Mammalia. By George Gaylord Simp- son. Pp. i-xvi, 1-171, pis. 1-32, text figs. 1-62. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $5. Part 2. A Remarkable Ground Sloth. By Richard Swann Lull. Pp. i-x, 1-20, pis. 1-9, text figs. 1-3. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $1. Part 3. A Revision of the Ceratopsia or Horned Dinosaurs. By Richard Swann Lull. Pp. i-xii, 1-175, pis. I-XVII, text figs. 1-42. 1933. To be obtained from the Peabody Museum. Price $5 (bound in cloth), $4 (bound in paper). Part 4. The Merycoidodontidae, an Extinct Group of Ruminant Mammals. By Malcolm Rutherford Thorpe. In preparation.
    [Show full text]
  • Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses By
    Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses by Elizabeth Kruk A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences University of Alberta © Elizabeth Kruk, 2015 Abstract Pachyrhinosaurus is a peculiar ceratopsian known only from Upper Cretaceous strata of Alberta and the North Slope of Alaska. The genus consists of three described species Pachyrhinosaurus canadensis, Pachyrhinosaurus lakustai, and Pachyrhinosaurus perotorum that are distinguishable by cranial characteristics, including parietal horn shape and orientation, absence/presence of a rostral comb, median parietal bar horns, and profile of the nasal boss. A fourth species of Pachyrhinosaurus is described herein and placed into its phylogenetic context within Centrosaurinae. This new species forms a polytomy at the crown with Pachyrhinosaurus canadensis and Pachyrhinosaurus perotorum, with Pachyrhinosaurus lakustai falling basal to that polytomy. The diagnostic features of this new species are an apomorphic, laterally curved Process 3 horns and a thick longitudinal ridge separating the supraorbital bosses. Another focus is investigating the ontogeny of Pachyrhinosaurus nasal bosses in a histological context. Previously, little work has been done on cranial histology in ceratopsians, focusing instead on potential integumentary structures, the parietals of Triceratops, and how surface texture relates to underlying histological structures. An ontogenetic series is established for the nasal bosses of Pachyrhinosaurus at both relative (subadult versus adult) and fine scale (Stages 1-5). It was demonstrated that histology alone can indicate relative ontogenetic level, but not stages of a finer scale. Through Pachyrhinosaurus ontogeny the nasal boss undergoes increased vascularity and secondary remodeling with a reduction in osteocyte lacunar density.
    [Show full text]
  • Dinosaur Eggshells from the Lower Maastrichtian St. Mary River Formation of Southern Alberta, Canada
    Canadian Journal of Earth Sciences Dinosaur eggshells from the lower Maastrichtian St. Mary River Formation of southern Alberta, Canada Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2017-0195.R1 Manuscript Type: Article Date Submitted by the Author: 13-Nov-2017 Complete List of Authors: Voris, Jared; University of Calgary, Geoscience; Zelenitsky, Darla; Department of Geoscience, Tanaka, Kohei; Nagoya Daigaku Hakubutsukan; University of Calgary, DepartmentDraft of Geoscience Therrien, François; Royal Tyrrell Museum of Palaeontology, Is the invited manuscript for consideration in a Special N/A Issue? : Keyword: eggshell, dinosaur, Cretaceous, Maastrichtian, Alberta https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 47 Canadian Journal of Earth Sciences 1 2 3 4 5 6 7 8 9 Dinosaur eggshells from the lower Maastrichtian St. Mary River Formation of southern 10 Alberta, Canada 11 12 Jared T. Voris, Darla K. Zelenitsky,Draft François Therrien, Kohei Tanaka 13 J. T. Voris, D. K. Zelenitsky, and K. Tanaka. Department of Geoscience, University of 14 Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; [email protected], 15 [email protected], [email protected] 16 K. Tanaka. Nagoya University Museum, Nagoya University Furocho, Chikusa-Ku, Nagoya, 17 464-8601, Japan; [email protected] 18 F. Therrien. Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, AB T0J 0Y0, 19 Canada.; [email protected] 20 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 47 1 2 Abstract–North America is known for its rich uppermost Cretaceous record of dinosaur egg 3 remains, although a notable fossil gap exists during the lower Maastrichtian.
    [Show full text]
  • Subsurface Characterization of the Pembina-Wabamun Acid-Gas Injection Area
    ERCB/AGS Special Report 093 Subsurface Characterization of the Pembina-Wabamun Acid-Gas Injection Area Subsurface Characterization of the Pembina-Wabamun Acid-Gas Injection Area Stefan Bachu Maja Buschkuehle Kristine Haug Karsten Michael Alberta Geological Survey Alberta Energy and Utilities Board ©Her Majesty the Queen in Right of Alberta, 2008 ISBN 978-0-7785-6950-3 The Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS) and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any digital data and software supplied with this publication are subject to the licence conditions. The data are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release, do not constitute endorsement by the ERCB/AGS of any manufacturer's product. If this product is an ERCB/AGS Special Report, the information is provided as received from the author and has not been edited for conformity to ERCB/AGS standards. When using information from this publication in other publications or presentations, due acknowledgment should be given to the ERCB/AGS. The following reference format is recommended: Bachu, S., Buschkuehle, M., Haug, K., Michael, K. (2008): Subsurface characterization of the Pembina-Wabamun acid-gas injection area; Energy Resources Conservation Board, ERCB/AGS Special Report 093, 60 p.
    [Show full text]
  • 3Rd-Order Sequence Stratigraphy and Lithostratigraphy of the Bearpaw–Horseshoe Canyon Transition, Alberta Plains
    3rd-order sequence stratigraphy and lithostratigraphy of the Bearpaw–Horseshoe Canyon transition, Alberta plains Ben Hathway, Alberta Geological Survey, Alberta Energy Regulator, Edmonton, Alberta, [email protected] Summary The regional-scale delineation and modelling of upper and lower boundaries and zero edges for the Bearpaw Formation tongues in southern and central Alberta forms an important component of a wider AGS project to construct a digital 3D geological framework for the Alberta subsurface. Core and high-quality wireline logs, generated to a large extent by recent coal-bed methane drilling, permit the establishment of a 3rd-order sequence stratigraphic framework. This provides a context within which lithostratigraphic boundaries of the Bearpaw Formation with laterally equivalent and overlying Horseshoe Canyon and St. Mary River formation strata can be more rigorously mapped. Lower boundaries of the Bearpaw tongues are 3rd-order transgressive, or more proximally, maximum flooding surfaces, and upper boundaries are highly diachronous facies contacts within successive regressive systems tracts. Introduction The complex nature of the intertonguing relationship between Campanian-Maastrichtian (Upper Cretaceous) Bearpaw Formation marine shale and fluviodeltaic nonmarine and shoreline deposits of the Horseshoe Canyon and St. Mary River formations in central and southern Alberta has long been recognized (e.g. Russell, 1932; Irish, 1970). Following earlier work focused on high-resolution, 4th-order sequence analysis of the stratigraphically limited part of the Bearpaw–Horseshoe Canyon transition exposed along the Red Deer River valley (e.g. Rahmani, 1988; Ainsworth, 1994), the first regional sequence stratigraphic study of the succession was undertaken by Catuneanu et al. (1997). In that study increasing and decreasing trends in wireline gamma-ray response were used to delineate up to 11 3rd-order transgressive-regressive (T-R) sequences within the Bearpaw Formation.
    [Show full text]
  • A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
    The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1).
    [Show full text]
  • A Subadult Individual of Styracosaurus Albertensis
    Vertebrate Anatomy Morphology Palaeontology 8:67–95 67 ISSN 2292-1389 A subadult individual of Styracosaurus albertensis (Ornithischia: Ceratopsidae) with comments on ontogeny and intraspecific variation inStyracosaurus and Centrosaurus Caleb M. Brown1,*, Robert B. Holmes2, Philip J. Currie2 1Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, AB, T0J 0Y0, Canada; [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; [email protected]; [email protected] Abstract: Styracosaurus albertensis is an iconic centrosaurine horned dinosaur from the Campanian of Alberta, Canada, known for its large spike-like parietal processes. Although described over 100 years ago, subsequent dis- coveries were rare until the last few decades, during which time several new skulls, skeletons, and bonebeds were found. Here we described an immature individual, the smallest known for the species, represented by a complete skull and fragmentary skeleton. Although ~80% maximum size, it possesses a suite of characters associated with immaturity, and is regarded as a subadult. The ornamentation is characterized by a small, recurved, but fused nasal horncore; short, rounded postorbital horncores; and short, triangular, and flat parietal processes. Using this specimen, and additional skulls and bonebed material, the cranial ontogeny of Styracosaurus is described, and compared to Centrosaurus. In early ontogeny, the nasal horncores of Styracosaurus and Centrosaurus are thin, recurved, and unfused, but in the former the recurved morphology is retained into large adult size and the horncore never develops the procurved morphology common in Centrosaurus. The postorbital horncores of Styracosaurus are shorter and more rounded than those of Centrosaurus throughout ontogeny, and show great- er resorption later in ontogeny.
    [Show full text]