A New Desert-Dwelling Oomycete, Pustula Persica Sp. Nov

Total Page:16

File Type:pdf, Size:1020Kb

A New Desert-Dwelling Oomycete, Pustula Persica Sp. Nov Mycoscience VOL.62 (2021) 239-243 Short communication A new desert-dwelling oomycete, Pustula persica sp. nov., on Gymnarrhena micrantha (Asteraceae) from Iran Mohammad Reza Mirzaee1, Sebastian Ploch2, Marco Thines2,3,* 1 Plant Protection Research Department, South Khorasan Agricultural and Natural Resources Research and Education Center, AREEO, Birjand, Iran 2 Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 3 Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60483 Frankfurt am Main, Germany ABSTRACT The obligate biotrophic oomycete genus Pustula is one of the four major linages of white blister rusts (Albuginaceae) identified so far. Species of the genus Pustula cause white blister rust on numerous genera in the asterids, represented by several phylogenetically distinct genus-specific lineages, most of which still await formal description. Thus, the observation of the species of Pustula on the Asteraceae subfamily Gymnorhenoideae pointed out to the existence of a hitherto undescribed species. By the morphological and molecular phylo- genetic investigation conducted in this study it is concluded that the pathogen on Gymnarrhena micrantha from Iran indeed represents a hitherto unknown species and is described as P. persica. This species has apparently adapted to desert condition and is, after Albugo arenosa, the second species of white blister rust from Iranian deserts, highlighting the adaptability of white blister rusts to hot and dry habitats. Keywords: Albuginales, cox2, one new species, phylogeny Article history: Received 13 January 2021, Revised 16 March 2021, Accepted 16 March 2021, Available online 20 July 2021. Despite similarities, such as filamentous growth and osmo- asitizes mostly Brassicales, but a few lineages are present on other trophic nutrient uptake, the phylum Oomycota is unrelated to fungi orders (Choi, Shin, Ploch, & Thines, 2011b; Ploch, Choi, & Thines, of the kingdom Mycota, but instead belongs to the kingdom Stra- 2018). Albugo s.l. parasitizes members of the Convolvulaceae and is minipila, which also contains diatoms and brown seaweeds distinguishable from Albugo s.str. by a pronounced oogonium or- (Beakes & Thines, 2017). Organisms in the Oomycota have adapted namentation (Voglmayr & Riethmüller, 2006; Thines & Voglmayr, to a wide range of climate conditions and lifestyles (Thines, 2014) 2009). Wilsoniana is parasitic to caryophyllids and features broadly and can be found in both arctic habitats (Hassett, Thines, Buaya, pear-shaped sporangia and densely ridged or reticulate oospores Ploch, & Gradinger, 2019) and hot deserts (Mirzaee et al., 2013). (Thines & Spring, 2005; Thines & Voglmayr, 2009). Pustula parasit- The highest diversity has so far been found among the two inde- izes various asterids, in particular Asteraceae, and is characterised pendently-evolved, obligate biotrophic lineages parasitizing angio- by usually densely reticulate oospores and sporangia with an equa- sperm plants, the downy mildews and white blister rusts (Thines, torial wall thickening (Thines & Spring, 2005; Choi, Thines, Tek, & 2014; Wijayawardene et al., 2020). The white blister rusts have Shin, 2012). Traditionally, it has been assumed that species causing evolved to sporulate below the epidermis of their hosts and to liber- white blister rust disease are specific mostly on the host family ate their spores by enzymatic digestion of the epidermal layer cov- level (Wilson, 1907; Biga, 1955; Choi & Priest, 1995). However, phy- ering the pustules (Heller & Thines, 2009). The family Albuginace- logenetic investigations have revealed that in Albugo, besides the ae contains the three genera that cause white blister disease of generalist species, A. candida (Pers.) Roussel, several distinct, host- angiosperms, Albugo, Pustula, and Wilsoniana. The latter two have specific species exist, which seem to be specific below the host ge- been segregated from Albugo based on their largely different cytol- nus level (Choi, Shin, Hong, & Thines, 2007; Choi, Shin, Ploch, & ogy, differences in sporangia and oospore morphology, as well as Thines, 2008; Choi, Shin, & Thines, 2009; Thines et al., 2009; Ploch deep phylogenetic divide (Thines & Spring, 2005). In total, there et al., 2010; Choi & Thines, 2011). Also in the genus Pustula, species are four major lineages in the Albuginaceae (Voglmayr & Ri- seem to be specific on at least the host genus level (Ploch et al., ethmüller, 2006), each with a specific host range. Albugo s.str. par- 2011), leading to the description of P. helianthicola C. Rost & Thines affecting sunflower (Rost & Thines, 2011), and the re-ap- * Corresponding author. praisal of several species previously thought to be synonyms of P. Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Mertonstr. 17-21, 60325 Frankfurt am Main, Germany obtusata (Link) C. Rost (syn. P. tragopogonis (Pers.) Thines) (Choi E-Mail address: [email protected] (M.Thines) et al., 2012). In line with this, three new species of Pustula were This is an open-access paper distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivative 4.0 international license (CC BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/). doi: org/10.47371/mycosci.2021.03.006 ― 239 ― M.R. Mirzaee et al. / Mycoscience VOL.62 (2021) 239-243 recently introduced from the Junggar Basin in China (Xu, Song, Xi, The partial cox2 sequences from the specimens were edited us- & Jiang, 2016; Xu et al., 2018). ing the DNASTAR computer package version 8 (Lasergene, Madi- During field trips in Iran, the occurrence of Pustula on Gymnar- son, WI, USA), and Geneious version 5.3.4 (Biomatters Ltd., Auck- rhena micrantha Desf. was noticed. Gymnarrhena micrantha is a land, New Zealand). Subsequently, they were added to the dataset hardy member of Asteraceae growing in dry, mostly bare and sandy of Ploch et al. (2011). In addition, the sequences of two Pustula areas in the deserts of Iran. It is an ephemeric, amphicarpic, dwarf species recently described were added (Xu et al., 2016, 2018). Se- desert annual herb which is mainly distributed in the drier parts of quences were aligned on the Mafft webserver (Katoh, Rozewicki, & the Mediterranean biome of North Africa and the Middle East. Al- Yamada, 2019) using default settings. Phylogenetic analyses were though some variation across the distribution range has been no- done on the TrEase webserver (http://thines-lab.senckenberg.de/ ticed in collections, there is only one species recognized in the ge- trease/) using FastTree2 (Price, Dehal, & Arkin, 2010) for Mini- nus. In a study of the tribe Inuleae using the cpDNA gene ndhF, it mum Evolution inference, RAxML (Stamatakis, 2014) for Maxi- was found that Gymnarrhena did not belonging to Asteroideae as mum Likelihood inference, both with 1,000 bootstrap replicates, previously thought, but rather to the paraphyletic Cichorioideae and Bayesian inference using MrBayes, version 3.2 (Ronquist et al., complex or sister to the entire Asteroideae,. Thus, it was, proposed 2012) with 5 Million generations, while other parameters were set as the sole member of the subfamily Gymnarrhenoideae (Ander- to default. berg, Eldenäs, Bayer, & Englund, 2005; Funk & Fragman-Sapir, In the phylogenetic reconstructions (Fig. 1), Pustula sp. from 2009). infecting Gymnarrhena micrantha is occupying an isolated posi- Given the host specificity previously observed for the genus tion, with no clear affinities to any other lineage. The two speci- Pustula (Ploch et al., 2011; Xu et al., 2016, 2018), it seemed plausi- mens from G. micrantha were identical in sequence and clustered ble that the Pustula species occurring on Gymnarrhena does not together with maximum support in all analyses. The specimens belong to any Pustula species described so far. Therefore, it was the from P. obtusata s.lat. infecting Tragopogon graminifolius DC. clus- aim of this study to clarify the phylogenetic relationships of the tered with P. obtusata from other species of Tragopogon with high potential new species and to investigate its morphology. to maximum support. However, some genetic divergence between Specimens sequenced in this study have been deposited in the the two groups was observed. Apart from a sister-group relation- Herbarium Senckenbergianum in Frankfurt (international herbar- ship of P. obtusata and P. junggarensis B. Xu & Z. D. Jiang, which ium code FR). The collection details are given in Table 1. Thin cross received strong to maximum support, no other subdivisions in sections using a razor blade were done on wetted herbarium speci- Pustula received strong support in all analyses. mens with white blister symptoms. Sections were transferred to Pustula is a cosmopolitan genus of white blister rusts, reported 60% lactic acid or 5% aqueous chloral hydrate solution on a slide. from all continents except for Antarctica, and affecting a wide The preparations for microscopy were warmed up, covered with range of members of the Asterales (Ploch et al., 2011). Most species coverslips and screened in bright-field using a compound light mi- of Pustula have been observed in the Asteraceae subfamilies Lactu- croscope (VWR TR 500 PH, VWR International, Darmstadt, Ger- coideae, Carduoideae and Asteroideae. So far, there has been no many). Subsequently, suitable preparations were investigated in occurrence reported in the subfamily
Recommended publications
  • Studies in the Compositae of the Arabian Peninsula and Socotra – 3
    Willdenowia 29 – 1999 197 SUSANNE KING-JONES & NORBERT KILIAN Studies in the Compositae of the Arabian Peninsula and Socotra – 3. Pluchea aromatica from Socotra is actually a species of Pulicaria (Inuleae) Abstract King-Jones [née Hunger], S. & Kilian, N.: Studies in the Compositae of the Arabian Peninsula and Socotra – 3. Pluchea aromatica from Socotra is actually a species of Pulicaria (Inuleae).– Willdenowia 29: 197-202. 1999 – ISSN 0511-9618. An endemic shrub from Socotra, only known from a few late 19th century collections and hitherto misplaced in Pluchea (Plucheeae) is studied with respect to, in particular, flower, achene and pappus morphology. The species is placed in Pulicaria and the new combination Pulicaria aromatica is made. Pluchea aromatica, which was characterized by Isaac Balfour (1888: 126) as “a very beautiful, small, and strongly aromatic shrub of the higher parts of the Haghier hills” is known from only five collections, made during four expeditions to Socotra between 1880 and 1899. In spite of ex- tensive collecting activities on Socotra over the last years, the species has not been recollected. This is rather surprising, as it was collected in the late 19th century not only at higher altitudes of the Haghier Mountains but also on its foothills not far from the main settlement of the island. It was even known locally by a vernacular Socotri name, reported independently from two of its collectors. Balfour had already expressed some uncertainty about the placement of this species in Pluchea. In the course of a revision of Pluchea in the Old World and Australia by the senior au- thor (Hunger 1996, 1997, King-Jones in prep.) it became obvious that the species is not only mis- placed in Pluchea but is not even a member of the Plucheeae.
    [Show full text]
  • Evaluation of Essential Oil Composition Genus Dittrichia L
    Türk Tarım ve Doğa Bilimleri Dergisi 4(4): 456–460, 2017 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Evaluation of Essential Oil Composition Genus Dittrichia L. (Asteraceae) Plants in Aydın/Turkey 1Emre SEVİNDİK*, 2Mehmet Yavuz PAKSOY 1Faculty of Agriculture, Department of Agricultural Biotechnology, Adnan Menderes University, South Campus, Cakmar, Aydin, Turkey 2Munzur University, Faculty of Engineering, Department of Enviromental Engineering, Tunceli 62100, Turkey *Corresponding author: [email protected] Received: 20.06.2017 Received in Revised: 21.08.2017 Accepted: 08.09.2017 Abstract The genus Dittrichia (Asteraceae), described by Greuter as a small genus, was previously known as a part of Inula and has a widespread Mediterranean distribution, marginally penetrating in the Atlantic European territories and in Middle East. The essential oil chemical compositions were derived from the genus Dittrichia L. plants were examined in the present study. The study material, Dittrichia viscosa (L). Greuter and Dittrichia graveolens (L.) Greuter were collected West Anatolian (Aydın/Turkey) ecological conditions in September- October 2015. Essential oils of the leaves were extracted by Clevenger apparatus. Essential oil compositions were determined with Gas Chromatography-Mass Spectrometry (GC-MS) device. The results from the gas chromatography-mass spectrometry analysis showed that the obtained levo-bornyl acetate from D. graveolens was with the highest percentage (25.23%). The 2,4-dioxo-3-methyl-6-isopropyl pyrido[2,3-b]-[1,4]pyrazine in D. viscosa was with the highest percentage (29.02%). Keywords: Essential oil, GC-MS, Dittrichia, Aydın/Turkey Aydın/Türkiye’de Yayılış Gösteren Dittrichia L.
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Indigenous Plants of Bendigo
    Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4
    [Show full text]
  • Phytochemical and Biological Investigations on a Mediteranean Envasive Weed As Natural Antibiotic
    Conference Proceedings Paper Phytochemical and biological investigations on a mediteranean envasive weed as natural antibiotic Toma Nardjes Mouas1,*, Zahia Kabouche 1, Zeyneb Aissani2 and Yasmine Aryane2 1 Université frères Mentouri-Constantine 1, Laboratoire d'Obtention de Substances Thérapeutiques LOST, Campus Chasbet Ersas, 25000 Constantine, Algeria. 2 Constantine 25000, Algeria. * Correspondence: [email protected] Abstract: In the framework of enhancing wild medicinal plants of the Mediterranean flora, the present work investigates phytochemical screening of different parts’ extracts of a wild medicinal plant from Asteraces family Inula viscosa L.: roots, leaves, flowers and aerial parts. It also highlights the quantification of the main secondary metabolites; total polyphenols and flavonoids and its correlation with in vitro antioxidant and antimicrobial activities. Biological tests have shown encouraging results for the antioxidant activities namely: reducing power FRAP test, hydrogen peroxide and hydroxyl radical scavenging, and exhibit flowers extract as promising source of phenols and potent antioxidants with the ability of breaking hydroxyl free radical chain generating, the main responsible of oxidative stress, on the other hand antibacterial and antifungal activities tested by discs diffusion method on agar medium, were carried out; and the effectiveness of tested extracts has been demonstrated against five pathogen bacterial and fungal referential strains. Obtained results exhibit aerial part as better phenols
    [Show full text]
  • (Asteraceae): a Relict Genus of Cichorieae?
    Anales del Jardín Botánico de Madrid Vol. 65(2): 367-381 julio-diciembre 2008 ISSN: 0211-1322 Warionia (Asteraceae): a relict genus of Cichorieae? by Liliana Katinas1, María Cristina Tellería2, Alfonso Susanna3 & Santiago Ortiz4 1 División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. [email protected] 2 Laboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. [email protected] 3 Instituto Botánico de Barcelona, Pg. del Migdia s.n., 08038 Barcelona, Spain. [email protected] 4 Laboratorio de Botánica, Facultade de Farmacia, Universidade de Santiago, 15782 Santiago de Compostela, Spain. [email protected] Abstract Resumen Katinas, L., Tellería, M.C., Susanna, A. & Ortiz, S. 2008. Warionia Katinas, L., Tellería, M.C., Susanna, A. & Ortiz, S. 2008. Warionia (Asteraceae): a relict genus of Cichorieae? Anales Jard. Bot. Ma- (Asteraceae): un género relicto de Cichorieae? Anales Jard. Bot. drid 65(2): 367-381. Madrid 65(2): 367-381 (en inglés). The genus Warionia, with its only species W. saharae, is endemic to El género Warionia, y su única especie, W. saharae, es endémico the northwestern edge of the African Sahara desert. This is a some- del noroeste del desierto africano del Sahara. Es una planta seme- what thistle-like aromatic plant, with white latex, and fleshy, pin- jante a un cardo, aromática, con látex blanco y hojas carnosas, nately-partite leaves. Warionia is in many respects so different from pinnatipartidas. Warionia es tan diferente de otros géneros de any other genus of Asteraceae, that it has been tentatively placed Asteraceae que fue ubicada en las tribus Cardueae, Cichorieae, in the tribes Cardueae, Cichorieae, Gundelieae, and Mutisieae.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • Reproductive Effort and Sex Allocation Strategy in Commelina Benghalensis L., a Common Monsoon Weed
    Botanical Journal of the Linnean Society, 2002, 140, 403–413. With 4 figures Reproductive effort and sex allocation strategy in Commelina benghalensis L., a common monsoon weed VEENU KAUL*, NAMRATA SHARMA and A. K. KOUL Department of Botany, University of Jammu, Jammu-180 006 (J & K), India Received January 2002; accepted for publication June 2002 Commelina benghalensis L. exhibits variability in both foliar and floral features; every plant bears three types of branches and four types of flowers. The branches are negatively geotropic, positively geotropic and diageotropic. The flowers are uni- or bisexual, chasmogamous and cleistogamous. This variability influences the breeding system as well as resource allocation to male and female functions. The plants allocate c. 15% of their total resources to reproduction, the major part of which (68.9%) is devoted to production of aerial branches. The proportion of repro- ductive effort (RE) allocated to various branch systems is correlated with the availability of resources at the time of their differentiation. The pollen/ovule (P/O) ratio, female : male biomass ratio and reproductive output vary between different flower and branch types; variation is more pronounced in the latter. These variations notwith- standing, the results are in line with Charnov’s sex allocation theory. The cleistogamous flowers of aerial branches are, however, an exception, being male- rather than female-biased. The reason behind the deviation is, in all prob- ability, their recent evolution from chasmogamous flowers. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140, 403-413. ADDITIONAL KEYWORDS: breeding system – chasmogamous – cleistogamous – female : male biomass ratio – P/O ratio – output – sex allocation – underground.
    [Show full text]
  • Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E
    Chapter38 Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E. Watson and Robert Vogt HISTORICAL OVERVIEW The circumscription of Anthemideae remained relatively unchanged since the early artifi cial classifi cation systems According to the most recent generic conspectus of Com- of Lessing (1832), Hoff mann (1890–1894), and Bentham pos itae tribe Anthemideae (Oberprieler et al. 2007a), the (1873), and also in more recent ones (e.g., Reitbrecht 1974; tribe consists of 111 genera and ca. 1800 species. The Heywood and Humphries 1977; Bremer and Humphries main concentrations of members of Anthemideae are in 1993), with Cotula and Ursinia being included in the tribe Central Asia, the Mediterranean region, and southern despite extensive debate (Bentham 1873; Robinson and Africa. Members of the tribe are well known as aromatic Brettell 1973; Heywood and Humphries 1977; Jeff rey plants, and some are utilized for their pharmaceutical 1978; Gadek et al. 1989; Bruhl and Quinn 1990, 1991; and/or pesticidal value (Fig. 38.1). Bremer and Humphries 1993; Kim and Jansen 1995). The tribe Anthemideae was fi rst described by Cassini Subtribal classifi cation, however, has created considerable (1819: 192) as his eleventh tribe of Compositae. In a diffi culties throughout the taxonomic history of the tribe. later publication (Cassini 1823) he divided the tribe into Owing to the artifi ciality of a subtribal classifi cation based two major groups: “Anthémidées-Chrysanthémées” and on the presence vs. absence of paleae, numerous attempts “An thé midées-Prototypes”, based on the absence vs. have been made to develop a more satisfactory taxonomy presence of paleae (receptacular scales).
    [Show full text]
  • Gunnado Farm Bioblitz Results Compressed
    FINAL REPORT This project is supported byNACC NRM, Geraldton Streetwork Aboriginal Corporation through funding from the Australian Government’s National Landcare Program and the Western Australian Government's State NRM Program Gunnado Farm BioBlitz Drawing Inspiration From Nature The sun was shining and the wildflowers were blooming when more than 50 people joined the Gunnado BioBlitz – many were local Geraldton residents, but many also travelled up from Perth for the event. The 2018 Gunnado BioBlitz was hosted by the Northern Agricultural Catchments Council and Geraldton Streetwork Aboriginal Corporation at Gunado Farm near Walkaway. The Gunnado BioBlitz was a community project aimed at bringing together professional and amateur ecologists – and those interested in learning more about their natural environment. It involved collecting data on as many species, from as many different taxonomic groups as possible over a 24-hour time period. The event was opened with a heartfelt Welcome to Country was given from Wajarri Amangu man David Ronan – encouraging everyone to explore the local area, while also caring for the Country that has provided us with so much. Participants then moved into four main groups led by ‘eco-gurus’, with participants swapping between sessions and locations according to their skills or interests during the weekend. • Flora – Joshua Foster from Earth Stewardship • Birds – Janet Newell and Jan Checker from BirdLife Midwest-Geraldton • Critters – Joe Tonga from Natsync Environmental • Fauna Trapping – Anthony Desmond from Department of Biodiversity, Conservation and Attractions (with support from volunteer extraordinaire Corin Desmond) Twenty Elliott traps were set for the one night using universal bait (a smelly mixture of sardines, oats and peanut butter) and were set on Saturday morning and checked and pulled in on both Saturday afternoon and Sunday morning.
    [Show full text]