The Super Proton Synchrotron (SPS): a Tale of Two Lives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epn2006-37-2.Pdf
europhysicsnews Fermionic atoms in an optical lattice 37/2 The origin of the Earth’s magnetic field 2006 I V 9 n CP violation in weak decays of neutral K mesons 9 o s l t e u i u t m u r o Physics in daily life: Cycling in the wind t e i s o 3 n p 7 a e l An interview with Sir Anthony Leggett r • s y n u e u b a m s r c b r i e p r t i 2 o n p r i c e : http://www.europhysicsnews.org Article available at European Physical Society contents europhysicsnews 2006 • Volume 37 • number 2 cover picture: © CNRS Photothèque - ROBERT Patrick Laboratory: CETP, Velizy, Velizy Villacoublay. Three-dimensional representation of the Terrestrial magnetic field, according to the model of Tsyganenko 87. The magnetic field is visualized in the form of "magnetic shells" of which the feet of the tension fields on the surface of the Earth have the same magnetic latitude. The sun is on the right. EDITORIAL 05 Physics in Europe Ove Poulsen HIGHLIGHTS 06 The origami of life A high-resolution Ramsey-Bordé spectrometer for optical clocks ... 07 Transportation of nitrogen atoms in an atmospheric pressure... ᭡ PAGE 06 Refractive index gradients in TiO2 thin films grown by atomic layer deposition Highlights: transportation of NEWS 08 2006 Agilent Technologies Europhysics Prize nitrogen atoms 09 Letters on the EPN 36/6 Special Issue 12 Report on ICALEPCS’2005 14 Discovery Space 15 EPS sponsors physics students to participate in the reunion of Nobel Laureates 16 EPS Accelerator Group and European Particle Accelerator Conference 17 Report on the 1st European Physics Education Conference FEATURES 18 Fermionic atoms in an optical lattice: a new synthetic material ᭡ PAGE 18 Michael Köhl and Tilman Esslinger Fermionic atoms in an 22 The origin of the Earth’s magnetic field: fundamental or environmental research? optical lattice: a new Emmanuel Dormy 26 First observation of direct CP violation in weak decays of neutral K mesons synthetic material Konrad Kleinknecht and Heinrich Wahl 29 Physics in daily life: Cycling in the wind L.J.F. -
Direct CP Violation in K 0 → Ππ
IFIC/17-56, FTUV/17-1218 Direct CP violation in K0 ! ππ: Standard Model Status Hector Gisbert and Antonio Pich Departament de F´ısicaTe`orica,IFIC, Universitat de Val`encia{ CSIC Apt. Correus 22085, E-46071 Val`encia,Spain Abstract In 1988 the NA31 experiment presented the first evidence of direct CP violation in the K0 ! ππ decay amplitudes. A clear signal with a 7:2 σ statistical significance was later established with the full data samples from the NA31, E731, NA48 and KTeV experiments, confirming that CP violation is associated with a ∆S = 1 quark transition, as predicted by the Standard Model. However, the theoretical prediction for the measured ratio "0=" has been a subject of strong controversy along the years. Although the underlying physics was already clarified in 2001, the recent release of improved lattice data has revived again the theoretical debate. We review the current status, discussing in detail the different ingredients that enter into the calculation of this observable and the reasons why seemingly contradictory predictions were obtained in the past by several groups. An update of the Standard Model prediction is presented and the prospects for future improvements are analysed. Taking into account all known short-distance and long-distance contributions, one obtains Re ("0=") = (15 ± 7) · 10−4, in good agreement with the experimental measurement. arXiv:1712.06147v1 [hep-ph] 17 Dec 2017 Contents Page 1 Historical prelude 2 2 Isospin decomposition of the K ! ππ amplitudes 5 3 Short-distance contributions 7 4 Hadronic matrix elements 10 5 Effective field theory description 12 5.1 Chiral perturbation theory . -
Spring 2007 Prizes & Awards
APS Announces Spring 2007 Prize and Award Recipients Thirty-nine prizes and awards will be presented theoretical research on correlated many-electron states spectroscopy with synchrotron radiation to reveal 1992. Since 1992 he has been a Permanent Member during special sessions at three spring meetings of in low dimensional systems.” the often surprising electronic states at semicon- at the Kavli Institute for Theoretical Physics and the Society: the 2007 March Meeting, March 5-9, Eisenstein received ductor surfaces and interfaces. His current interests Professor at the University of California at Santa in Denver, CO, the 2007 April Meeting, April 14- his PhD in physics are self-assembled nanostructures at surfaces, such Barbara. Polchinski’s interests span quantum field 17, in Jacksonville, FL, and the 2007 Atomic, Mo- from the University of as magnetic quantum wells, atomic chains for the theory and string theory. In string theory, he dis- lecular and Optical Physics Meeting, June 5-9, in California, Berkeley, in study of low-dimensional electrons, an atomic scale covered the existence of a certain form of extended Calgary, Alberta, Canada. 1980. After a brief stint memory for testing the limits of data storage, and structure, the D-brane, which has been important Citations and biographical information for each as an assistant professor the attachment of bio-molecules to surfaces. His in the nonperturbative formulation of the theory. recipient follow. The Apker Award recipients ap- of physics at Williams more than 400 publications place him among the His current interests include the phenomenology peared in the December 2006 issue of APS News College, he moved to 100 most-cited physicists. -
Around the Laboratories
Around the Laboratories such studies will help our under BROOKHAVEN standing of subnuclear particles. CERN Said Lee, "The progress of physics New US - Japanese depends on young physicists Antiproton encore opening up new frontiers. The Physics Centre RIKEN - Brookhaven Research Center will be dedicated to the t the end of 1996, the beam nurturing of a new generation of Acirculating in CERN's LEAR low recent decision by the Japanese scientists who can meet the chal energy antiproton ring was A Parliament paves the way for the lenge that will be created by RHIC." ceremonially dumped, marking the Japanese Institute of Physical and RIKEN, a multidisciplinary lab like end of an era which began in 1980 Chemical Research (RIKEN) to found Brookhaven, is located north of when the first antiprotons circulated the RIKEN Research Center at Tokyo and is supported by the in CERN's specially-built Antiproton Brookhaven with $2 million in funding Japanese Science & Technology Accumulator. in 1997, an amount that is expected Agency. With the accomplishments of these to grow in future years. The new Center's research will years now part of 20th-century T.D. Lee, who won the 1957 Nobel relate entirely to RHIC, and does not science history, for the future CERN Physics Prize for work done while involve other Brookhaven facilities. is building a new antiproton source - visiting Brookhaven in 1956 and is the antiproton decelerator, AD - to now a professor of physics at cater for a new range of physics Columbia, has been named the experiments. Center's first director. The invention of stochastic cooling The Center will host close to 30 by Simon van der Meer at CERN scientists each year, including made it possible to mass-produce postdoctoral and five-year fellows antiprotons. -
40 Years of CERN's Proton Synchrotron
ANNIVERSARY 40 years of CERN's Proton Synchrotron CERN's Proton Synchrotron achieved its first high-energy beams 40 years ago. The pioneers at CERN had dared to follow a new, untested route in a bid to become the world's highest energy machine. Now, 40 years later, the valiant Proton Synchrotron remains the ever-resourceful hub of an unrivalled The team that coaxed the protons from CERN's Proton Synchrotron through the "transition particle beam energy" and up to 24 GeVon the night of 24 November 1959. Left to right: John Adams, Hans Geibel, Hildred Blewett, Chris Schmelzer, Lloyd Smith, Wolfgang Schnell and Pierre Germain. network. On 24 November 1959, CERN's new Proton Synchrotron acceler step from a weak-focusing to a strong-focusing synchrotron, its ated protons through the dreaded "transition energy" barrier and on design, construction and legendary start-up - has been told before. to achieve the nominal energy of 24GeV. Could any of those rejoic Instead we look at the evolution that has led to today's PS, the com ing on that historic day have thought that their machine would still plex that has grown around it and the assured future that awaits it. be alive and well 40 years later, or that it would be the hub of the world's largest complex of accelerators, at the centre of European History 1959-1999: protons high-energy physics? If such thoughts were on their minds, they cer The performance of the PS has increased, partly through patient tainly would not have extended so far in time or in performance. -
U. E. R Institut National De De Physique Nucléaire Université Paris-Sud Et De Physique Des Particules
LAL 92-26 Gestion INIS May 1992 Doe. enreg. Ie N* TFW : 0L Destination : I,t+D,D NEW RESULTS ON DIRECT CP VIOLATION FROM THE NA31 EXPERIMENT Olivier PERDEREAU For the NA31 collaboration CERN, Edinburgh. Main/., Orsay, Pisa and Sicg cn Talk given at the XXVIlth Rencontres de Moriond Uectroweak Interactions and Unified Theories" Les Arcs, Savoie, March 15-22,1992 U. E. R Institut National de de Physique Nucléaire Université Paris-Sud et de Physique des Particules Bâtiment 200 - 91405 ORSAY Cedex LAL 92-26 May 1992 New results on direct CP violation from the NA31 experiment O. Perdereau Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, F-91405 Orsay Cedex, France. For the NA31 collaboration : CERN, Edinburgh, Mainz, Orsay, Pisa and Siegen Abstract The NA31 experiment has published the first evidence for direct CP violation by measuring a non-zero value for the X(e'/e) parameter. Further data-taking periods took place in 1988 and 1989, producing two datasets with statistics comparable to the original one. This paper presents the final result of the anal- ysis of tbe 1988 dataset together with a preliminary result of the analysis of the 1989 one. The combined, preliminary, measurement of NA31 is R(e'/e) = (2.3 ± 0.7 ) 10~3, thus confirming our initial measurement and also in agree- ment with the standard model. Introduction Since its discovery, 28 years ago, the non respect of the discrete CP symetry, so-called "CP violation", has up to now been observed only in neutral Kaon decays. -
Results on Direct CP Violation from NA48 1 Introduction
Results on Direct CP Violation from NA48 Giles Barr NA48 Collaboration CERN, Geneva, Switzerland 1 Introduction A long-standing question in high energy physics has been the origin of the phe- nomenon of CP violation. CP violation was first observed in the decay KL → + − 0 0 π π [1]. Effects have subsequently been found in KL → π π [2], the charge ± ∓ ± ∓ + − asymmetry of KL → e π ν (Ke3) [3] and KL → µ π ν (Kµ3) [4], KL → π π γ [5] and most recently in KL → ππee [6]. All of these effects can be explained by applying a single CP violating effect in the mixing between K0 and K0 which pro- ceeds through the box Feynman diagram and are characterized by the parameter ε. A second form of CP violation with different characteristics can also be in- vestigated in the decay of the neutral K-mesons. The CP =−1 kaon state (the K2) can decay directly into a 2π final state without first mixing into a kaon with CP =+1. This effect, referred to as direct CP violation, may proceed by the pen- guin Feynman diagram, and is characterized by the parameter ε. The measured quantity is the double ratio of the decay widths, which, in the NA48 experiment is equivalent to the double ratio of four event-counts Γ (K → π 0π 0)/ Γ (K → π 0π 0) R ≡ L S + − + − Γ (KL → π π )/ Γ (KS → π π ) N(K → π 0π 0)/ N(K → π 0π 0) = L S (1) + − + − N(KL → π π )/ N(KS → π π ) 1 − 6Re(ε/ε). -
THE PROTON-ANTIPROTON COLLIDER Lecture Delivered at CERN on 25 November 1987 Lyndon Evans
CERN 88-01 11 March 1988 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATOR SCHOOL Third John Adams Memorial Lecture THE PROTON-ANTIPROTON COLLIDER Lecture delivered at CERN on 25 November 1987 Lyndon Evans GENEVA 1988 ABSTRACT The subject of this lecture is the CERN Proton-Antiproton (pp) Collider, in which John Adams was intimately involved at the design, development, and construction stages. Its history is traced from the original proposal in 1966, to the first pp collisions in the Super Proton Synchrotron (SPS) in 1981, and to the present time with drastically improved performance. This project led to the discovery of the intermediate vector boson in 1983 and produced one of the most exciting and productive physics periods in CERN's history. RN —Service d'Information Scientifique-RD/757-3000-Mars 1988 iii CONTENTS Page 1. INTRODUCTION 1 2. BEAM COOLING l 3. HISTORICAL DEVELOPMENT OF THE pp COLLIDER CONCEPT 2 4. THE SPS AS A COLLIDER 4 4.1 Operation 4 4.2 Performance 5 5. IMPACT OF EARLIER CERN DEVELOPMENTS 5 6. PROPHETS OF DOOM 7 7. IMPACT ON THE WORLD SCENE 9 8. CONCLUDING REMARKS: THE FUTURE OF THE pp COLLIDER 9 REFERENCES 10 Plates 11 v 1. INTRODUCTION The subject of this lecture is the CERN Proton-Antiproton (pp) Collider and let me say straightaway that some of you might find that this talk is rather polarized towards the Super Proton Synchrotron (SPS). In fact, the pp project was a CERN-wide collaboration 'par excellence'. However, in addition to John Adams' close involvement with the SPS there is a natural tendency for me to remain within my own domain of competence. -
Theoretical Summary Lecture for EPS HEP99
SLAC-PUB-8351 February, 2000 Theoretical Summary Lecture for EPS HEP99 Michael E. Peskin1 Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 USA ABSTRACT This is the proceedings article for the concluding lecture of the 1999 High En- ergy Physics Conference of the European Physical Society. In this article, I review a number of topics that were highlighted at the meeting and have more general importance in high energy physics. The major topics discussed are (1) precision electroweak physics, (2) CP violation, (3) new directions in QCD, (4) supersym- metry spectroscopy, and (5) the experimental physics of extra dimensions. arXiv:hep-ph/0002041v2 31 May 2000 invited lecture presented at the International Europhysics Conference on High-Energy Physics July 15-21, 1999, Tampere, Finland 1Work supported by the Department of Energy, contract DE–AC03–76SF00515. 1 Introduction In this theoretical summary lecture at the High Energy Physics 99 conference of the Eu- ropean Physical Society, I am charged to review some of the new conceptual developments presented at this conference. At the same time, I would like to review more generally the progress of high-energy physics over the past year, and to highlight areas in which our basic understanding has been affected by the new developments. There is no space here for a sta- tus report on the whole field. But I would like to give extended discussion to five areas that I think have special importance this year. These are (1) precision electroweak physics, which celebrates its tenth anniversary this summer; (2) CP violation, which entered a new era this summer with the inauguration of the SLAC and KEK B-factories; (3) QCD, which now branches into new lines of investigation; and two rapidly developing topics from physics be- yond the Standard Model, (4) supersymmetry spectroscopy and (5) the experimental study of extra dimensions. -
List of Publications of Konrad Kleinknecht A. Books 1
- 1 - List of publications of Konrad Kleinknecht A. Books 1. Detektoren für Teilchenstrahlung, K. Kleinknecht, Teubner Studienbücher, 296 Seiten mit 154 Abbildungen und 20 Tabellen, Teubner Verlag, Stuttgart 1984, 3. Auflage 1992, 4. Auflage 2005 2. Detectors for Particle Radiation, Cambridge University Press, Cambridge 1986; second edition 1998 3. Kohlrausch, Praktische Physik, 23. Auflage, Kapitel 9.7: Nachweis hochenergetischer Teilchenstrahlung, Teubner Verlag, Stuttgart 1984 4. Proceedings of the 11th International Conference on Neutrino Physics and Astrophysics, Nordkirchen, June 11-16, 1984, ed. by K. Kleinknecht and E.A. Paschos, World Scientific Publ. Co. Singapore 1984 5. Particles and Detectors, Festschrift für Jack Steinberger, Springer Tracts in Modern Physics Vol. 108, editors: K. Kleinknecht and T.D. Lee, Heidelberg 1986 6. Ryuushisen Kenshutsu-Ki, K. Kleinknecht, 222 Seiten mit 150 Abbildungen und 20 Tabellen, Japanische Übersetzung des Buches "Detektoren für Teilchenstrahlung", übers. von K. Takahashi und H. Yoshiki, Baifukan Verlag, Tokyo, 1987 7. CP Violation, ed. by C. Jarlskog, World Scientific Publ. Co., Singapore 1988, chapter "CP Violation in the K 0 - K 0 , System", p.41 – 104. 8. Proton-Antiproton Interactions and Fundamental Symmetries, Proc. of the IXth European Symp. on Proton-Antiproton Interactions and Fundamental Symmetries, Mainz, 5-10 Sept. 1988, ed. by K. Kleinknecht und E. Klempt, Nucl.Phys.B (Proc.Suppl.) 8(2989) June 1989 9. Detektori korpuskularnich islutchennii, Russische Übersetzung des Buches "Detektoren für Teilchenstrahlung", Mir Verlag, Moskau, 1990 10. „Uncovering CP Violation“, Experimental Clarification in the Neutral K Meson and B Meson Systems, Springer Tracts in Modern Physics, 2004 11. „Wer im Treibhaus sitzt“ (2007), Piper Verlag München 12. -
Research Overview of Ian Shipsey 2017 Shipsey's Scientific Career Has Been Based on the Conviction That World-Class Scienc
Research Overview of Ian Shipsey 2017 Shipsey’s scientific career has been based on the conviction that world-class science can best be performed by the development of innovative state-of-the-art instrumentation. Shipsey is distinguished for his elucidation of the physics of heavy quarks, particularly charm, as leader of the CLEO/CLEO-c collaborations at Cornell where he made the most precise measurement of four of the nine quark couplings in nature, and for his outstanding development of charged-particle tracking technology. He was a pioneer of new gaseous tracking detectors and a leader in constructing silicon detectors for CLEO and CMS at LHC. A leading member of CMS, he made the first measurement of b quark production at LHC, observed upsilon suppression in heavy-ion collisions, and observed a long-sought rare b-quark bound state process. Since moving to Oxford to head the Particle Physics Sub- Department, he has joined ATLAS. He is taking a leading role in developing new silicon detectors for both ATLAS and for astronomical applications, specifically for the Large Synoptic Survey Telescope (LSST) project, and in ATLAS data analysis. Shipsey’s research can be divided into the following major activities: I. Heavy quark physics with the CLEO-c & CLEO at Cornell (1986-2012). Quarks are fundamental particles that exist in bound states (mesons and baryons) held together by the strong force. The heavier varieties of quark, such as the beauty (b) quark, disintegrate via the weak force to produce lighter particles at rates constrained, but not determined, by the Standard Model (SM) of particle physics. -
The CERN Antiproton Decelerator (AD) Operation, Progress and Plans for the Future
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server + EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN – PS DIVISION PS/OP/Note/2002-040 The CERN Antiproton Decelerator (AD) Operation, Progress and Plans for the Future P.Belochitskii, T.Eriksson (For the AD machine team) Abstract The CERN Antiproton Decelerator (AD) is a simplified source providing low energy antiprotons for experiments, replacing four machines: AC (Antiproton Collector), AA (Antiproton Accumulator), PS and LEAR (Low Energy Antiproton Ring), shut down in 1996. The former AC was modified to include deceleration, electron cooling and ejection lines into the new experimental area. The AD started physics operation in July 2000 and has CERN-OPEN-2002-041 10/03/2002 since delivered cooled beams at 100 MeV/c (kinetic energy of 5.3 MeV) to 3 experiments (ASACUSA, ATHENA and ATRAP). Problems encountered during the commissioning and the physics runs will be outlined as well as progress during 2001 and possible future developments. Paper presented at the PBAR01 conference Aarhus, Denmark, 14-15 September 2001 Geneva, Switzerland 10 March 2002 1 INTRODUCTION History of the AD project: • June 1995, SPSLC: ‘whatever support CERN can provide for the spectroscopy of antihydrogen experiments to access an antiproton source will be important”. • 1996: Deceleration tests in AC, Design report published, ADUC formed (AD users committee) [Ref. 1]. • February 1997: AD project approved (with strong financial and manpower support from the user community). • 23 November 1998: Proton beam decelerated to 300 MeV/c • November 1999: First antiprotons ejected to experiments at 100 MeV/c (no cooling at 100 MeV/c).