Design and Implementation of a Real-Time System Survey Functionality for Beam Loss Monitoring Systems, Phd Thesis © 2018

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of a Real-Time System Survey Functionality for Beam Loss Monitoring Systems, Phd Thesis © 2018 P H DTHESIS DESIGNANDIMPLEMENTATIONOF AREAL-TIMESYSTEMSURVEYFUNCTIONALITY FORBEAMLOSSMONITORINGSYSTEMS csaba f. hajdu Supervisors dr. tamás dabóczi dr. christos zamantzas Budapest University of European Organization for Technology and Economics Nuclear Research 2018 [ FINAL VERSION – August 3, 2018 at 18:27 ] Csaba F. Hajdu: Design and Implementation of a Real-Time System Survey Functionality for Beam Loss Monitoring Systems, PhD thesis © 2018 [email protected] This document was typeset using the typographical look-and-feel classicthesis developed by André Miede and Ivo Pletikosi´c.The style was inspired by Robert Bringhurst’s seminal book on typography “The Elements of Typographic Style”. classicthesis is available for both [ FINAL VERSION – August 3, 2018 at 14:30 ] LATEX and LYX: https://bitbucket.org/amiede/classicthesis/ [ FINAL VERSION – August 3, 2018 at 18:27 ] Dedicated to Gabi. Who else? Had I the heavens’ embroidered cloths, Enwrought with golden and silver light, The blue and the dim and the dark cloths Of night and light[ FINAL and VERSION the half-light,– August 3, 2018 at 14:31 ] I would spread the cloths under your feet: But I, being poor, have only my dreams; I have spread my dreams under your feet; Tread softly because you tread on my dreams. — W. B. Yeats [ FINAL VERSION – August 3, 2018 at 18:27 ] ABSTRACT This PhD thesis describes the design and implementation of a real-time system survey functionality for beam loss monitoring (BLM) systems, with a particular focus on signal processing aspects. In Part i, I introduce the basic concepts fundamental to the project. I give an overview of the European Organization for Nuclear Re- search (CERN), where the bulk of this research work was carried out. I introduce the basic principles of BLM systems, followed by details of the new BLM system under installation and commissioning tar- geted by the project. I also present a survey of the related literature, along with the first measurement and simulation results related to the identification of the BLM system. The switching operation of the high voltage power supplies results in a parasitic signal in the acquisition chain of the new beam loss monitoring system. Part ii presents a modification of the adaptive Fourier analyzer aimed at detecting these spurious components, with a view to realizing a noninvasive system survey. I introduce a novel frequency adaptation method, universally usable for resource-efficient frequency adaptation in a Fourier analyzer. Part iii presents another approach to surveying the new BLM sys- tem, relying on an external excitation applied to the detectors. The current best method and the suggested new solution are described, the latter complemented by implementational considerations and some operational experience. Part iv introduces methods intended to aid detecting the presence of an arbitrary predefined pattern repeated periodically in a digitized data stream. I present several novel modifications to the Fourier ana- lyzer facilitating pattern detection, with some also making it possible to detect additive disturbances in the frequency bands covered by the pattern. I show how a modified Fourier analyzer can be used to real- ize a lightweight time-variant cross-correlation filter, which produces the peak cross-correlation value in every time step when properly synchronized to the input signal. All the structures I present need to be synchronized to the input signal, for which I also introduce two algorithms. iv [ FINAL VERSION – August 3, 2018 at 18:27 ] KIVONAT Ez a PhD értekezés egy valós idej˝urendszerfelügyeleti eljárás meg- tervezését és megvalósítását mutatja be nyalábveszteség-monitorozó (BLM) rendszerekhez, különös figyelmet szentelve a jelfeldolgozási vonatkozásoknak. Az i. részben bevezetem a projekthez kapcsolódó alapvet˝ofogalma- kat. Áttekintést nyújtok az Európai Nukleáris Kutatási Szervezetr˝ol (CERN), ahol a kutatás nagy részét elvégeztem. Bemutatom a BLM rendszerek alapelveit, majd részletesebben leírom azt a jelenleg is telepítés és üzembe helyezés alatt álló új BLM rendszert, amellyel pro- jektem során foglalkoztam. Áttekintem a kapcsolódó szakirodalmat, valamint bemutatom a BLM rendszer identifikációjához kapcsolódó kezdeti mérési és szimulációs eredményeimet. A nagyfeszültség˝utápegységek kapcsolóüzeme parazita jelkom- ponenseket hoz létre az új nyalábveszteség-monitorozó rendszer jel- átviteli láncában. A ii. rész az adaptív Fourier-analizátor egy olyan módosítását mutatja be, amelynek célja ezen zavaró jelkomponen- sek detektálása a rendszerfelügyelet neminvazív megvalósítása ér- dekében. Egy új frekvencia-adaptációs eljárást javaslok, amely uni- verzálisan használható a frekvencia er˝oforráshatékonyadaptálására Fourier-analizátorokban. A iii. rész egy másik megközelítést mutat be az új BLM rendszer felügyeletére, amely a detektorokra alkalmazott küls˝ogerjesztésre támaszkodik. Részletezem a jelenlegi legjobb módszert és a javasolt új megoldást, ez utóbbihoz implementációs szempontokat és az üzemel- tetés során szerzett tapasztalatokat is f˝uzve. A iv. rész olyan módszereket mutat be, amelyek célja egy digitális adatfolyamban periodikusan ismétl˝od˝otetsz˝oleges,el˝ore definiált min- tázat jelenléte detektálásának el˝osegítése.Több új, a minta detektálását megkönnyít˝omódosítást javaslok a Fourier-analizátorhoz, amelyek közül néhány a mintázat által lefedett frekvenciasávokban megjelen˝o additív zavarjelek detektálását is lehet˝ové teszi. Megmutatom, hogyan lehet egy módosított Fourier-analizátorral id˝ovariáns keresztkorreláci- ós sz˝ur˝otmegvalósítani, amely helyes szinkronizáció esetén minden id˝olépésbena keresztkorrelációs függvény maximumát állítja el˝o.Az összes bemutatott struktúrát szinkronizálni szükséges a bemen˝ojelhez, amelyre szintén javaslok két algoritmust. v [ FINAL VERSION – August 3, 2018 at 18:27 ] ACKNOWLEDGMENTS The present thesis is the culminating point of a long and adventurous journey. Many people have contributed to it at different times and in different ways – those named in the following are but a few of them. I would like to start with the late Bernd Dehning, to whom I will be forever grateful. Without his instinct and confidence in me, I would probably never have ended up in the Beam Loss section at CERN in the first place. Bernd extended a welcoming hand to me when the time had come for me to return to BL to embark on this thesis, and gave me many useful hints along the way. This thesis could never have been written without the guidance of Tamás Dabóczi and Christos Zamantzas. Tamás first became my supervisor during my bachelor studies at Budapest University of Technology and Economics, and his guidance and suggestions as PhD thesis supervisor in matters both technical and administrative have been invaluable in shaping this work into what it has become. Christos was my supervisor for the whole of the time I spent with the Beam Loss section at CERN. Early on, he helped me a lot in getting integrated and picking up what I needed to know about accelerator physics. He made it possible for me to attend many courses and conferences. All along the way, he trusted me fully, let me shape my work in a way that suited me, and was always ready to listen to me and give me counsel whenever I needed it. Both Tamás and Christos have played important roles in my becoming the person I am today, and they have my eternal gratitude. I am also thankful to Gábor Péceli, Tadeusz Dobrowiecki and László Sujbert for the effort they put into reviewing my manuscripts and for their great proposals to improve them. My colleagues at CERN also played a part, both professionally and personally. Many thanks to William Viganò for creating a particular, yet very enjoyable atmosphere in the office, for all the time and energy he invested into solving the problems related to the project I turned to him with, and for helping me ‘defeat the shyness’ along with Jonathan Emery, Eleftherios Fadakis, Zsolt Sz˝okeand Roger Barlow. Thanks to Ewald Effinger for always being available to answer my questions and for countless lunch break runs with David Woog. I am also grateful for a very pleasant workplace atmosphere and lots of common coffee breaks to everyone I shared my time in the BL section with, including Andreas Alexopoulos, Slava Grishin, Kristian Hjorth, Maria Kastriotou, Örs Málnási-Csizmadia, Eduardo Nebot Del Busto, Roberto Rocca, Ion Savu, Christiane Schillinger, Volker Schramm, Luca Timeo, Raymond Tissier and Benedikt Würkner. vi [ FINAL VERSION – August 3, 2018 at 18:27 ] When it was time for me to return to the Department of Measure- ment and Information Systems to continue working on this thesis, I also got a very warm welcome. Thanks to András Széll for many ideas for side projects; Béla Fehér, Gábor Hullám, Gábor Naszály, Tamás Kovácsházy, Balázs Scherer, Péter Szántó and Gábor Wacha for many inspiring lunch breaks together; to Balázs Bank and György Orosz for their help with my teaching duties; to Dániel Hadházi and Péter Nagy for good company in the office. My warmest thanks to my friends at CERN I shared many lunch breaks and even more adventures with. I will not forget our many dinners and drinks together in the city, ski and snowboard outings, hikes with or without snowshoes, wine tastings and so much more: Márton Ady, Patrick Alknes, Cyndi Araujo, Ole-Kristian Berge, Nicola Black, Jorge Flores Vega, Ben Frisch, Daniel Gomez Blanco, Simon Heck, Julian Kadar, Aurélien Marsili, Bálint Radics, Alejandro Sanz Ull, Monika Sitko, Flavia Sperati, Gen Steele, Ágnes Szeberényi
Recommended publications
  • A Thermionic Electron Gun for the Preliminary Phase of Ctf3 G
    Proceedings of EPAC 2002, Paris, France A THERMIONIC ELECTRON GUN FOR THE PRELIMINARY PHASE OF CTF3 G. Bienvenu, M. Bernard, J. Le Duff, LAL, Orsay, France H. Hellgren, R. Pittin, L. Rinolfi, CERN, Geneva, Switzerland Abstract A dedicated electron gun has been designed and built Table 1: Beam parameters at gun exit for the preliminary phase of the CLIC Test Facility 3 Nominal beam energy 90 keV (CTF3). The gun is based on a thermionic gridded Pulse width 2 to 10 ns cathode and operates at 90 kV in the intensity range of Intensity 0.05 to 2 A 50 mA to 2A. The specific time structure of the beam is Number of pulses 1 to 7 characterized by a burst of up to seven pulses of variable Repetition rate 50 Hz pulse width (4 to 10 ns) each separated by 420 ns, the revolution time of the former EPA (Electron Positron Emittance (rms) <15 mm.mrd Accumulator) ring. The mechanical conception was specifically designed to be compatible with the existing 2.1 Mechanical design front-end of the former LIL (LEP Injector Linac). We will The vacuum chamber of the CLIO gun has been designed describe the experimental results obtained with the beam to fit existing CERN equipment, in particular the gun is on CTF3. fully compatible with the «CERN plug-in system» and an existing pair of ion pumps. All inner elements have been 1 INTRODUCTION baked under vacuum (400 ºC, 10-5 mbar, 12 h) and assembled under clean laminar airflow. With these The Compact Linear Collider (CLIC) scheme is based precautions a pressure of 10-9 mbar was obtained very on the production of a 30 GHz RF pulse that requires quickly and the HV processing reduced to a few hours.
    [Show full text]
  • Status of the Ctf3 Commissioning
    Proceedings of EPAC 2002, Paris, France STATUS OF THE CTF3 COMMISSIONING R. Corsini, B. Dupuy, L. Rinolfi, P. Royer, F. Tecker, CERN, Geneva, Switzerland A. Ferrari∗, Uppsala University, Sweden Abstract In this paper, we describe the present status of the fa- cility as well as the results of the first beam measurements The Preliminary Phase of the new CLIC Test Facility performed during the commissioning [4, 5]. These results CTF3 consists of a low-charge demonstration of the elec- are compared to beam dynamics predictions [6]. Finally, tron bunch train combination process on which the CLIC the next steps towards the completion of the experiment drive beam generation scheme is based. The principle of are described. the combination relies on the injection of short electron bunches into an isochronous ring using RF deflecting cavi- ties. The commissioning of this facility started in Septem- 2 COMMISSIONING WITH BEAM ber 2001, with alternating periods of installation work and 2.1 The Front-End and the Linac beam studies. In this paper, we present the status of the facility, the first beam measurements and the next steps to- The new thermionic gun built by LAL (“Laboratoire wards the completion of the experiment. de l’Acc´el´erateur Lin´eaire d’Orsay”) was successfully in- stalled and commissioned [7]. This triode gun produces a train of up to seven pulses at a repetition rate of 50 Hz. The 1 INTRODUCTION pulse length can be varied between 2 ns and 10 ns FWHM and the pulses are spaced by 420 ns, corresponding to the The Compact Linear Collider (CLIC) [1] RF power revolution period of the ring, as required for the bunch fre- source scheme is based on the production of a 30 GHz quency multiplication process.
    [Show full text]
  • Hep-Ph/0609102
    CERN-PH-TH/2006-175 September 2006 Physics Opportunities with Future Proton Accelerators at CERN A. Blondel a, L. Camilleri b, A. Ceccucci b, J. Ellis b , M. Lindroos b , M. Mangano b , G. Rolandi b a University of Geneva CH-1211 Geneva 4, SWITZERLAND b CERN, CH-1211 Geneva 23, SWITZERLAND Abstract We analyze the physics opportunities that would be made possible by upgrades of CERN’s proton accelerator complex. These include the new physics possible with luminosity or energy upgrades of the LHC, options for a possible future neutrino complex at CERN, and opportunities in other physics including rare kaon decays, other fixed-target experiments, nuclear physics and antiproton physics, among other possibilities. We stress the importance of inputs from initial LHC running and planned neutrino experiments, and summarize the principal detector R&D issues. 1 Introduction and summary In our previous report [1], we presented an initial survey of the physics opportunities that could be provided by possible developments and upgrades of the present CERN Proton Accelerator Complex [2,3]. These topics have subsequently been discussed by the CERN Council Strategy Group [4]. In this report, we amplify and update some physics points from our initial report and identify detector R&D priorities for the preferred experimental programme from 2010 onwards. We consider experimentation at the high-energy frontier to be the top priority in choosing a strategy for upgrading CERN's proton accelerator complex. This experimentation includes the upgrade to optimize the useful LHC luminosity integrated over the lifetime of the accelerator, through both a consolidation of the LHC injector chain and a possible luminosity upgrade project we term the SLHC.
    [Show full text]
  • CLIC Status Compact Linear Collider
    CLIC Status Compact Linear Collider IAS Program - HEP Plenary, 21 January 2019 Andrea Latina, CERN on behalf of the CLIC and CLICdp Collaborations 1 CLIC Status Compact Linear Collider Project overview Physics reach Accelerator technologies Outlook Compact Linear Collider e+e– collisions up to 3TeV http://clic.cern/ IAS Program - HEP Plenary, 21 January 2019 Andrea Latina, CERN on behalf of the CLIC and CLICdp Collaborations 2 Collaborations http://clic.cern/ • CLIC accelerator design and development • CLIC physics prospects & simulation studies • (Construction and operation of CTF3) • Detector optimization + R&D for CLIC CLIC accelerator collaboration CLIC detector and physics ~60 institutes from 28 countries (CLICdp) 30 institutes from 18 countries IAS HEP 2019 Andrea Latina 3 CLIC IAS HEP 2019 Andrea Latina 4 CLIC layout and power generation Baseline electron polarisation ±80% IAS HEP 2019 Andrea Latina 5 CLIC layout – 3TeV Baseline electron polarisation ±80% IAS HEP 2019 Andrea Latina 6 CLIC CDR 2012 Updated Staging Project Implementation https://cds.cern.ch/record/1500095 Baseline 2016 Plan 2018 https://cds.cern.ch/record/1425915 https://cds.cern.ch/record/1475225 http://dx.doi.org/10.5170/CERN-2016-004 IAS HEP 2019 Andrea Latina 7 CLIC Key technologies have been demonstrated CLIC is now a mature project, ready to be built IAS HEP 2019 Andrea Latina 8 Updated CLIC Staging New! increased from 0.5+0.1ab–1 1.5ab–1 3ab–1 Electron polarisation enhances Higgs production at high- energy stages and provides additional observables Baseline polarisation scenario adopted: electron beam (–80%, +80%) polarised in ratio (50:50) at √s=380GeV ; (80:20) at √s=1.5 and 3TeV γγ collider using laser scattering also possible Upgrades using novel accelerator techniques also possible Staging and live-time assumptions following guidelines consistent with other future projects: Machine Parameters and Projected Luminosity Performance of Proposed Future Colliders at CERN arXiv:1810.13022, Bordry et al.
    [Show full text]
  • 2.15 CTF3 Status, Progress and Plans
    165 2.15 CTF3 Status, Progress and Plans R. Corsini, P. Skowroński, F. Tecker, CERN, CH-1211 Geneva 23, Switzerland Mail to: [email protected] 2.15.1 Introduction The aim of the CLIC Test Facility CTF3 (see Fig. 1.1), built at CERN by the CLIC International Collaboration, is to prove the main feasibility issues of the two-beam acceleration technology [1]. CTF3 consists of a 150 MeV electron linac followed by a 42 m long Delay Loop and a 84 m Combiner Ring. The beam current from the linac is first doubled in the delay loop and then multiplied again by a factor of four in the combiner ring by interleaving bunches using transverse RF deflecting cavities. The high current beam can then be sent in the CLIC experimental area (CLEX) where it can be decelerated to extract 12 GHz RF power to be used for high gradient acceleration. In the same area a 200 MeV injector (CALIFES) generates a Probe Beam for two-beam experiments. Figure 1.1: CTF3 overall layout. CTF3 was built in order to demonstrate the following two main issues [2]: 1. Drive Beam Generation: efficient generation of a high-current electron beam with the time structure needed to generate 12 GHz RF power. CLIC relies on a novel scheme of fully loaded acceleration in normal conducting travelling wave structures, followed by beam current and bunch frequency multiplication by funneling techniques in a series of delay lines and rings, using injection by RF deflectors. CTF3 is meant to use such a technique to produce a 30 A Drive Beam with 12 GHz bunch repetition frequency.
    [Show full text]
  • Compact Linear Collider (CLIC)
    Compact Linear Collider (CLIC) Philip Burrows John Adams Institute Oxford University 1 Outline • Introduction • Linear colliders + CLIC • CLIC project status • 5-year R&D programme + technical goals • Applications of CLIC technologies 2 Large Hadron Collider (LHC) Largest, highest-energy particle collider CERN, Geneva 3 CERN accelerator complex 4 CLIC vision • A proposed LINEAR collider of electrons and positrons • Designed to reach VERY high energies in the electron-positron annihilations: 3 TeV = 3 000 000 000 000 eV • Ideal for producing new heavy particles of matter, such as SUSY particles, in clean conditions 5 CLIC vision • A proposed LINEAR collider of electrons and positrons • Designed to reach VERY high energies in the electron-positron annihilations: 3 TeV = 3 000 000 000 000 eV • Ideal for producing new heavy particles of matter, such as SUSY particles, in clean conditions … should they be discovered at LHC! 6 CLIC Layout: 3 TeV Drive Beam Generation Complex Main Beam Generation Complex 7 CLIC energy staging • An energy-staging strategy is being developed: ~ 500 GeV 1.5 TeV 3 TeV (and realistic for implementation) • The start-up energy would allow for a Higgs boson and top-quark factory 8 2013 Nobel Prize in Physics 9 e+e- Higgs boson factory e+e- annihilations: E > 91 + 125 = 216 GeV E ~ 250 GeV E > 91 + 250 = 341 GeV E ~ 500 GeV European PP Strategy (2013) High-priority large-scale scientific activities: LHC + High Lumi-LHC Post-LHC accelerator at CERN International Linear Collider Neutrinos 11 International Linear Collider (ILC) c. 250 GeV / beam 31 km 12 Kitakami Site 13 ILC Kitakami Site: IP region 14 Global Linear Collider Collaboration 15 European PP Strategy (2013) CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high energy frontier machines.
    [Show full text]
  • Around the Laboratories
    Around the Laboratories such studies will help our under­ BROOKHAVEN standing of subnuclear particles. CERN Said Lee, "The progress of physics New US - Japanese depends on young physicists Antiproton encore opening up new frontiers. The Physics Centre RIKEN - Brookhaven Research Center will be dedicated to the t the end of 1996, the beam nurturing of a new generation of Acirculating in CERN's LEAR low recent decision by the Japanese scientists who can meet the chal­ energy antiproton ring was A Parliament paves the way for the lenge that will be created by RHIC." ceremonially dumped, marking the Japanese Institute of Physical and RIKEN, a multidisciplinary lab like end of an era which began in 1980 Chemical Research (RIKEN) to found Brookhaven, is located north of when the first antiprotons circulated the RIKEN Research Center at Tokyo and is supported by the in CERN's specially-built Antiproton Brookhaven with $2 million in funding Japanese Science & Technology Accumulator. in 1997, an amount that is expected Agency. With the accomplishments of these to grow in future years. The new Center's research will years now part of 20th-century T.D. Lee, who won the 1957 Nobel relate entirely to RHIC, and does not science history, for the future CERN Physics Prize for work done while involve other Brookhaven facilities. is building a new antiproton source - visiting Brookhaven in 1956 and is the antiproton decelerator, AD - to now a professor of physics at cater for a new range of physics Columbia, has been named the experiments. Center's first director. The invention of stochastic cooling The Center will host close to 30 by Simon van der Meer at CERN scientists each year, including made it possible to mass-produce postdoctoral and five-year fellows antiprotons.
    [Show full text]
  • Cern Quick Facts 2017
    BUDGET Total Member States’ and additional contributions 1141.7 million CHF COUNCIL CERN QUICK FACTS 2017 Normalized contributions from the Member States (%) Austria 2.17 Belgium 2.76 Bulgaria 0.29 Czech Republic 0.94 Denmark 1.77 Finland 1.35 MANAGEMENT France 14.32 Directorate Germany 20.44 Greece 1.20 Director-General Fabiola Gianotti Hungary 0.60 Director for Accelerators and Technology Frédérick Bordry Israel 1.49 Director for Finance and Human Resources Martin Steinacher Italy 10.62 Director for International Relations Charlotte Warakaulle Netherlands 4.77 Director for Research and Computing Eckhard Elsen Norway 2.90 Poland 2.82 Council Support John Pym Portugal 1.11 Internal Audit John Steel Romania 0.99 Legal Service Eva-Maria Gröniger-Voss Slovakia 0.48 Occupational Health & Safety and Environmental Protection Simon Baird Spain 7.22 Ombuds Sudeshna Datta Cockerill Sweden 2.73 Switzerland 3.92 Scientific Information Services Jens Vigen United Kingdom 15.10 Education, Communications and Outreach Ana Godinho Associate Member States in the pre-stage Host States Relations Friedemann Eder to Membership Media and Press Relations Arnaud Marsollier Cyprus 0.01 Member State Relations Pippa Wells Serbia 0.17 Non-Member State Relations Emmanuel Tsesmelis Slovenia 0.03 Protocol Service Wendy Korda Relations with International Organizations Olivier Martin Associate Member States India 1.03 Departments Pakistan 0.13 Beams (BE) Paul Collier Turkey 0.43 Engineering (EN) Roberto Losito Ukraine 0.09 Experimental Physics (EP) Manfred Krammer Finance
    [Show full text]
  • 40 Years of CERN's Proton Synchrotron
    ANNIVERSARY 40 years of CERN's Proton Synchrotron CERN's Proton Synchrotron achieved its first high-energy beams 40 years ago. The pioneers at CERN had dared to follow a new, untested route in a bid to become the world's highest energy machine. Now, 40 years later, the valiant Proton Synchrotron remains the ever-resourceful hub of an unrivalled The team that coaxed the protons from CERN's Proton Synchrotron through the "transition particle beam energy" and up to 24 GeVon the night of 24 November 1959. Left to right: John Adams, Hans Geibel, Hildred Blewett, Chris Schmelzer, Lloyd Smith, Wolfgang Schnell and Pierre Germain. network. On 24 November 1959, CERN's new Proton Synchrotron acceler­ step from a weak-focusing to a strong-focusing synchrotron, its ated protons through the dreaded "transition energy" barrier and on design, construction and legendary start-up - has been told before. to achieve the nominal energy of 24GeV. Could any of those rejoic­ Instead we look at the evolution that has led to today's PS, the com­ ing on that historic day have thought that their machine would still plex that has grown around it and the assured future that awaits it. be alive and well 40 years later, or that it would be the hub of the world's largest complex of accelerators, at the centre of European History 1959-1999: protons high-energy physics? If such thoughts were on their minds, they cer­ The performance of the PS has increased, partly through patient tainly would not have extended so far in time or in performance.
    [Show full text]
  • The AWAKE Project at CERN and Its Connections to CTF3
    The AWAKE Project at CERN and its Connections to CTF3 Edda Gschwendtner, CERN Outline • Motivation • AWAKE at CERN • AWAKE Experimental Layout: 1st Phase • AWAKE Experimental Layout: 2nd Phase • Experimental Facility at CERN • Electron Source • Summary 2 AWAKE • AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment – Use SPS proton beam as drive beam – Inject electron beam as witness beam • Proof-of-Principle Accelerator R&D experiment at CERN – First proton driven wakefield experiment worldwide – First beam expected in 2016 • AWAKE Collaboration: 14 Institutes world-wide 3 Motivation • Accelerating field of today’s RF cavities or microwave technology is limited to <100 MV/m – Several tens of kilometers for future linear colliders • Plasma can sustain up to three orders of magnitude much higher gradient – SLAC (2007): electron energy doubled from 42GeV to 85 GeV over 0.8 m 52GV/m gradient Why protons? • Energy gain is limited by energy carried by the laser or electron drive beam (<100J) and the propagation length of the driver in the plasma (<1m). – Staging of large number of acceleration sections required to reach 1 TeV region. • Proton beam carry much higher energy: 19kJ for 3E11 protons at 400 GeV/c. – Drives wakefields over much longer plasma length, only 1 plasma stage needed. Simulations show that it is possible to gain 600 GeV in a single passage through a 450 m long plasma using a 1 TeV p+ bunch driver of 10e11 protons and an rms bunch length of 100 mm. 4 Motivation Ez • Plasma wave is excited by a relativistic particle bunch • Space charge of drive beam displaces plasma electrons.
    [Show full text]
  • Halo and Tail Generation Study in Compact Linear Collider
    1 AT/P5-07 Halo and Tail Generation Study in Compact Linear Collider I. Ahmed 1, H. Burkhardt 2, M. Fitterer 1 National Centre for Physics (NCP), Islamabad, Pakistan 2 European Organizations for Nuclear Research (CERN), Geneva, Switzerland 3 Universitat Karlsruhe, Germany Email contact of main author: [email protected] Abstract. Halo particles in linear colliders can result in significant losses and serious back- ground which may reduce the overall performance. We discuss halo sources and describe analytical estimates.We report about generic halo and tail simulations and estimates. Previous studies were mainly focused on very high energies as relevant for the beam delivery systems of linear colliders. We have now studied, applied and extended these simulations to lower energies as relevant for the CLIC drive beam. 1. Introduction Halo particles contribute very little to the luminosity but may instead be a major source of background and radiation [1]. Even if most of the halo will be stopped by collimators, the secondary muon background may still be significant [2, 3]. We study halo production with detailed simulations, to accompany the design studies for future linear colliders such that any performance limitations due to halo and tails can be minimised [4]. One of our aims was to assemble a comprehensive list of potential halo production processes. We find it useful to subdivide this list in three categories. Particle processes: • Beam Gas elastic scattering and multiple scattering • Beam Gas inelastic scattering, bremsstrahlung • Synchrotron radiation, incoherent and coherent • Scattering off thermal photons • Intrabeam and Touschek scattering • Ion or electron-cloud effects Optics related: • Mismatch • Coupling • Dispersion • Non-linearities Collective and equipment related: • Wake-fields • Beam Loading • Noise and vibration • Dark currents • Space charge effects close to source • Bunch compressors 2 AT/P5-07 This list was presented and discussed at several conferences including EPAC’06 [4] and PAC’07 [5] and in various EuroTeV meetings.
    [Show full text]
  • Future Perspectives at CERN 3 Unprecedented Accuracy
    Future Perspectives at CERN John Ellis1 Theoretical Physics Division, CERN, Geneva, Switzerland Abstract. Current and future experiments at CERN are reviewed,with emphasis on those relevant to astrophysics and cosmology. These include experiments related to nuclear astrophysics, matter-antimatter asymmetry, dark matter, axions, gravitational waves, cosmic rays, neutrino oscillations, inflation, neutron stars and the quark-gluon plasma. The centrepiece of CERN’s future programme is the LHC, but some ideas for perspectives after the LHC are also presented. CERN-TH/2002-119 astro-ph/0206054 Talk given at the CERN-ESA-ESO Symposium, M¨unchen, April 2002 1 Outline The scientific mission of CERN is to provide Europe with unique accelerators for the study of the fundamental particles of matter and the interactions between them. The scientific programme of CERN for the next decade is centred on the LHC accelerator, which is scheduled for completion in 2006, so that its experi- ments can start taking in 2007. A description of the LHC scientific programme is the centrepiece of this talk. The motivations for this and other new accelera- tors provided by ideas about possible physics beyond the Standard Model were discussed earlier at this meeting [1]. Between now and the startup of the LHC, CERN has a very limited pro- gramme of running experiments. However, scientific diversity at CERN is en- hanced by a number of recognized experiments, that do not use the CERN ac- celerators and are not supported by CERN, but whose scientists are allowed to use other CERN facilities. In parallel with the construction of the LHC, CERN arXiv:astro-ph/0206054v1 4 Jun 2002 is also preparing to send a long-baseline neutrino beam to the Gran Sasso under- ground laboratory in Italy, in a special programme largely supported by extra contributions from interested countries.
    [Show full text]