What Constitutes a Pony

Total Page:16

File Type:pdf, Size:1020Kb

What Constitutes a Pony Aspects of adiposity in ponies Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy by Alexandra Helena Anne Dugdale May 2011 0 Abstract Aspects of adiposity in ponies. Alexandra H.A. Dugdale Obesity is a growing problem for humans and their horses and ponies, yet emaciated animals still form an important part of the work of equine welfare charities. Non-invasive yet reliable methods of assessing equine body fat are required in order to promote management procedures to improve animal welfare. The overall objective of this work was to investigate the application of a horse-specific body condition scoring system in ponies in order to either validate or revise it, or even replace it with a novel system if necessary. Seasonal differences in appetite, body mass (BM) gain, body condition score (BCS) change and direct (ultrasound) and indirect (morphometry and D2O dilution) measures of body fat were explored in two relatively homogeneous groups of mature Welsh mountain pony mares, studied over summer (June –September 2007) and winter (January-April 2008). The ponies in each group were paired so that, at study outset, two ponies were „thin‟ (BCS, 1-3/9); two were „moderate‟ (BCS, 4-6/9); and two were „obese‟ (BCS, 7-9/9). The greatest appetites (peak 4.6% BM as DMI), increases in body mass (~60kg) and in BCS (~3 points) were recorded for ponies of non-obese outset condition in summer (non-ObS, n=4). For ponies of non-obese outset condition in winter (non-ObW, n=3), appetites peaked at 3.5% BM as DMI, BM increased by a mean of 50kg and BCS increased by ~2 points over the 3 month study period. Appetites for all obese (Ob, n=4) ponies remained almost constant (~2% BM as DMI; peak 2.3% BM as DMI) and minimal changes in BM (n=3) and BCS (n=4) were recorded, regardless of season. All measures of body fat increased for non-Ob ponies (non-ObS>non-ObW). An exponential relationship was determined between body fat content and BCS and for values > 6, BCS was not a useful predictor of actual body fat content. The endogenous circannual mechanisms to encourage winter weight loss were insufficient to prevent the development of obesity in ad libitum fed ponies. The effects of dietary restriction to 1% BM as DMI were studied in a group of 5 overweight or obese mature pony mares (BCS 5.6-8/9). Those measures outlined above were likewise recorded. All ponies remained healthy throughout the 12 week trial. Overall, BM reduced by 1% of outset BM per week. Approximately half the lost BM comprised fat, but fatter animals lost relatively more fat. Despite an average loss of ~30 kg BM, BCS did not change appreciably suggesting that BCS was a relatively poor indicator of early weight/fat loss in obese ponies. The relationships between BCS, direct (ultrasonic) and indirect (morphometric and D2O dilution derived) measures of body fat and actual body fat content determined by both physical dissection and chemical cadaver analysis were explored using 7 donated mature Welsh pony mares (BCS 1.25 to 7/9). Body „fat‟ content (dissected white adipose tissue or chemically-extracted lipid fractions) was the most variable constituent of the cadavers (up to 1/3rd body mass), and was non-linearly related to BCS. From these studies, it was also possible to validate the D2O dilution technique for the measurement of total body water and fat in ponies. Contemporaneously gathered data for BCS and body fat (D2O dilution) from 48 separate observations were explored statistically. A non-linear association between body fat content and BCS was confirmed, with a cut off value of BCS 7/9, above which BCS was less useful for determining body fat content. A novel BCS system was created and is undergoing field trials. 1 Acknowledgements First and foremost, my grateful thanks go to World Horse Welfare for their substantial financial support of, and enthusiastic interest in, all the work presented in this thesis. Roly Owers, Andrew Higgins, Sam Chubbock, Chris Williamson, Tony Fleming and Tony Tyler formed the part of World Horse Welfare‟s team that we got to know well. Furthermore, I am indebted to the Biotechnology and Biological Sciences Research Council for the provision of my stipend through the Doctoral Training Award scheme, which enabled the greatest use of charitable funding for research purposes. I would also like to thank Dr.s Caroline Argo and Patricia Harris, my main supervisors, for the concept and creation of the PhD programme and for their continued enthusiastic support and guidance throughout its development and fruition. Thanks also go to my other supervisors, Prof.s Derek Knottenbelt and Hilary Dobson, for their assistance and advice. Many thanks are due to Gemma Curtis, my partner in crime, who helped me overcome, on numerous occasions, a flooded lab, flooded stables and unserviceable equipment to get the data gathered and analysed more or less on schedule. Keep smiling! Jean Wheeler and Helen Braid assisted in developing our numerous risk assessments and Jean Routly, Hilary Purcell and David Jones helped with FSIGTs and running insulin ELISAs. Jim Khambatta from Mercodia also requires a special thank you for conceding to my negotiation for doing us a great deal on the ELISA kit price! Roy Broadbank from Sartec was an enormous help in keeping the bomb calorimeter working and Peter Taylor and Sue Quinn were fantastic in teaching us how to use the biochemistry analyser and allowing us to run our hundreds of samples. They also helped us set up the NEFA assay, taught us how to stain for Heinz bodies in blood smears and helped us measure fructosamine for a student project. Thanks too go to Anja Kipar, Udo Hetzl and the histopathology team for helping us process, stain and image some of our samples. Ray Smith from Trouw Nutrition and Linda Turtle were instrumental in my learning the basics of proximate analysis. Nigel Jones and team were also a great support for various aspects of the work (laboratory space, land rover use, horse barn, paddocks etc.) – thank you all for your friendly welcome and help. The team at the Rowett Institute in Aberdeen deserves an extra special mention. Eric Milne from the mass spectrometry group was truly inspiring. His patience and expertise in helping me with the deuterium analyses were second to none. Through Eric I also discovered David Brown and Christine Horrocks to whom I‟m extremely grateful for basically letting me take over their whole laboratory to analyse NDFs and nitrogens. Thanks are also due to Sue, Donna, all the Garys and the librarian who looked after me so well; not forgetting Louise Cantlay, Eric‟s new assistant, who has helped analyse all our latest samples. Helen Brough and Holly Oakley deserve special thanks for their stamina during hundreds of hours of pony dissection and even bringing their friends with them to help! I am also indebted to several students who similarly came to join in on Sundays and bank holiday Mondays, persistent offenders being Claire Dixon and 2 Bryony Few. Val Turner‟s team were also amazing for helping with the initial processing. Dissection was facilitated by the awesome and artistic de-boning done by Geoff Partridge. Thank you Geoff - and you must remind me how you sharpen those blades! On the subject of which, W.R. Wright and Sons, Wholesale Butcher Supplies in Liverpool, played an important role in keeping us in sharp band saw blades. So many avenues were explored en route to finding out about body and body- part mincing and the analysis of parts thereafter that there are many people to thank. Peter Molcher was our first contact but, via Eddie Clutton, Uncle Sam and Billy Steele, I found John Corbett at Nottingham, who postponed his retirement to teach us how to use the Wolfking mincer. After retirement, his place was taken by Mick Baker, who also brought the bone-grinder back into action. My many thanks go to Mick and his boss David Edwards, for enabling multiple visits to use their facilities (including their freezers). Thanks too to Claire‟s mum, Vanessa, for letting me stay overnight near to Sutton Bonington. The story was similar as far as proximate analysis was concerned. My many thanks go to Marcus Mitchell from Nottingham and Andrew Mackie and Craig Thomas from Edinburgh who put up with my many questions about freeze-drying, oven-drying and the many different methods of lipid extraction. David Eden of the MLC put me in touch with Kim Matthews, who was a minefield of information, provided me with multiple documents and facilitated an extremely fruitful day sat in the library with a truly amazing librarian. I also thank Kim for putting me in touch with Fran Whittington, Mike Kitcherside and Kathy Hallet at Bristol, who constituted the team that finally processed all our pony samples. Mike delayed his retirement to help and Fran and Kathy gave up precious time from their own work to assist in completing the analyses before the laboratory was moth-balled. My very grateful thanks therefore go to all three for their expert tuition and expertise in getting a mammoth task completed. My thanks are also due to Prof. Jeff Wood for his enthusiastic interest in my work and for his help in finding various manuscripts. Closer to home, my many thanks are due to Rachel James for her tuition in ultrasound imaging and for her valued friendship; and to my anaesthesia colleagues who enabled me to step off the rota for several months to complete the various experiments.
Recommended publications
  • Sous Forme De Sel De Calcium
    Nom molécule Abamectine Absinthe (teinture de) Acamprosate (sous forme de sel de calcium) Acarbose Acébutolol (sous forme de chlorhydrate) Acéclofénac Acéfylline heptaminol Acémétacine Acépromazine Acépromazine (sous forme de maléate) Acétate de calcium Acétate de magnésium (sous forme de tétrahydrate) Acétate de potassium Acétate de sodium Acétate de sodium (sous forme de trihydrate) Acétazolamide Acétylcholine (sous forme de chlorure) Acétylcystéine Acétylméthionine Acétylméthionine (sous forme de sel de magnésium) Achillée millefeuille Aciclovir Acide acétylsalicylique Acide acétylsalicylique (sous forme de carbasalate de calcium) Acide acétylsalicylique (sous forme de lysinate) Acide acétylsalicylique (sous forme de sel de sodium) Acide adipique Acide alendronique (sous forme de sel de sodium) Acide alginique Acide alginique (sous forme de sel de calcium) Acide aminocaproïque Acide ascorbique Acide ascorbique (sous forme de sel de calcium) Acide ascorbique (sous forme de sel de sodium) Acide aspartique Acide aspartique (sous forme de sel de calcium) Acide aspartique (sous forme de sel de magnésium) Acide aspartique (sous forme de sel de magnésium et de potassium) Acide aspartique (sous forme de sel de magnésium et de potassium dihydraté) Acide aspartique (sous forme de sel de magnésium tétrahydraté) Acide aspartique (sous forme de sel de potassium) Acide aspartique (sous forme de sel de potassium hémihydraté) Acide aspartique (sous forme de zinc) Acide benzoïque Acide benzoïque (sous forme de benzyle) Acide benzoïque (sous forme de
    [Show full text]
  • Lääkealan Turvallisuus- Ja Kehittämiskeskuksen Päätös
    Lääkealan turvallisuus- ja kehittämiskeskuksen päätös N:o xxxx lääkeluettelosta Annettu Helsingissä xx päivänä maaliskuuta 2016 ————— Lääkealan turvallisuus- ja kehittämiskeskus on 10 päivänä huhtikuuta 1987 annetun lääke- lain (395/1987) 83 §:n nojalla päättänyt vahvistaa seuraavan lääkeluettelon: 1 § Lääkeaineet ovat valmisteessa suolamuodossa Luettelon tarkoitus teknisen käsiteltävyyden vuoksi. Lääkeaine ja sen suolamuoto ovat biologisesti samanarvoisia. Tämä päätös sisältää luettelon Suomessa lääk- Liitteen 1 A aineet ovat lääkeaineanalogeja ja keellisessä käytössä olevista aineista ja rohdoksis- prohormoneja. Kaikki liitteen 1 A aineet rinnaste- ta. Lääkeluettelo laaditaan ottaen huomioon lää- taan aina vaikutuksen perusteella ainoastaan lää- kelain 3 ja 5 §:n säännökset. kemääräyksellä toimitettaviin lääkkeisiin. Lääkkeellä tarkoitetaan valmistetta tai ainetta, jonka tarkoituksena on sisäisesti tai ulkoisesti 2 § käytettynä parantaa, lievittää tai ehkäistä sairautta Lääkkeitä ovat tai sen oireita ihmisessä tai eläimessä. Lääkkeeksi 1) tämän päätöksen liitteessä 1 luetellut aineet, katsotaan myös sisäisesti tai ulkoisesti käytettävä niiden suolat ja esterit; aine tai aineiden yhdistelmä, jota voidaan käyttää 2) rikoslain 44 luvun 16 §:n 1 momentissa tar- ihmisen tai eläimen elintoimintojen palauttami- koitetuista dopingaineista annetussa valtioneuvos- seksi, korjaamiseksi tai muuttamiseksi farmako- ton asetuksessa kulloinkin luetellut dopingaineet; logisen, immunologisen tai metabolisen vaikutuk- ja sen avulla taikka terveydentilan
    [Show full text]
  • WO 2014/125397 Al 21 August 2014 (21.08.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization II International Bureau (10) International Publication Number (43) International Publication Date WO 2014/125397 Al 21 August 2014 (21.08.2014) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 513/04 (2006.01) A61P 3/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/542 (2006.01) A61P 25/28 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/IB2014/058777 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 4 February 2014 (04.02.2014) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/765,283 15 February 2013 (15.02.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: PFIZER INC. [US/US]; 235 East 42nd Street, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, New York, New York 10017 (US).
    [Show full text]
  • Evaluation of the Efficacy of IQV04 for Weight Loss in Overweight and Obese Dogs
    Evaluation of the efficacy of IQV04 for weight loss in overweight and obese dogs. Annika Bieze 3514870 Supervisor: Dr. R.J. Corbee Abstract Introduction: Overweight and obesity are worldwide problems. Because of the higher risk of associated diseases, it is better to prevent and treat overweight and obesity. Beside weight loss programs, there are different medications and supplements available. After promising results from human health studies on the efficacy of Litramine, a similar product, named IQV04, is developed for dogs to support weight loss. The objective of this study was to evaluate the efficacy of IQV04 for weight loss in overweight and obese dogs. Materials and methods: Nineteen colony dogs were randomly divided in three groups, in this placebo controlled and double-blinded study. All dogs received once a day a standardised maintenance meal for their resting energy requirement (RER) with one of the three pills (IQV04 concentration A, IQV04 concentration B and placebo). Body weight and pelvic circumference were measured weekly. By start and end of the study, physical examination, body condition score, complete blood count, serum biochemical analysis and fecal examination was done. Results: Results suggested that there was a difference in body weight reduction between the three groups. The rate of weight loss in the placebo, IQV04 concentration A and IQV04 concentration B group were 2.45 ± 0.51, 2.85 ± 1.84 and 3.03 ± 1.26% body weight reduction per week, respectively. However, this difference did not reach significance. Also there was no significant difference found in pelvic circumference reduction per week. Conclusion: Further studies with larger patient pool are required to achieve more statistic power.
    [Show full text]
  • Small Animal Formulary 6Th Edition
    BSAVA Small Animal Formulary Ian Ramsey 6th edition Small Animal Formulary 6th edition Editor-in-Chief: Ian Ramsey BVSc PhD DSAM DipECVIM-CA FHEA MRCVS Small Animal Hospital, University of Glasgow, Bearsden Road, Bearsden, Glasgow G61 1QH Published by: British Small Animal Veterinary Association Woodrow House, 1 Telford Way, Waterwells Business Park, Quedgeley, Gloucester GL2 2AB A Company Limited by Guarantee in England. Registered Company No. 2837793. Registered as a Charity. Copyright © 2008 BSAVA First edition 1994 Second edition 1997 Third edition 1999 Reprinted with corrections 2000 Fourth edition 2002 Reprinted with corrections 2003 Fifth edition 2005 Reprinted with corrections 2007 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder. A catalogue record for this book is available from the British Library. ISBN 978 1 905319 11 4 The publishers and contributors cannot take responsibility for information provided on dosages and methods of application of drugs mentioned in this publication. Details of this kind must be verified by individual users from the appropriate literature. Printed by: HSW Print, Rhondda, Wales. ii BSAVA Small Animal Formulary 6th edition Other titles from BSAVA: Manual of Canine & Feline Abdominal Surgery Manual of Canine & Feline Anaesthesia and Analgesia Manual of Canine & Feline Behavioural Medicine Manual
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • WO 2013/150416 Al 10 October 2013 (10.10.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/150416 Al 10 October 2013 (10.10.2013) P O P C T (51) International Patent Classification: sachusetts 02460 (US). FUTATSUGI, Kentaro; 97 West C07D 471/04 (2006.01) A61K 31/519 (2006.01) Main Street, Unit 29, Niantic, Connecticut 06357 (US). C07D 473/32 (2006.01) A61K 31/52 (2006.01) HEPWORTH, David; 282 Sudbury Road, Concord, M as C07D 487/04 (2006.01) A61P 3/10 (2006.01) sachusetts 01742 (US). KUNG, Daniel W.; 289 Laurel- C07D 519/00 (2006.01) wood Drive, Salem, Connecticut 06420 (US). ORR, Suvi; 16 Seabreeze Road, Old Saybrook, Connecticut 06475 (21) International Application Number: (US). WANG, Jian; 164 White Street, Belmont, Mas PCT/IB20 13/052404 sachusetts 02478 (US). (22) International Filing Date: (74) Agents: KLEIMAN, Gabriel L. et al; Pfizer Inc., 235 26 March 2013 (26.03.2013) East 42nd Street, New York, NY 1001 7 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/621,144 6 April 2012 (06.04.2012) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: PFIZER INC. [US/US]; 235 East 42nd Street, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, New York, New York 10017 (US).
    [Show full text]
  • Small Animal Obesity: Effective Control, Management and Care
    Vet Times The website for the veterinary profession https://www.vettimes.co.uk SMALL ANIMAL OBESITY: EFFECTIVE CONTROL, MANAGEMENT AND CARE Author : Catherine F Le Bars Categories : Vets Date : February 23, 2009 Catherine F Le Bars explains how the battle of the bulge and the medical implications specific to certain species need a careful approach to both owner and pet OBESITY is one of the most common nutrition-related conditions in companion animals in the industrialised world, and has a proven association with the development of several disease conditions and reduced longevity. Since weight gain occurs when daily energy intake exceeds energy expenditure, the prevention of obesity requires strict attention to the animal’s nutrition throughout its life. Obesity treatment may be complicated by many factors, and successful management of the condition relies on rigorous owner compliance. Estimates from around the world put the incidence of obesity in dogs and cats at up to 40 per cent, and a number of risk factors have been implicated in its development. These include breed, age, gender, neutering, medication (anti-convulsants, glucocorticoids and contraceptives), lifestyle and exercise, co-existing disease (diabetes mellitus, hypothyroidism, hyperadrenocorticism) and diet. The regulation of food intake is dependent on a complex balance of long-term and shortterm signals to the brain, which are aimed at controlling the fat mass of the animal. When this balance is disrupted, the animal consumes energy above its requirements and gains weight. There are three recognised stages of weight gain: 1 / 10 • A “static ” pre-obesity stage, whereby energy intake is increased but bodyweight remains the same.
    [Show full text]
  • The Comparison of the Effect of Dietary Changes Or Dirlotapide
    THE COMPARISON OF THE EFFECT OF DIETARY CHANGES OR DIRLOTAPIDE TREATMENT ON CANINE OBESITY IN A SMALL ANIMAL VETERINARY PRACTICE A Report of a Senior Study by Anna Elizabeth McRee Major: Biology Maryville College Fall, 2009 Date Approved _____________, by ________________________ Faculty Supervisor Date Approved _____________, by ________________________ Editor ii ABSTRACT One of the greatest clinical challenges in contemporary veterinary medicine is canine obesity, which in the U.S. is increasing similar to trends observed in humans. Obesity impedes the overall wellness of canine patients; it is associated with shorter lifespan in domesticated dogs. The purposes of this study were to evaluate the incidence of obesity in one particular East Tennessee small animal veterinary practice and to examine the efficacy of two readily available treatment tools for this disease: pharmaceutical therapy with dirlotapide or dietary intervention through either caloric restriction or a high fiber diet. The incidence of obesity was examined by recording the body condition score (BCS) on a 1-9 scale for every dog that entered My Pets Animal Hospital for 2 consecutive months during the summer of 2009. Data for 594 dogs was collected in this manner and 4 treatment groups were also evaluated to examine the efficacy of treatment protocols. This study presents two major findings: (1) that 67 % of dogs at this particular veterinary clinic were overweight/obese (based on a BCS score of 6 or greater) and (2) that both dietary changes and pharmaceutical treatment were equally effective at promoting weight reduction in obese canines, as there was no significant difference in the percent weight loss per 30 days (p = 0.969).
    [Show full text]
  • Phytochemicals for Controlling Obesity-Related Cancers
    Crimson Publishers Review Article Wings to the Research Phytochemicals for Controlling Obesity-Related Cancers Madhumita Roy1*and Amitava Datta2 1Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata-700026, India 2Department of Computer Science and Software Engineering, University of Western Australia. 35 Stirling Highway, Perth, WA 6009, Australia ISSN: 2637-773X Abstract Obesity related diseases are on the rise worldwide and obesity is an economic burden on the public health system in most developed and developing countries. The control of obesity is a major challenge that is hard to solve using medication and surgical procedures as those often have serious side effects. Our focus in this article is to highlight the extensive research literature on use of plant-derived chemicals or phytochemicals for control of obesity and obesity related diseases with a particular focus on several types of cancer. We discuss the genes, proteins and pathways involved in obesity and its control, and discuss these genes and pathways. how current research has revealed the beneficial effects of plant-derived chemicals or phytochemicals on Keywords: Obesity; Phytochemicals; Cancer; Adiposity; BMI; Signalling pathways; Genes Introduction *Corresponding author: Madhumita Roy, Department of Environmental Obesity is the state of being overweight, a condition caused due to excessive rate of Carcinogenesis and Toxicology, accumulation and storage of fat in the body. Obesity not only affects appearance, but leads Chittaranjan National Cancer Institute, 37, to a number of health issues. The disparity in calorie consumption and calorie burning leads S. P. Mukherjee Road, Kolkata-700026, to energy imbalance, which is a lead cause of obesity.
    [Show full text]
  • Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs
    Molecules 2016, 21, 75; doi:10.3390/molecules21010075 S1 of S110 Supplementary Materials: Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs Fei Mao 1, Wei Ni 1, Xiang Xu 1, Hui Wang 1, Jing Wang 1, Min Ji 1 and Jian Li * Table S1. Common names, indications, CAS Registry Numbers and molecular formulas of 6891 approved drugs. Common Name Indication CAS Number Oral Molecular Formula Abacavir Antiviral 136470-78-5 Y C14H18N6O Abafungin Antifungal 129639-79-8 C21H22N4OS Abamectin Component B1a Anthelminithic 65195-55-3 C48H72O14 Abamectin Component B1b Anthelminithic 65195-56-4 C47H70O14 Abanoquil Adrenergic 90402-40-7 C22H25N3O4 Abaperidone Antipsychotic 183849-43-6 C25H25FN2O5 Abecarnil Anxiolytic 111841-85-1 Y C24H24N2O4 Abiraterone Antineoplastic 154229-19-3 Y C24H31NO Abitesartan Antihypertensive 137882-98-5 C26H31N5O3 Ablukast Bronchodilator 96566-25-5 C28H34O8 Abunidazole Antifungal 91017-58-2 C15H19N3O4 Acadesine Cardiotonic 2627-69-2 Y C9H14N4O5 Acamprosate Alcohol Deterrant 77337-76-9 Y C5H11NO4S Acaprazine Nootropic 55485-20-6 Y C15H21Cl2N3O Acarbose Antidiabetic 56180-94-0 Y C25H43NO18 Acebrochol Steroid 514-50-1 C29H48Br2O2 Acebutolol Antihypertensive 37517-30-9 Y C18H28N2O4 Acecainide Antiarrhythmic 32795-44-1 Y C15H23N3O2 Acecarbromal Sedative 77-66-7 Y C9H15BrN2O3 Aceclidine Cholinergic 827-61-2 C9H15NO2 Aceclofenac Antiinflammatory 89796-99-6 Y C16H13Cl2NO4 Acedapsone Antibiotic 77-46-3 C16H16N2O4S Acediasulfone Sodium Antibiotic 80-03-5 C14H14N2O4S Acedoben Nootropic 556-08-1 C9H9NO3 Acefluranol Steroid
    [Show full text]