WO 2014/125397 Al 21 August 2014 (21.08.2014) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2014/125397 Al 21 August 2014 (21.08.2014) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization II International Bureau (10) International Publication Number (43) International Publication Date WO 2014/125397 Al 21 August 2014 (21.08.2014) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 513/04 (2006.01) A61P 3/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/542 (2006.01) A61P 25/28 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/IB2014/058777 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 4 February 2014 (04.02.2014) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 61/765,283 15 February 2013 (15.02.2013) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (71) Applicant: PFIZER INC. [US/US]; 235 East 42nd Street, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, New York, New York 10017 (US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (72) Inventors: BECK, Elizabeth Mary; c/o Pfizer Inc., 700 KM, ML, MR, NE, SN, TD, TG). Main Street, Cambridge, Massachusetts 02139 (US). BRODNEY, Michael Aaron; 100 Upland Avenue, New Declarations under Rule 4.17 : ton, Massachusetts 02461 (US). BUTLER, Christopher — as to the identity of the inventor (Rule 4.1 7(Ϊ)) Ryan; 12 1 Spring Lane, Canton, Massachusetts 02021 (US). O'NEILL, Brian Thomas; 111 Meeting House — as to applicant's entitlement to apply for and be granted a Road, Haddam, Connecticut 06438 (US). patent (Rule 4.1 7(H)) (74) Agent: KLEIMAN, Gabriel L.; Pfizer Inc., 235 East 42nd — as to the applicant's entitlement to claim the priority of the Street, New York, New York 10017 (US). earlier application (Rule 4.1 7(in)) (81) Designated States (unless otherwise indicated, for every Published: kind of national protection available): AE, AG, AL, AM, — with international search report (Art. 21(3)) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (54) Title: SUBSTITUTED PHENYL HEXAHYDROPYRANO[3,4-d][l,3]THIAZIN-2-AMINE COMPOUNDS (I) H2N (57) Abstract: The present invention is directed to compounds, tautomers and pharmaceutically acceptable salts of the compounds which are disclosed, wherein the compounds have the structure of Formula (I), and the variables R 1 and R2 are as defined in the spe cification. Corresponding pharmaceutical compositions, methods of treatment, methods of synthesis, and intermediates are also dis closed. SUBSTITUTED PHENYL HEXAHYDROPYRANO[3,4-c/][1,3]THIAZIN-2-AMINE COMPOUNDS Field of the Invention The present invention relates to small molecule compounds and pharmaceutically acceptable salts thereof that are inhibitors of β-site amyloid precursor protein (APP) Cleaving Enzyme 1 (BACE1) and inhibitors of BACE2. This invention relates to inhibiting the production of A-beta peptides that can contribute to the formation of neurological deposits of amyloid protein. The present invention also relates to the treatment of Alzheimer's Disease (AD) and other neurodegenerative and/or neurological disorders, as well as the treatment of diabetes in mammals, including humans. More particularly, this invention relates to thioamidine compounds and pharmaceutically acceptable salts thereof useful for the treatment of neurodegenerative and/or neurological disorders, such as AD and Down's Syndrome, related to A-beta peptide production. Background of the Invention Dementia results from a wide variety of distinctive pathological processes. The most common pathological processes causing dementia are Alzheimer's disease ("AD"), cerebral amyloid angiopathy ("CM") and prion-mediated diseases (see, e.g., Haan et al., Clin. Neurol. Neurosurg., 1990, 92(4):305-310; Glenner et al., J. Neurol. Sci., 1989, 94:1-28). AD is a progressive, neurodegenerative disorder characterized by memory impairment and cognitive dysfunction. AD affects nearly half of all people past the age of 85, the most rapidly growing portion of the United States population. As such, the number of AD patients in the United States is expected to increase from about 4 million to about 14 million by 2050. The accumulation of amyloid- β (Αβ peptides) is believed to be one of the underlying causes of Alzheimer's Disease (AD), which is the most common cause of cognitive decline in the elderly (Hardy & Allsop, Trends Pharmacol Sci., 1991;12(10):383-8; Selkoe, Behav. Brain Res., 2008; 192(1):106-13). Αβ, the major protein constituent of amyloid plaques, is derived from sequential cleavage of the type I integral membrane protein, amyloid precursor protein (APP) by two proteases, β- and γ- secretase. Proteolytic cleavage of APP by the β-site APP cleaving enzymes (BACE1 and BACE2) generates a soluble N-terminal ectodomain of APP (εΑΡΡβ) and the C- terminal fragment C99. Subsequent cleavage of the membrane-bound C99 fragment by the γ-secretase liberates the various Αβ peptide species, of which Αβ40 and Αβ42 are the most predominant forms (Vassar et al., J. Neurosci., 2009; 29(41):12787-94; Marks & Berg, Neurochem. Res., 2010; 35:181-210). Therefore, limiting the generation of Αβ directly through inhibition of BACE1 is one of the most attractive approaches for the treatment of AD, as BACE1 inhibitors could effectively inhibit the formation of all predominant Αβ peptides. In addition, it has been determined that BACE1 knock-out mice had markedly enhanced clearance of axonal and myelin debris from degenerated fibers, accelerated axonal regeneration, and earlier reinnervation of neuromuscular junctions compared with littermate controls. These data suggest BACE1 inhibition as a therapeutic approach to accelerate regeneration and recovery after peripheral nerve damage. (See Farah et al., J. Neurosci., 201 1, 31(15): 5744-5754). Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD. In particular, there is a higher risk of sporadic A D in patients with Type 2 diabetes and A D patients are more prone to Type 2 diabetes (Butler, Diabetes, 53:474-481 , 2004.). Recently, it has also been proposed that A D should be reconsidered as Type 3 diabetes (de la Monte, J. Diabetes Sci. Technol., 2008; 2(6): 1 0 - 3). Of special interest is the fact that AD and Type 2 diabetes share common pathogenic mechanisms and possibly treatments (Park S . A., J. Clin. Neurol., 201 1 ; 7:10-18; Raffa, Br. J. Clin. Pharmacol 201 1 , 7 1(3):365-376). Elevated plasma levels of Αβ, the product of BACE activities, were recently associated with hyperglycemia and obesity in humans (see Meakin et al., Biochem J., 2012, 441(1):285-96.; Martins, Journal of Alzheimer's Disease, 8 (2005) 269-282). Moreover, increased Αβ production prompts the onset of glucose intolerance and insulin resistance in mice (Cozar-Castellano, Am. J. Physiol. Endocrinol. Metab., 302 1373- Ε 1380, 2012; Delibegovic, Diabetologia (201 1) 54:2143-2151). Finally, it is also suggested that circulating Αβ could participate in the development of atherosclerosis in both humans and mice (De Meyer, Atherosclerosis 216 (201 1) 54-58; Catapano, Atherosclerosis 210 (2010) 78-87; Roher, Biochimica et Biophysica Acta 1812 (201 1) 1508-1514). Therefore, it is believed that BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Specifically, BACE1 inhibitors may be potentially useful for increasing insulin sensitivity in skeletal muscle and liver as illustrated by the fact that reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice (see Meakin et al., Biochem. J. 2012, 441(1): 285-96). Of equal interest is the identification of LRP1 as a BACE1 substrate and the potential link to atherosclerosis (Strickland, Physiol. Rev., 88: 887-918, 2008; Hyman, J. Biol. Chem., Vol. 280, No. 18, 17777- 17785, 2005). Likewise, inhibition of BACE2 is proposed as a treatment of Type 2 diabetes with the potential to preserve and restore β-cell mass and stimulate insulin secretion in pre- diabetic and diabetic patients (WO201 1/020806). BACE2 is a β-cell enriched protease that regulates pancreatic β cell function and mass and is a close homologue of BACE1. Pharmacological inhibition of BACE2 increases β-cell mass and function, leading to the stabilization of Tmem27. (See Esterhazy et al., Cell Metabolism 201 1 , 14(3): 365-377). It is suggested that BACE2 inhibitors are useful in the treatment and/or prevention of diseases associated with the inhibition of BACE2 (e.g., Type 2 diabetes, with the potential to preserve and restore β-cell mass and stimulate insulin secretion in pre- diabetic and diabetic patients) (WO201 1/020806). Aminodihydrothiazine or thioamidine compounds are described in US2009/0082560, WO 2009/091016 and WO 2010/038686 as useful inhibitors of the β- secretase enzyme. Co-pending PCT application, PCT/IB2012/054198, filed by Pfizer Inc on August 17, 2012, also describes aminodihydrothiazine compounds that are useful inhibitors of the β-secretase enzyme.
Recommended publications
  • Novel Neuroprotective Compunds for Use in Parkinson's Disease
    Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (74) Agents: GILL JENNINGS & EVERY LLP et al; The A61P 25/28 (2006.01) A61K 31/194 (2006.01) Broadgate Tower, 20 Primrose Street, London EC2A 2ES A61P 25/16 (2006.01) A61K 31/205 (2006.01) (GB). A23L 1/30 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 15/05 1898 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 29 June 2015 (29.06.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 141 1570.3 30 June 2014 (30.06.2014) GB TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 1412414.3 11 July 2014 ( 11.07.2014) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: MITOCHONDRIAL SUBSTRATE INVEN¬ kind of regional protection available): ARIPO (BW, GH, TION LIMITED [GB/GB]; 39 Glasslyn Road, London GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, N8 8RJ (GB).
    [Show full text]
  • Sous Forme De Sel De Calcium
    Nom molécule Abamectine Absinthe (teinture de) Acamprosate (sous forme de sel de calcium) Acarbose Acébutolol (sous forme de chlorhydrate) Acéclofénac Acéfylline heptaminol Acémétacine Acépromazine Acépromazine (sous forme de maléate) Acétate de calcium Acétate de magnésium (sous forme de tétrahydrate) Acétate de potassium Acétate de sodium Acétate de sodium (sous forme de trihydrate) Acétazolamide Acétylcholine (sous forme de chlorure) Acétylcystéine Acétylméthionine Acétylméthionine (sous forme de sel de magnésium) Achillée millefeuille Aciclovir Acide acétylsalicylique Acide acétylsalicylique (sous forme de carbasalate de calcium) Acide acétylsalicylique (sous forme de lysinate) Acide acétylsalicylique (sous forme de sel de sodium) Acide adipique Acide alendronique (sous forme de sel de sodium) Acide alginique Acide alginique (sous forme de sel de calcium) Acide aminocaproïque Acide ascorbique Acide ascorbique (sous forme de sel de calcium) Acide ascorbique (sous forme de sel de sodium) Acide aspartique Acide aspartique (sous forme de sel de calcium) Acide aspartique (sous forme de sel de magnésium) Acide aspartique (sous forme de sel de magnésium et de potassium) Acide aspartique (sous forme de sel de magnésium et de potassium dihydraté) Acide aspartique (sous forme de sel de magnésium tétrahydraté) Acide aspartique (sous forme de sel de potassium) Acide aspartique (sous forme de sel de potassium hémihydraté) Acide aspartique (sous forme de zinc) Acide benzoïque Acide benzoïque (sous forme de benzyle) Acide benzoïque (sous forme de
    [Show full text]
  • Lääkealan Turvallisuus- Ja Kehittämiskeskuksen Päätös
    Lääkealan turvallisuus- ja kehittämiskeskuksen päätös N:o xxxx lääkeluettelosta Annettu Helsingissä xx päivänä maaliskuuta 2016 ————— Lääkealan turvallisuus- ja kehittämiskeskus on 10 päivänä huhtikuuta 1987 annetun lääke- lain (395/1987) 83 §:n nojalla päättänyt vahvistaa seuraavan lääkeluettelon: 1 § Lääkeaineet ovat valmisteessa suolamuodossa Luettelon tarkoitus teknisen käsiteltävyyden vuoksi. Lääkeaine ja sen suolamuoto ovat biologisesti samanarvoisia. Tämä päätös sisältää luettelon Suomessa lääk- Liitteen 1 A aineet ovat lääkeaineanalogeja ja keellisessä käytössä olevista aineista ja rohdoksis- prohormoneja. Kaikki liitteen 1 A aineet rinnaste- ta. Lääkeluettelo laaditaan ottaen huomioon lää- taan aina vaikutuksen perusteella ainoastaan lää- kelain 3 ja 5 §:n säännökset. kemääräyksellä toimitettaviin lääkkeisiin. Lääkkeellä tarkoitetaan valmistetta tai ainetta, jonka tarkoituksena on sisäisesti tai ulkoisesti 2 § käytettynä parantaa, lievittää tai ehkäistä sairautta Lääkkeitä ovat tai sen oireita ihmisessä tai eläimessä. Lääkkeeksi 1) tämän päätöksen liitteessä 1 luetellut aineet, katsotaan myös sisäisesti tai ulkoisesti käytettävä niiden suolat ja esterit; aine tai aineiden yhdistelmä, jota voidaan käyttää 2) rikoslain 44 luvun 16 §:n 1 momentissa tar- ihmisen tai eläimen elintoimintojen palauttami- koitetuista dopingaineista annetussa valtioneuvos- seksi, korjaamiseksi tai muuttamiseksi farmako- ton asetuksessa kulloinkin luetellut dopingaineet; logisen, immunologisen tai metabolisen vaikutuk- ja sen avulla taikka terveydentilan
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0157420 A1 Schneider (43) Pub
    US 2012O157420A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0157420 A1 Schneider (43) Pub. Date: Jun. 21, 2012 (54) TREATMENT AND PREVENTION OF A 6LX 3L/505 (2006.01) SECONDARY INTURY AFTER TRAUMA OR A6IP 29/00 (2006.01) DAMAGE TO THE CENTRAL NERVOUS A6II 3/47 (2006.01) SYSTEM A6IP 25/00 (2006.01) A6IP3/06 (2006.01) (76) Inventor: Eric B Schneider, Glen Arm, MD A6IP 9/00 (2006.01) (US) A6IP 25/22 (2006.01) A6IP 25/24 (2006.01) (21) Appl. No.: 13/392,371 A63L/366 (2006.01) A6II 3/40 (2006.01) (22) PCT Filed: Aug. 31, 2010 (52) U.S. Cl. ......... 514/171; 514/460, 514/419:514/510; (86). PCT No.: PCT/US 10/472O6 514/277; 514/275: 514/423: 514/311 S371 (c)(1), (57) ABSTRACT (2), (4) Date: Feb. 24, 2012 A method of administering one or multiple medications to human patients with CNS injury through oral or parenteral Related U.S. Application Data (including transdermal, intravenous, Subcutaneous, intra (60) Provisional application No. 61/238,453, filed on Aug. muscular) routes. Inflammatory and immunological pro 31, 2009. cesses have been shown to cause secondary damage to CNS s tissues in individuals with acute CNS injury. The present O O invention administers one or more of the following medica Publication Classification tions, which have properties that mitigate the inflammatory (51) Int. Cl. and immunological processes that lead to secondary CNS A6 IK3I/56 (2006.01) damage, via trans-dermal absorption: a statin compound A6 IK 3/405 (2006.01) (e.g., a HMG-CoA reductase inhibitor), a progesterone com A6 IK 3L/25 (2006.01) pound, or a cholinesterase inhibiting compound, among oth A6 IK 3/448 (2006.01) ers, either alone or in combination with other compounds.
    [Show full text]
  • Caffeine Analogues and Their Evaluation As Inhibitors of Monoamine Oxidase And
    Syntheses of 8-(phenoxymethyl)caffeine analogues and their evaluation as inhibitors of monoamine oxidase and as antagonists of the adenosine A2A receptor. Rozanne Harmse B.Pharm Dissertation submitted in partial fulfilment of the requirements for the degree Magister Scientiae, in Pharmaceutical Chemistry at the North-West University, Potchefstroom Campus. Supervisor: Prof. G. Terre’Blanche Co-Supervisor: Dr. A. Petzer 2013 Potchefstroom 1 TABLE OF CONTENTS ABSTRACT ................................................................................................................................................. IV UITTREKSEL ............................................................................................................................................. VII ACKNOWLEDGEMENTS ........................................................................................................................... X CHAPTER 1 ................................................................................................................................................... 1 INTRODUCTION AND OBJECTIVES .......................................................................................................... 1 1.1 INTRODUCTION .......................................................................................................................................... 1 1.2 RATIONALE ............................................................................................................................................... 4 1.3 HYPOTHESIS .............................................................................................................................................
    [Show full text]
  • Lessons Learned
    Prevention and Reversal of Chronic Disease Copyright © 2019 RN Kostoff PREVENTION AND REVERSAL OF CHRONIC DISEASE: LESSONS LEARNED By Ronald N. Kostoff, Ph.D., School of Public Policy, Georgia Institute of Technology 13500 Tallyrand Way, Gainesville, VA, 20155 [email protected] KEYWORDS Chronic disease prevention; chronic disease reversal; chronic kidney disease; Alzheimer’s Disease; peripheral neuropathy; peripheral arterial disease; contributing factors; treatments; biomarkers; literature-based discovery; text mining ABSTRACT For a decade, our research group has been developing protocols to prevent and reverse chronic diseases. The present monograph outlines the lessons we have learned from both conducting the studies and identifying common patterns in the results. The main product of our studies is a five-step treatment protocol to reverse any chronic disease, based on the following systemic medical principle: at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective. Implementation of the five-step treatment protocol is as follows: FIVE-STEP TREATMENT PROTOCOL TO REVERSE ANY CHRONIC DISEASE Step 1: Obtain a detailed medical and habit/exposure history from the patient. Step 2: Administer written and clinical performance and behavioral tests to assess the severity of symptoms and performance measures. Step 3: Administer laboratory tests (blood, urine, imaging, etc) Step 4: Eliminate ongoing contributing factors to the chronic disease Step 5: Implement treatments for the chronic disease This individually-tailored chronic disease treatment protocol can be implemented with the data available in the biomedical literature now. It is general and applicable to any chronic disease that has an associated substantial research literature (with the possible exceptions of individuals with strong genetic predispositions to the disease in question or who have suffered irreversible damage from the disease).
    [Show full text]
  • Evaluation of the Efficacy of IQV04 for Weight Loss in Overweight and Obese Dogs
    Evaluation of the efficacy of IQV04 for weight loss in overweight and obese dogs. Annika Bieze 3514870 Supervisor: Dr. R.J. Corbee Abstract Introduction: Overweight and obesity are worldwide problems. Because of the higher risk of associated diseases, it is better to prevent and treat overweight and obesity. Beside weight loss programs, there are different medications and supplements available. After promising results from human health studies on the efficacy of Litramine, a similar product, named IQV04, is developed for dogs to support weight loss. The objective of this study was to evaluate the efficacy of IQV04 for weight loss in overweight and obese dogs. Materials and methods: Nineteen colony dogs were randomly divided in three groups, in this placebo controlled and double-blinded study. All dogs received once a day a standardised maintenance meal for their resting energy requirement (RER) with one of the three pills (IQV04 concentration A, IQV04 concentration B and placebo). Body weight and pelvic circumference were measured weekly. By start and end of the study, physical examination, body condition score, complete blood count, serum biochemical analysis and fecal examination was done. Results: Results suggested that there was a difference in body weight reduction between the three groups. The rate of weight loss in the placebo, IQV04 concentration A and IQV04 concentration B group were 2.45 ± 0.51, 2.85 ± 1.84 and 3.03 ± 1.26% body weight reduction per week, respectively. However, this difference did not reach significance. Also there was no significant difference found in pelvic circumference reduction per week. Conclusion: Further studies with larger patient pool are required to achieve more statistic power.
    [Show full text]
  • Design, Synthesis and Evaluation of Indole Derivatives As
    Design, Synthesis and Evaluation of Indole Derivatives as Multifunctional Agents against Alzheimer’s disease. Ireen Denya (BPharm) Dissertation submitted in partial fulfilment of the requirements for the degree Magister Scientae in Pharmaceutical Chemistry, School of Pharmacy University of the Western Cape Supervisor: Prof. J. Joubert Co – supervisor: Prof. S. F. Malan Bellville July 2017 To my parents Peter and Theodora Denya, And my sisters Ivy, Idah and Tracy Denya. http://etd.uwc.ac.za/ ABSTRACT Alzheimer’s disease (AD) is an age related neurodegenerative disorder characterised by progressive memory loss and cognitive impairment. It is one of several neurodegenerative disorders occurring as a result of a process of programmed cell death known as apoptosis. The process is set off by various stimuli in numerous pathways that ultimately lead to apoptosis. AD stands out as one of the leading causes of death in the elderly in today’s society. The cholinergic hypothesis of AD states that there is an extensive loss of cholinergic neurons in the central nervous system that contributes to cognitive impairment. Acetylcholinesterase inhibitors decrease the breakdown of the neurotransmitter acetylcholine to maintain its post synaptic levels and compensate for the loss of functional brain cells. Amyloid β plaque formation has been shown to be extensively involved in the pathogenesis of AD. The abnormal regulation of the amyloid precursor protein gives rise to plaques that impair neuronal homeostasis and eventually lead to apoptosis. The monoamine oxidase enzymes catalyse the hydrolysis of amine neurotransmitters such as dopamine. The process produces peroxides that cause oxidative stress alongside the depletion of neurotransmitters.
    [Show full text]
  • Small Animal Formulary 6Th Edition
    BSAVA Small Animal Formulary Ian Ramsey 6th edition Small Animal Formulary 6th edition Editor-in-Chief: Ian Ramsey BVSc PhD DSAM DipECVIM-CA FHEA MRCVS Small Animal Hospital, University of Glasgow, Bearsden Road, Bearsden, Glasgow G61 1QH Published by: British Small Animal Veterinary Association Woodrow House, 1 Telford Way, Waterwells Business Park, Quedgeley, Gloucester GL2 2AB A Company Limited by Guarantee in England. Registered Company No. 2837793. Registered as a Charity. Copyright © 2008 BSAVA First edition 1994 Second edition 1997 Third edition 1999 Reprinted with corrections 2000 Fourth edition 2002 Reprinted with corrections 2003 Fifth edition 2005 Reprinted with corrections 2007 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the copyright holder. A catalogue record for this book is available from the British Library. ISBN 978 1 905319 11 4 The publishers and contributors cannot take responsibility for information provided on dosages and methods of application of drugs mentioned in this publication. Details of this kind must be verified by individual users from the appropriate literature. Printed by: HSW Print, Rhondda, Wales. ii BSAVA Small Animal Formulary 6th edition Other titles from BSAVA: Manual of Canine & Feline Abdominal Surgery Manual of Canine & Feline Anaesthesia and Analgesia Manual of Canine & Feline Behavioural Medicine Manual
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]