Proceedings of the Royal Society b

Electronic Supplementary Material

Antennal scales improve signal detection efficiency in

Qike Wang1*, Yidan Shang2, Douglas S. Hilton3, Kiao Inthavong2, Dong Zhang4, Mark A. Elgar1

DOI: 10.1098/rspb. 2017.2832

1School of BioSciences, The University of Melbourne, Victoria 3010, Australia.

2School of Engineering, RMIT University, Victoria 3083, Australia.

3Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia.

4School of Nature Conservation, Beijing Forestry University, Beijing 100083, China.

* To whom correspondence: Email: [email protected]. Phone number: +61 383444873

Proceedings of the Royal Society b

Materials and methods

SEM imaging

The Heliozelidae moths were collected by sweeping nets from various locations in West Australia,

South Australia and Victoria, they were pinned, and air dried on site for further identification.

Many species are new and undescribed, thus species names are not given (Table S2). Type specimens were deposited in the Walter and Eliza Hall Institute of Medical Research, Melbourne,

Australia. To preserve the scales, none of the specimens were cleaned or washed. The specimens were gold coated, and the images were taken on a Philips XL-30 Field Emission ESEM in Bio21, the University of Melbourne.

Table S1. Flagellum diameter and scale arrangement of the moths used to obtain parameters to construct the model in the study. Scales parallel to or covering the flagellum (Par), forming an angle to the flagellum with two complete rings per segments (Com), intermittently present in every two rings (Int), or missing a row on both rings (Mis).

Species name Flagellum diameter (μm) Scale arrangement Apamea apameoides 1 100 Par Athetis lepigone 2 80 Mis Catocala remissa 3 230 Mis Coleophora obducta 4 35 Par Cydia pomonella 5 110 Mis Cydia zebeana 6 75 Mis Cnaphalocrocis medinalis 7 80 Par Ectoedemza atricollis 8 35 Com Helicoverpa armigera 9 150 Mis Heliothis viriplaca 10 125 Mis Heterolocha 100 Mis jinyinhuaphaga 11 coffearia 12 60 Mis Lasiognatha cellifera 13 100 Mis Opogona sacchari 14 166 Com Opostega salaciella 8 55 Com Pectinivalva spec 8 40 Par Plecoptera oculata 15 60 Mis Plodia interpunctella 16 Male: 68.84 ± 5.60 Mis Proceedings of the Royal Society b

Female: 66.81 ± 4.14 Plutella xylostella 17 50 Int Stomphastis thraustica 18 51 Par Stigmella malella 8 30 Par Thalassodes immissaria 19 120 Mis Zamagiria dixolophella 20 100 Mis

Proceedings of the Royal Society b

Table S2. List of the Heliozelidae used to obtain parameters to construct the model, and for the

comparative study, showing the diameter of the flagellum, the arrangement of scales, number of

segments, number of sensilla and scale angle. Scales parallel to or covering the flagellum (Par),

forming an angle to the flagellum with two complete rings per segments (Com), intermittently

present in every two rings (Int), or missing a row on both rings (Mis). Note: many species or

genera are not yet formally described, and so species names are not available. Type specimens

are deposited in Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.

Sample Species Sex Scale Flagellum Number of Number Scale number arrangement diameter segments of sensilla angle HLZ2768 Genus 1 sp1 Female Par 30.9 23 2 5.20 HLZ2769 Genus 1 sp1 Male Com 36.4 22 5 9.40 HLZ2770 Genus 1 sp2 Male Com 44.8 22 5 20.20 HLZ2771 Genus 1 sp3 Male Com 47.2 35 2 6.10 HLZ2749 Genus 2 sp1 Female Mis 33.3 45 28 19.60 HLZ2750 Genus 2 sp1 Male Mis 43.1 46 9 23.80 HLZ2752 Genus 2 sp2 Male Int 37.0 54 9 11.00 HLZ2754 Genus 2 sp3 Female Int 28.7 38 9 9.20 HLZ2757 Genus 2 sp4 Female Int 38.0 30 17 15.70 HLZ2758 Genus 2 sp4 Male Int 35.0 33 50 21.10 HLZ2772 Genus 3 sp1 Male Int 26.5 15 5 4.90 HLZ2773 Genus 3 sp2 Male Int 24.7 15 4 5.00 HLZ2741 Genus 4 sp1 Female Mis 42.6 25 33 10.80 HLZ2742 Genus 4 sp1 Male Mis 61.5 25 32 10.20 HLZ2745 Genus 5 sp1 Female Int 23.2 19 12 11.40 HLZ2746 Genus 5 sp1 Male Int 27.3 18 7 6.50 HLZ2755 Genus 6 sp1 Female Int 39.5 43 12 7.50 HLZ2756 Genus 6 sp1 Male Int 42.0 44 35 31.60 HLZ2759 Genus 6 sp2 Female Int 37.1 29 14 21.60 HLZ2724 Pseliastis sp1 Female Mis 35.3 32 20 7.80 HLZ2725 Pseliastis sp1 Male Mis 38.0 30 12 11.40 HLZ2726 Pseliastis sp2 Female Mis 31.5 31 21 15.50 HLZ2727 Pseliastis sp2 Male Mis 30.2 28 12 8.10 HLZ2728 Pseliastis sp3 Female Mis 66.3 23 18 10.70 HLZ2729 Pseliastis sp3 Male Mis 35.2 23 19 12.70 HLZ2730 Pseliastis sp23 Female Mis 27.2 23 16 12.20 HLZ2731 Pseliastis sp23 Male Mis 43.9 23 12 9.60 HLZ2732 Pseliastis sp4 Female Mis 30.0 20 8 12.50 HLZ2733 Pseliastis sp4 Male Mis 23.5 19 11 11.20 HLZ2734 Pseliastis sp7 Female Mis 37.6 20 15 13.30 Proceedings of the Royal Society b

HLZ2737 Pseliastis sp28 Female Mis 29.2 22 15 14.60 HLZ2738 Pseliastis sp28 Male Mis 22.5 21 22 17.50 HLZ2743 Genus 7 sp1 Female Mis 41.3 54 15 17.90 HLZ2744 Genus 7 sp1 Male Int 46.0 54 45 22.50 HLZ2739 Genus 8 sp1 Female Mis 42.7 24 10 8.60 HLZ2740 Genus 8 sp1 Male Mis 40.8 26 50 26.30 HLZ2747 Genus 9 sp1 Female Mis 39.2 29 5 8.90 HLZ2748 Genus 9 sp1 Male Mis 28.1 28 36 21.40 HLZ2700 Hoplophanes Female Int 52.0 sp1 31 20 11.90 HLZ2701 Hoplophanes Male Int 49.0 sp1 32 48 22.00 HLZ2704 Pseliastis sp6 Male Int 33.4 22 6 7.40 HLZ2705 Pseliastis sp6 Female Mis 54.8 20 9 7.80 HLZ2706 Genus 9 sp2 Male Int 30.1 28 32 30.00 HLZ2707 Genus 9 sp2 Female Int 23.5 16 9 8.20 HLZ2708 Akurra sp5 Male Com 49.2 44 0 0.00 HLZ2709 Akurra sp5 Female Com 30.6 26 0 6.40 HLZ2713 Genus 10 sp6 Female Int 22.1 15 4 3.70 HLZ2716 Genus 11 sp7 Male Int 52.0 34 44 20.90 HLZ2717 Genus 11 sp7 Female Int 41.6 40 14 16.60 HLZ2718 Genus 12 sp8 Male Int 40.2 28 50 26.70 HLZ2719 Genus 12 sp8 Female Int 32.3 28 18 20.50

Proceedings of the Royal Society b

Figure S1 | Representative ultrastructure of antennae in Heliozelidae moths. The angle

between the scales and flagellum are larger in antennae with more olfactory sensilla (a)

and smaller in antennae with fewer olfactory sensilla (b). (c) The distribution of different

types of sensilla on the surface of a slightly de-scaled flagellum. (d, e) The surface

structure of mechanical receptors. (f) The surface structure and distribution of pores of Proceedings of the Royal Society b

trichoid sensilla. (g) The surface structure and distribution of pores of basiconic and

trichoid sensilla. (h) The coeloconic sensilla on the surface of flagellum (arrows). (i) The

coeloconic sensilla located inside the pits of flagellum. (Co: coeloconic sensilla, Ba:

basiconic sensilla, Mr: mechanical receptor, Tr: trichoid sensilla)

Additional results

The concentration of the sex pheromone (nano-particles) and debris (micro-particles) around the larger moths shows a similar pattern to that of the smaller moths. A large area of high pheromone concentration occurs in the down-wind side, within the vicinity of the flagellum, and is also found around the upper half of the detection zone (Fig. S2, marked by black semi-circles).

The micro-particles strictly follow along the airflow, resulting in a large particle-free zone that overlaps with the detection zone in all of the scaled antennae. These particles flow closely to the flagellum of Par type antennae.

Proceedings of the Royal Society b

Figure S2 | The concentration of nano- and micro-particles around the 120 μm

diameter antennae with different scale arrangements. The antennal scales increase

the concentration of nano-particles (a-d), but reduce the concentration of

micro-particles (e-h) in the detection zone (marked by a black semi-circle).

Proceedings of the Royal Society b Proceedings of the Royal Society b

Figure S3 | Scale arrangements in relation to the number of sensilla among different species of Heliozelidae moths. (a, e, i, m) Scape and pedicel, (b, f, j, n) proximal end of the flagellum, (c, g, k, o) middle segments of the flagellum, (d, h, l, p) distal end of the flagellum. Each row represents the images taken from one species of on different parts of the antennae. On scape and pedicel, the scales are parallel to the antennae. The angle of scales is larger on antennae with larger number of sensilla. The angle of scales increases as the number of sensilla increases on the same antenna towards the distal end.

References: 1. Deng S, Shu J, Dong S, Wang H. Observation of antennal sensilla of Apamea apameoides with scanning electron microscope (in Chinese). Scientia Silvae Sinicae 46, 101-105 (2010).

2. Tian C, Wang Y, Feng H, Liu S, Qiu F, Li G. The ultrastructures of the antennal sensilla of Athetis lepigone (in Chinese). Plant Protection 41, 63-67 (2015).

3. Zheng H, Liu H, Guo S, Yan Y, Zong S, Zhang J. Scanning electron microscopy study of the antennal sensilla of Catocala remissa. Bulletin of Insectology 67, 63-71 (2014).

4. Yang H, Yan S-C, Liu D. Ultrastructural observations on antennal sensilla of Coleophora obducta (Meyrick)(: Coleophoridae). Micron 40, 231-238 (2009).

5. Zhao X, Zhang Y, Feng J. Ultrastructures Observation on antennal sensilla of the adult codling moth, Cydia pomonella (Lepidoptera: ) (in Chinese). Journal of Northwest A&F University (Natrual Science Edition), 119-124 (2012).

6. Yang H, Yan S, Li J, Gao L. Ultrastructure of antennal sensilla of the larch important shoot pest Cydia zebeana (Lepidoptera: Tortricidae) (in Chinese). Scientia Silvae Sinicae 44, 93-98 (2008).

7. Sun X, Wang MQ, Zhang G. Ultrastructural observations on antennal sensilla of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Microscopy research and technique 74, 113-121 (2011).

8. Nieukerken Ev, Dop H. Antennal sensory structures in Nepticulidae (Lepidoptera) and their phylogenetic implications. Journal of Zoological Systematics and Evolutionary Research 25, 104-126 (1987).

9. Zhao X-C, et al. Fine structure and primary sensory projections of sensilla located in the labial-palp pit organ of Helicoverpa armigera (Insecta). Cell and tissue research 353, 399-408 (2013).

10. Wang Y, Qian H, Han L, Zhao K, Jiang X. Scanning Electron Microscopy Observation on Proceedings of the Royal Society b

Antennal Sensilla of Heliothis viriplaca (in Chinese). Journal of Anhui Agricultural Science, 7-11 (2015).

11. Xiang Y, Zhang F, Zhen C. Observation of antennal sensilla of Heterolocha jinyinhuaphga Chu by scanning electron microscope (in Chinese). Journal of Zhejiang University (Science Edition) 42, 749-754 (2015).

12. Zhang M, Qi X, Chang M, Wen X, Li Y. Morphological studies on the types and distribution of antennal sensilla in Homona coffearia (Nietner) (in Chinese). Journal of Jiangsu Forestry Science & Technology 41, 7-10 (2014).

13. Chang M, Wen J, Wu Y, Zheng Y, Li D, Wen X. An observation on antennal of Lasiognatha cellifera Meyrick with scanning electron microscope (in Chinese). China Forestry Science and Technology 29, 133-135 (2015).

14. Shen J, Lou B, Shen Y, Gao Q. Scanning electron microscopy observation on antennal sensilla of Opogona sacchari (in Chinese). Journal of Zhejiang Forestry Science and Technology 25, 27-30 (2005).

15. Cao C, Zhang Q, Liu Y, Li Y. Ultrastructural observation on antennal sensilla and sex pheromone gland of Plecoptera oculata (Lepidoptera: Notuidae) (in Chinese). Shandong Forestry Technology 45, 1-4 (2015).

16. Ndomo-Moualeu AF, Ulrichs C, Radek R, Adler C. Structure and distribution of antennal sensilla in the Indian meal moth, Plodia interpunctella (Hubner, 1813) (Lepidoptera: Pyralidae). Journal of Stored Products Research 59, 66-75 (2014).

17. Yang G, Huang G, You M. The ultrastructural and function of the antennae of diamondback moth (in Chinese). Journal of Fujian Agricultural University 30, 75-79 (2001).

18. Jiang N, Li Q, Zhou J, Xiao Y. Observation of antennal sensilla of Stomphastis thraustica with scanning electron microscope (in Chinese). Chinese Bulletin of Entomology 47, 355-359 (2010).

19. Cheng J, Chen B, Zeng X, Li P, Dong Y, Xu S. Observation on antenna sensilla of Thalassodes immissaria Walker with a scanning electron microscope (in Chinese). South China Fruit 41, 28-32 (2012).

20. Castrejón Gómez VR, Nieto G, Valdes J, Castrejón F, Rojas JC. The antennal sensilla of Zamagiria dixolophella Dyar (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 96, 672-678 (2003).