Distribution of Plant Functional Groups Across Grassland-Forest Ecotones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scanned Document
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” unesp INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA VEGETAL) DIFERENCIAÇÃO INTRAESPECÍFICA NA REPRODUÇÃO E INTERAÇÕES PLANTA-POLINIZADOR EM POPULAÇÕES NATURAIS DE TREMBLEYA LANIFLORA (MELASTOMATACEAE) Natalia Costa Soares Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de doutor em Ciências Biológicas (Biologia Vegetal). Natalia Costa Soares DIFERENCIAÇÃO INTRAESPECÍFICA NA REPRODUÇÃO E INTERAÇÕES PLANTA-POLINIZADOR EM POPULAÇÕES NATURAIS DE TREMBLEYA LANIFLORA (MELASTOMATACEAE) Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de doutor em Ciências Biológicas (Biologia Vegetal). Orientador (a): Prof. Dr. Leonor Patrícia Cerdeira Morellato Co-orientador: Prof. Dr. Marcio Silva Araújo RIO CLARO 2017 581.5 Soares, Natalia Costa S676d Diferenciação intraespecífica na reprodução e interações planta-polinizador em populações naturais de Trembleya laniflora (melastomataceae) / Natalia Costa Soares. - Rio Claro, 2017 134 f. : il., figs., gráfs., tabs., fots. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientadora: Leonor Patrícia Cerdeira Morellato Coorientador: Marcio Silva Araújo 1. Ecologia vegetal. 2. Interações planta-animal. 3. Interações planta-polinizador. I. Título. Ficha Catalográfica -
Peraxilla Colensoi
Peraxilla colensoi COMMON NAME Scarlet mistletoe, korukoru, pirita, roeroe SYNONYMS Elytranthe colensoi (Hook.f.) Engl. Loranthus colensoi Hook. f. FAMILY Loranthaceae AUTHORITY Peraxilla colensoi (Hook.f.) Tiegh. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Yes Peraxilla colensoi, Catlins. Photographer: John Barkla ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE PERCOL CHROMOSOME NUMBER 2n= 24 CURRENT CONSERVATION STATUS 2012 | At Risk – Declining | Qualifiers: CD PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Declining | Qualifiers: CD 2004 | Gradual Decline BRIEF DESCRIPTION Fleshy shrub to 3m wide growing on outer branches of beech trees with glossy green fleshy paired leaves and masses of red tubular flowers. Leaves to 8cm long, smooth with a red edge. Flowers to 2.5cm long. Fallen petals litter forest floor under plants. Fruit yellow. Photographer: Brian Molloy DISTRIBUTION North and South Island, but common only in southern parts of the South Island. HABITAT A parasite mainly found in silver beech forest but has been recorded on 16 host species (9 exotic) in New Zealand including red beech and black beech. Tui (Prosthemadera novaeseelandiae) and bellbird (Anthonis melanura) disperse this species in the North Island. FEATURES A shrub up to 3 m across. It parasitises further out on branches of its host than Peraxilla tetrapetala. The veins on leaves are hardly evident and only the midrib is conspicuous. Leaf tips are never notched and the leaves themselves are large and never blistered. The leaves sit in pairs on opposite sides of the stem and are thick and have a leathery texture. Leaf margins are usually smooth with red slightly rough margins. -
Co-Extinction of Mutualistic Species – an Analysis of Ornithophilous Angiosperms in New Zealand
DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES CO-EXTINCTION OF MUTUALISTIC SPECIES An analysis of ornithophilous angiosperms in New Zealand Sandra Palmqvist Degree project for Master of Science (120 hec) with a major in Environmental Science ES2500 Examination Course in Environmental Science, 30 hec Second cycle Semester/year: Spring 2021 Supervisor: Søren Faurby - Department of Biological & Environmental Sciences Examiner: Johan Uddling - Department of Biological & Environmental Sciences “Tui. Adult feeding on flax nectar, showing pollen rubbing onto forehead. Dunedin, December 2008. Image © Craig McKenzie by Craig McKenzie.” http://nzbirdsonline.org.nz/sites/all/files/1200543Tui2.jpg Table of Contents Abstract: Co-extinction of mutualistic species – An analysis of ornithophilous angiosperms in New Zealand ..................................................................................................... 1 Populärvetenskaplig sammanfattning: Samutrotning av mutualistiska arter – En analys av fågelpollinerade angiospermer i New Zealand ................................................................... 3 1. Introduction ............................................................................................................................... 5 2. Material and methods ............................................................................................................... 7 2.1 List of plant species, flower colours and conservation status ....................................... 7 2.1.1 Flower Colours ............................................................................................................. -
Does Disturbance Determines the Prevalence of Dwarf Mistletoe
DWARF MISTLETOES AFFECTED BY DISTURBANCE 181 REVISTA CHILENA DE HISTORIA NATURAL Revista Chilena de Historia Natural 86: 181-190, 2013 © Sociedad de Biología de Chile RESEARCH ARTICLE Does disturbance determines the prevalence of dwarf mistletoe (Arceuthobium, Santalales: Viscaceae) in Central Mexico? ¿El disturbio determina la prevalencia del muérdago enano (Arceuthobium, Santalales: Viscaceae) en el centro de México? MÓNICA E. QUEIJEIRO-BOLAÑOS*, ZENÓN CANO-SANTANA & IVÁN CASTELLANOS-VARGAS Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 México, D.F., México * Corresponding author: [email protected] ABSTRACT Large vegetation disturbance rates have been reported in the “Zoquiapan y Anexas” Protected Natural Area in Central Mexico. Arceuthobium globosum and A. vaginatum coexist within this area and have a deleterious impact on Pinus hartwegii. This study seeks to understand the relationship between this disturbance and the two dwarf mistletoe species prevalent in this zone. Twenty-four plots measuring 60 × 55 m containing P. hartwegii trees were selected. Within these plots, the physical features of the land, the density of host and non-host trees, the prevalence of each mistletoe species, and six disturbance indicators were recorded. We found that A. vaginatum infests up to 47 % of P. hartwegii trees and that its prevalence is affected positively by the slope, non-host tree density, and the proportion of stump and dead trees, but is negatively affected by the prevalence of A. globosum, fi re incidence, waste deposit, and the distance to the nearest disturbance. Arceuthobium globosum infests up to 37 % of the trees and is affected positively by altitude, the density of non-host trees, waste deposit and the distance to the nearest disturbance, but is negatively affected by the prevalence of A. -
Peraxilla Tetrapetala
Peraxilla tetrapetala COMMON NAME Red mistletoe, pikirangi, pirita, roeroe, pirinoa SYNONYMS Elytranthe tetrapetala (L.f.) Engl., Loranthus tetrapetalus L.f., Loranthus decussatus Kirk FAMILY Loranthaceae AUTHORITY Peraxilla tetrapetala (L.f.) Tiegh. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Yes ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE Leaf showing blisters. Kaitoke Regional Park, PERTET Upper Hutt. Photographer: Jeremy Rolfe CHROMOSOME NUMBER 2 n= 24 CURRENT CONSERVATION STATUS 2012 | At Risk – Declining | Qualifiers: CD PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Declining | Qualifiers: CD 2004 | Gradual Decline Photographer: Cathy Jones BRIEF DESCRIPTION Fleshy shrub to 3m wide growing on inner branches of beech trees with glossy green fleshy paired leaves and masses of red tubular flowers. Leaves to 2.5cm long, blistered, diamond shaped. Flowers to 4cm long. Fallen petals litter forest floor under plants. Fruit green. DISTRIBUTION North and South Island, but less common in the North Island. HABITAT Coastal to montane. A hemiparasite whose main hosts are mountain beech (N. solandri var. cliffortioides), black beech (Nothofagus solandri var. solandri), red beech (N. fusca), and silver beech (N. menziesii). However, it has been recorded as a parasite on a further 17 species (2 exotic) including puriri (Vitex luceans) and pohutukawa (Metrosideros excelsa). FEATURES A shrub that can grow up to 2 m across. It usually parasitises close to the trunk of its host. It has characteristic small raised blisters or lesions on small, usually rhombic leaves. The flowers are solitary or 2-4 together and are bright red (up to 40 mm long). The ripe fruit is fleshy and green. -
Ecological Investigation of a Population of Trillium Pusillum at Redstone Arsenal, Alabama
ECOLOGICAL INVESTIGATION OF A POPULATION OF TRILLIUM PUSILLUM AT REDSTONE ARSENAL, ALABAMA By Elena N. Swick A thesis submitted to the Graduate faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama May 4, 2019 Keywords: Redstone Arsenal, edge effects, life stage structure, seed production, deer herbivory, reproductive biology Copyright 2018 by Elena Nicole Swick Approved by Robert S. Boyd, Chair, Professor of Biological Sciences Debbie R. Folkerts, Assistant Professor of Biological Sciences Sharon M. Hermann, Assistant Professor of Biological Sciences ABSTRACT Trillium pusillum is a state-imperiled spring wildflower. Much information concerning its biology remains largely unknown. Four aspects of T. pusillum biology were investigated during this study. First, edge effects on life stage distribution were observed through comparative life stage counts among four belt transects. There were two edges onsite, one by a powerline and one by a road. Three transects were established at different distances parallel to the powerline edge and one transect was established parallel to the road edge. Counts of one-leaved, three-leaved, and reproductive plants were recorded three times a year for two years. Fruiting plants were counted as a subset of reproductive plants. T-tests were used to compare differences in counts between transects. Edge transects had higher percentages of reproductive plants than interior transects, which had higher percentages of one-leaved plants. Despite interior transects having smaller percentages of reproductive plants, plants in interior transects had the highest fruiting success. This study demonstrated edge effects on T. pusillum at this site. Second, deer herbivory was investigated via plant counts in ten pairs of T. -
Conservation Status of New Zealand Indigenous Vascular Plants, 2012
NEW ZEALAND THREAT CLASSIFICATION SERIES 3 Conservation status of New Zealand indigenous vascular plants, 2012 Peter J. de Lange, Jeremy R. Rolfe, Paul D. Champion, Shannel P. Courtney, Peter B. Heenan, John W. Barkla, Ewen K. Cameron, David A. Norton and Rodney A. Hitchmough Cover: The Nationally Critical shrub Pittosporum serpentinum from the Surville Cliffs is severely affected by possums, and no seedlings have been found during recent surveys. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 3 years. After each 3-year cycle there will be a report analysing and summarising trends across all groups for that listing cycle. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright August 2013, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–0–478–14995–1 (web PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Lynette Clelland. Publication was approved by the Deputy Director-General, Science and Capability Group, Department of Conservation, Wellington, New Zealand. -
Monitoring Leaf Loss and Possum Impact on New Zealand Beech
Monitoring leaf loss and possum impact on New Zealand beech mistletoes A thesis submitted in partial fulfilment of the requirements for the . Degree of Master of Science in Botany at the University of Canterbury by Laura A. Sessions "",,;:f University of Canterbury 1999 THESIS v. 11 TABLE OF CONTENTS Table of Contents .............................................................................................................. ii List of Tables ................................................................................................................. viii List of Figures ................................................................................................................ xiii List of Plates ................................................................................................................... xv ABSTRACT ................................................................................................................... xvi CHAPTER 1: INTRODUCTION .................................................................................... 1 1.1. IMPORTANCE OF HERBIVORY TO PLANT DEMOGRAPHY AND PERFORMANCE ........... 1 1.2. HERBIVORY IN NEW ZEALAND ............................................................................... 2 1.2.1. The rata example ............................................................................................. 4 1.2.2. The importance o/herbivory to native mistletoes ........................................... 5 1.3. PROJECT GOALS ..................................................................................................... -
Historical Biogeography of Loranthaceae (Santalales): Diversification Agrees T with Emergence of Tropical Forests and Radiation of Songbirds
Molecular Phylogenetics and Evolution 124 (2018) 199–212 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Historical biogeography of Loranthaceae (Santalales): Diversification agrees T with emergence of tropical forests and radiation of songbirds Bing Liua,b,1, Chi Toan Lea,b,c,d,1, Russell L. Barrette,f, Daniel L. Nickrentg, Zhiduan Chena,b, ⁎ ⁎ Limin Lua,b, , Romina Vidal-Russellh, a State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China b Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China c University of Chinese Academy of Sciences, Beijing 100049, China d Hanoi Pedagogical University No. 2, 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam e National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, Mrs Macquaries Road, Sydney 2000, New South Wales, Australia f Australian National Herbarium, Centre for Australian National Biodiversity Research, GPO Box 1700, Canberra 2601, Australian Capital Territory, Australia g Department of Plant Biology, Southern Illinois University Carbondale, IL 62901-6509 USA h Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250 (8400), Bariloche, Rio Negro, Argentina ARTICLE INFO ABSTRACT Keywords: Coadaptation between mistletoes and birds captured the attention of Charles Darwin over 150 years ago, sti- Divergence time mulating considerable scientific research. Here we used Loranthaceae, a speciose and ecologically important Eocene mistletoe family, to obtain new insights into the interrelationships among its hosts and dispersers. Phylogenetic Gondwana analyses of Loranthaceae were based on a dataset of nuclear and chloroplast DNA sequences. -
Korthalsella: Viscaceae)
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Systematics, Biology and Ecology of New Zealand’s Pygmy Mistletoes (Korthalsella: Viscaceae) A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Manawatu, New Zealand Amir Sultan 2014 ii Abstract New Zealand’s pygmy mistletoes belong to the genus Korthalsella Tieghem, which comprises about 30 species ranging from Malesia to Hawaii, the Marquesas and Henderson Islands in the east, Japan in the north, Australia, New Zealand in the south, and Ethiopia and Madagascar to the west. Mainland Australia, Hawaii, Malesia and Madagascar all have high levels of species richness. This thesis shows that Korthalsella has high levels of regional endemism and has widespread parallelism and supports the biogeographic model of speciation, whereas, the traditional sections based on morphology are not supported. Korthalsella is represented in New Zealand by a monophyletic clade of three species K. clavata (Kirk) Cheeseman, K. lindsayi (Oliver ex J. D. Hooker) Engl., and K. salicornioides (A. Cunningham) Tiegh. Korthalsella clavata and K. lindsayi are both generalists with relatively broad host ranges whereas K. salicornioides is a specialist species with most host records from two myrtaceous genera Kunzea Rchb. (kanuka) and Leptospermum J. R. Forst & G. Forst (manuka). Cross-infection experiments in Korthalsella salicornioides indicate the presence of putative Kunzea- and Leptospermum-specific races with better success rates of seedling survival when maternal and recipient hosts were the same. -
Maria Jose Gomes De Andrade
MARIA JOSÉ GOMES DE ANDRADE NÚMEROS CROMOSSÔMICO S DE LORANTHACEAE E VISCACEAE OCORREN TES NO NORDESTE BRASILEIRO RECIFE ABRIL 2002 Universidade Federal de Pernambuco Centro de Ciências Biológicas Departamento de Botânica Programa de Pós-Graduação em Biologia Vegetal NÚMEROS CROMOSSÔMICOS DE LORANTHACEAE E VISCACEAE OCORRENTES NO NORDESTE BRASILEIRO Dissertação apresentada por Maria José Gomes de Andrade ao Programa de Pós- Graduação em Biologia Vegetal da Universidade Federal de Pernambuco, como parte dos requisitos necessários para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Marcelo Guerra Recife Abril 2002 MARIA JOSÉ GOMES DE ANDRADE NÚMEROS CROMOSSÔMICOS DE LORANTHACEAE E VISCACEAE OCORRENTES NO NORDESTE BRASILEIRO COMISSÃO EXAMINADORA: Membros titulares: _____________________________________________________________________ Prof. Dr. Marcelo Guerra (orientador), Deptº. de Botânica, CCB, UFPE _____________________________________________________________________ Profª. Drª Ana Maria Benko-Iseppon, Deptº. de Genética, CCB, UFPE _____________________________________________________________________ Prof. Dr. Leonardo Pessoa Felix, Deptº de Fitotecnia, CCA, UFPB Membros suplentes: _____________________________________________________________________ Profª Drª Ana Maria Giulietti, Deptº de Ciências Biológicas, UEFS _____________________________________________________________________ Profª Drª. Laíse de Holanda Cavalcanti Andrade, Deptº de Botânica, CCB, UFPE Ao meu pai, João Gomes de Andrade (in memorian), -
New Zealand's Loranthaceous Mistletoes Was Very Limited
New Zealand’s loranthaceous mistletoes Proceedings of a workshop hosted by Threatened Species Unit, Department of Conservation, Cass, 17 – 20 July 1995 Edited by Peter J. de Lange and David A. Norton Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand 3 ã June 1997, Department of Conservation ISBN 0-478-01906-8 Cataloguing-in-Publication data New Zealand’s loranthaceous mistletoes : proceedings of a workshop hosted by Threatened Species Unit, Department of Conservation, Cass, 17 –20 July 1995 / edited by Peter J. de Lange and David A. Norton. Wellington, N.Z. : Dept. of Conservation, 1997. 1 v. ; 30 cm. Includes bibliographical references. ISBN 0478019068 1. Mistletoes- -New Zealand. 2. Loranthaceae. I. De Lange, Peter James. II. Norton, David A. (David Andrew), 1958– III. New Zealand. Threatened Species Unit. 583.940993 20 zbn97-052606 4 Contents INTRODUCTION 7 1. PAST AND PRESENT DISTRIBUTION OF NEW ZEALAND MISTLETOES 9 Historical distribution of New Zealand loranthaceous mistletoes 11 Status of loranthaceous mistletoes in the Northland Conservancy 23 Status of loranthaceous mistletoes in the Auckland Conservancy 27 Status of loranthaceous mistletoes in the Waikato Conservancy 31 Status of loranthaceous mistletoes in the Bay of Plenty Conservancy 35 Status of loranthaceous mistletoes in the Tongariro-Taupo Conservancy 39 Status of loranthaceous mistletoes in the East Coast Conservancy 43 Status of loranthaceous mistletoes in the Wanganui Conservancy 47 Status of loranthaceous mistletoes in the Hawke’s Bay Conservancy 51 Status of loranthaceous mistletoes in the Wellington Conservancy 55 Status of loranthaceous mistletoes in the Nelson-Marlborough Conservancy 59 Past and present distribution of mistletoes on the West Coast 67 Status of loranthaceous mistletoes in the Canterbury Conservancy 71 Mistletoes in Otago 75 Status of loranthaceous mistletoes in the Southland Conservancy 79 2.