Polar Localization of the Replication Origin and Terminus in Escherichia Coli Nucleoids During Chromosome Partitioning

Total Page:16

File Type:pdf, Size:1020Kb

Polar Localization of the Replication Origin and Terminus in Escherichia Coli Nucleoids During Chromosome Partitioning Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning Hironori Niki1 and Sota Hiraga Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 862-0976, Japan We show the intracellular localization of the Escherichia coli replication origin (oriC) and chromosome terminus during the cell division cycle by FISH. In newborn cells, oriC is localized at the old-pole-proximal nucleoid border and the terminus at the new-pole-proximal nucleoid border. One copy of replicated oriC migrates rapidly to the opposite nucleoid border. These oriC copies are retained at both nucleoid borders, remaining at a constant distance from each cell pole. The terminus segment migrates from the nucleoid border to midcell and is retained there until the terminus is duplicated. The origin, terminus and other DNA regions show three migration patterns during active partitioning of daughter chromosomes. [Key Words: Cell division cycle; FISH; mitotic-like apparatus; oriC; positioning; segregation] Received December 29, 1997; revised version accepted February 4, 1998. Escherichia coli cells have a 4.6-Mb circular chromo- cated chromosomes do not separate from each other but some (Blattner et al. 1997) that is folded and organized in remain together at midcell. When protein synthesis re- a compact form called the nucleoid. During the cell di- sumed, the chromosomes moved from midcell to cell vision cycle, replication of the chromosomal DNA ini- quarter positions without cell elongation. This suggested tiates bidirectionally in a specific chromosome region, that rapid movement of chromosomes was responsible oriC. The two replication forks meet at the chromosome for chromosome partitioning in bacteria (Hiraga 1990; region opposite oriC. In this region, the progress of rep- Hiraga et al. 1990). Bipolar localization of the chromo- lication forks traveling clockwise and counter-clockwise some segment near oriC was visualized in Bacillus sub- is inhibited at specific DNA sequences, ter, in a direc- tilis (Webb et al. 1997) and E. coli (Gordon et al. 1997). tion-specific manner (Hill 1996). Thus, this region is rep- LacI-binding sequences were inserted into the chromo- licated at the end of a round of chromosome replication some near oriC, and the green fluorescent protein (GFP) and is called the replication terminus. The replicated fused to LacI was detected in living cells. Fluorescent chromosomal DNA molecules are physically separated foci of the GFP–LacI fusion protein bound to the chro- by the processes of decatenation and/or recombination, mosomal site near oriC showed that one copy of the and then each chromosome is partitioned with high fi- replication origin region moved to the site of new pole delity into daughter cells (for review, see Hiraga 1992; formation, near the site of cell division, following repli- Løbner-Olesen and Kuempel 1992; Rothfield 1994; Wake cation at or near the cell poles. In addition, bipolar lo- and Errington 1995). The partitioning mechanism is calization of the Spo0J protein was also observed by im- poorly understood in prokaryotic cells. Recently, bipolar munofluorescence microscopy or Spo0J–GFP in B. sub- localization of specific chromosome regions during the tilis (Glaser et al. 1997; Lin et al. 1997). Spo0J binds to a cell division cycle was reported, and this movement sug- DNA site in the origin-proximal third of the chromo- gested that a mitotic-like apparatus was involved in some (Lin et al. 1997) and colocalizes with the oriC re- chromosome partitioning in bacteria (Glaser et al. 1997; gion (Lewis and Errington 1997). A spo0J mutant causes Lin et al. 1997; Mohl and Gober 1997; Webb et al. 1997; production of a significant proportion of anucleate cells Wheeler and Shapiro 1997). and is blocked at the onset of sporulation (Ireton et al. Donachie and Begg (1989) and Hiraga et al. (1990) ob- 1994). These results suggested that Spo0J is involved in a served that after inhibition of protein synthesis, repli- mitotic-like apparatus responsible for the migration of the oriC region, and the binding site for Spo0J is a cis- 1Corresponding author. acting site for partitioning, like a eukaryotic centromere. E-MAIL [email protected]; FAX 96-371-2408. In Caulobacter crescentus, ParB binds to an AT-rich se- 1036 GENES & DEVELOPMENT 12:1036–1045 © 1998 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/98 $5.00; www.genesdev.org Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Migration of the origin and terminus in E. coli quence, parS, downstream of the parAB operon, which is throughout the cell division cycle and that E. coli does located within 80 kb of the replication origin (Mohl and not have a mitotic-like apparatus for rapid chromosome Gober 1997). The ParA and ParB proteins are localized at movement during partitioning. cell poles in one stage of the cell cycle, and overproduc- In contrast to the above conclusion, we show here sta- tion of ParA and ParB inhibits both cell division and tistical results by FISH indicating that one copy of the chromosome partitioning. Thus, ParA and ParB may duplicated oriC region migrates rapidly along the nucle- function as components of a mitotic-like apparatus, and oid from one border to another. We also show a different the parS site is the only candidate for a centromere that dynamic migration pattern of the terminus region of the has been sequenced in a bacterial chromosome. chromosome. By simultaneous use of DNA probes cor- Partition defective mutants that produce anucleate responding to different chromosomal regions and labeled cells upon cell division were isolated in E. coli (Hiraga et with different fluorescent compounds, in situ hybridiza- al. 1989). The mukF, mukE, and mukB genes form an tion revealed cell cycle-dependent nucleoid organiza- operon, and null mutants of each gene show a severe tion. We propose a model for the positioning of daughter defect in chromosome partitioning and cell viability chromosomes. (Niki et al. 1991; Yamanaka et al. 1996). The mukB gene codes for a filamentous protein of 170 kD whose struc- ture resembles that of motor proteins such as myosin or Results kinesin (Niki et al. 1992). MukB is presumably respon- sible for generating motive force during chromosome Migration of the oriC DNA segment across partitioning. In B. subtilis, the SpoIIIE protein that lo- the nucleoid calizes at the center of the division septum promotes Bidirectional chromosome replication is initiated at chromosome segregation into the prespore during sporu- oriC, which is a minimal 245-bp sequence (Oka et al. lation (Wu and Errington 1994, 1997). The origin-proxi- 1980) located at 84 min on the E. coli chromosome. To mal third of the chromosome is segregated into the pre- analyze the intracellular localization of oriC by FISH, we spore compartment by Spo0J, localized at the cell poles used two kinds of DNA segments as hybridization during sporulation (Glaser et al. 1997), and the rest of the probes (Fig. 1). The oriC–gid DNA probe was prepared chromosome is translocated to the prespore by SpoIIIE. from a 6.3-kb DNA segment containing the oriC and gid In addition to the bipolar behavior of the chromosome genes. The asn–rbs DNA probe was prepared from about origin copies, the F plasmid also shows bipolar migration 13 kb of the oriC-flanking DNA segment containing the of replicated plasmid DNA molecules, which are ac- asn to rbs genes, but not oriC. There is an ∼2-kb gap tively partitioned into daughter cells on cell division between the minimal oriC region and the left border of (Gordon et al. 1997; Niki and Hiraga 1997). The F plas- the asn–rbs DNA segment. Cells of strain CSH50 grow- mid is partitioned to daughter cells with high fidelity ing exponentially in minimal glucose medium (doubling owing to two trans-acting genes, sopA and sopB, and a time 55 min) were fixed and hybridized with either probe cis-acting site, sopC (Ogura and Hiraga 1983). An F plas- (Fig. 2A,B). mid molecule having the sopABC partitioning system is One or more apparent fluorescent foci were observed localized at midcell in newborn cells. The replicated in more than 97% of cells using the oriC–gid probe. Cells plasmid molecules migrate in opposite directions to cell with one, two, three, and four foci were 27%, 63%, 5.4%, positions one-fourth and three-fourths of the cell length and 4.6% of total cells having fluorescent foci, respec- and are tethered at these positions until the cell divides. tively. In short cells with a single focus, the focus was Therefore, each daughter cell receives at least one F plas- localized at a pole-proximal nucleoid border (Fig. 2A, row mid DNA molecule. P1 plasmid shows the same behav- a). Two foci in short cells were either closely localized ior during the cell division cycle (Gordon et al. 1997). near one nucleoid border (Fig. 2A, row b) or separated Interestingly, Soj, in an operon with spo0J, and ParA in from each other (Fig. 2A, rows c–e). In long cells, two foci C. crescentus, belong to the ATPase family including the were localized near the two borders of a nucleoid (Fig. plasmid-encoded F-SopA and P1-ParA proteins, essential 2A, rows f–h). Similar results were obtained with the for plasmid partitioning. B. subtilis Spo0J and C. cres- asn–rbs DNA probe (Fig. 2B), indicating that one copy of centus ParB are members of a family that includes F- the replicated oriC-flanking region, like oriC, also mi- SopB and P1-ParB.
Recommended publications
  • Hierarchical Looping of Zigzag Nucleosome Chains in Metaphase Chromosomes
    Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes Sergei A. Grigoryeva,1, Gavin Bascomb, Jenna M. Buckwaltera, Michael B. Schuberta, Christopher L. Woodcockc, and Tamar Schlickb,d,1 aDepartment of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033; bDepartment of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012; cBiology Department, University of Massachusetts, Amherst, MA 01003; and dNYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved December 22, 2015 (received for review September 14, 2015) The architecture of higher-order chromatin in eukaryotic cell nuclei is However, evidence for 30-nm fibers in interphase nuclei of living largely unknown. Here, we use electron microscopy-assisted nucleo- cells has been controversial (reviewed in refs. 9 and 10). For exam- some interaction capture (EMANIC) cross-linking experiments in ple, whereas a distinct 30-nm fiber architecture is observed in ter- combination with mesoscale chromatin modeling of 96-nucleosome minally differentiated cells (11, 12), neither continuous nor periodic arrays to investigate the internal organization of condensed chroma- 30-nm fibers are observed in the nuclei of proliferating cells (13–15). tin in interphase cell nuclei and metaphase chromosomes at nucleo- However, zigzag features of the chromatin fibers are well supported somal resolution. The combined data suggest a novel hierarchical by nucleosome interaction mapping in vitro (16) and in vivo (15). looping model for chromatin higher-order folding, similar to rope For chromatin architecture within metaphase chromosomes, flaking used in mountain climbing and rappelling.
    [Show full text]
  • Ftsk Actively Segregates Sister Chromosomes in Escherichia Coli
    FtsK actively segregates sister chromosomes in Escherichia coli Mathieu Stoufa,b, Jean-Christophe Meilea,b, and François Corneta,b,1 aLaboratoire de Microbiologie et de Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000, Toulouse, France; and bUniversité Paul Sabatier, Université de Toulouse, F-31000, Toulouse, France Edited by Nancy E. Kleckner, Harvard University, Cambridge, MA, and approved May 23, 2013 (received for review March 6, 2013) Bacteria use the replication origin-to-terminus polarity of their cir- with the divisome, is also required (13, 14). FtsK acts in a region cular chromosomes to control DNA transactions during the cell cy- about 400 kb long (15) and translocates DNA toward dif.Trans- cle. Segregation starts by active migration of the region of origin location is oriented by recognition of the FtsK-orienting polar followed by progressive movement of the rest of the chromo- sequences (KOPS) DNA motifs that are preferentially oriented somes. The last steps of segregation have been studied extensively toward dif, particularly in the ter region (4, 16–18). Upon reaching in the case of dimeric sister chromosomes and when chromosome the dif site, FtsK activates XerCD-mediated recombination that organization is impaired by mutations. In these special cases, the resolves chromosome dimers. The oriented translocation activity divisome-associated DNA translocase FtsK is required. FtsK pumps of FtsK also is strictly required when chromosome organization is chromosomes toward the dif chromosome dimer resolution site impaired by mutations, for instance by inactivation of the MukBEF using polarity of the FtsK-orienting polar sequence (KOPS) DNA complex (19, 20) or in strains carrying important asymmetry of the motifs.
    [Show full text]
  • Organization, Evolution and Function of Alpha Satellite Dna
    ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6
    [Show full text]
  • Comparative Genomic Hybridization in the Detection of DNA Copy Number Abnormalities in Uveal Melanoma1
    [CANCER RESEARCH 54. 4764-4768. September 1. 1994] Comparative Genomic Hybridization in the Detection of DNA Copy Number Abnormalities in Uveal Melanoma1 Kathleen B. Gordon, Curtis T. Thompson, Devron H. Char,2 Joan M. O'Brien, Stewart Kroll, Siavash Ghazvini, and Joe W. Gray Ocular Oncology Unii IK. B. G., D. H. C., J. M. O., S. K., S. G.¡and Laboratory of Molecular Cylomelry ¡C.T. T., J. W. G.I, University of California, San Francisco, California 94143-0730 ABSTRACT identified, and the possibility that more than one locus is involved in tumor initiation and progression can be assessed. Genomic DNA from Genomic instability appears to play an important role in the develop tumor specimens is used so that genetic alterations identified with ment, growth, invasiveness, and eventual metastasis of the neoplastic cell. CGH are not artifactually altered by propagation in cell culture. In the We have used a powerful new technique, comparative genomic hybrid present study, we used CGH to detect alterations in gene copy number ization, to evaluate genetic alterations in 10 fresh frozen uveal melanomas. Comparative genomic hybridization utilizes dual fluorescence in situ hy in ten fresh frozen uveal melanomas. bridization to characterize chromosome deletions and duplications, allow ing for simultaneous evaluation of the entire human genome. Several MATERIALS AND METHODS consistent chromosomal abnormalities were detected. This study con Clinical Data. Ten uveal melanomas were evaluated after primary enucle- firmed previous findings obtained using standard cytogenetic techniques ation. The tumors were classified histologically according to the modified but demonstrated an increased incidence in abnormalities of chromo Callender classification (5).
    [Show full text]
  • Two Distinct Domains in Drosophila Melanogaster Telomeres
    Copyright Ó 2005 by the Genetics Society of America DOI: 10.1534/genetics.105.048827 Two Distinct Domains in Drosophila melanogaster Telomeres Harald Biessmann,* Sudha Prasad,† Valery F. Semeshin,‡ Eugenia N. Andreyeva,‡ Quang Nguyen,§ Marika F. Walter* and James M. Mason†,1 *Developmental Biology Center, University of California, Irvine, California 92697, †Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, ‡Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russia and §Department of Biological Chemistry, University of California, Irvine, California 92697 Manuscript received July 27, 2005 Accepted for publication August 16, 2005 ABSTRACT Telomeres are generally considered heterochromatic. On the basis of DNA composition, the telomeric region of Drosophila melanogaster contains two distinct subdomains: a subtelomeric region of repetitive DNA, termed TAS, and a terminal array of retrotransposons, which perform the elongation function instead of telomerase. We have identified several P-element insertions into this retrotransposon array and compared expression levels of transgenes with similar integrations into TAS and euchromatic regions. In contrast to insertions in TAS, which are silenced, reporter genes in the terminal HeT-A, TAHRE,orTART retroelements did not exhibit repressed expression in comparison with the same transgene construct in euchromatin. These data, in combination with cytological studies, provide evidence that the subtelomeric TAS region exhibits features resembling heterochromatin, while the terminal retrotransposon array exhibits euchromatic characteristics. NA sequences at the ends of eukaryotic chromo- tandem repeats of 457 bp (Walter et al. 1995; Mason D somes are the products of a telomere elongation et al.
    [Show full text]
  • Staining, and in Situ Digestion with Restriction Endonucleases
    Heredity66 (1991) 403—409 Received 23 August 1990 Genetical Society of Great Britain An analysis of coho salmon chromatin by means of C-banding, AG- and fluorochrome staining, and in situ digestion with restriction endonucleases R. LOZANO, C. RUIZ REJON* & M. RUIZ REJON* Departamento de Biologia Animal, Ecologia y Genética. E. /ngenierIa T. AgrIcola, Campus Universitario de Almeria, 04120 AlmerIa and *Facu/tad de Ciencias, 18071 Granada, Universidad de Granada, Spain Thechromosome complement of the coho salmon (Oncorhynchus kisutch) has been analysed by means of C-banding, silver and fluorochrome staining, and in situ digestion with restriction endo- nucleases. C-banding shows heterochromatic regions in the centromeres of most chromosomes but not in the telomeric areas. The fifteenth metacentric chromosome pair contains a large block of constitutive heterochromatin, which occupies almost all of one chromosome arm. This region is also the site where the ribosomal cistrons are located and it reacts positively to CMA3/DA fluorochrome staining. The NORs are subject to chromosome polymorphism, which might be explicable in terms of an amplification of ribosomal cistrons. The digestion banding patterns produced by four types of restriction endonucleases on the euchromatic and heterochromatic regions are described. Two kinds of highly repetitive DNAs can be distinguished and the role of restriction endonucleases as a valuable tool in chromosome characterization studies, as well as in the analysis of the structure and organization of fish chromatin, are also discussed. Keywords:C-banding,coho salmon, fluorochrome staining, restriction endonuclease banding. (Oncorhynchus kisutch), as well as applying conven- Introduction tional banding techniques, we have analysed the Theuse of restriction endonucleases (REs) is becom- mitotic chromosomes using DNA base-pair-specific ing common not only in molecular biology but also as fluorochromes and in situ digestion with restriction an important tool in molecular cytogenetics.
    [Show full text]
  • Holocentric Chromosomes: Convergent Evolution, Meiotic Adaptations, and Genomic Analysis
    Chromosome Res DOI 10.1007/s10577-012-9292-1 Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis Daniël P. Melters & Leocadia V. Paliulis & Ian F. Korf & Simon W. L. Chan # Springer Science+Business Media B.V. 2012 Abstract In most eukaryotes, the kinetochore protein trait has arisen at least 13 independent times (four times in complex assembles at a single locus termed the centro- plants and at least nine times in animals). Holocentric mere to attach chromosomes to spindle microtubules. chromosomes have inherent problems in meiosis because Holocentric chromosomes have the unusual property of bivalents can attach to spindles in a random fashion. attaching to spindle microtubules along their entire Interestingly, there are several solutions that have evolved length. Our mechanistic understanding of holocentric to allow accurate meiotic segregation of holocentric chro- chromosome function is derived largely from studies in mosomes. Lastly, we describe how extensive genome the nematode Caenorhabditis elegans, but holocentric sequencing and experiments in nonmodel organisms chromosomes are found over a broad range of animal may allow holocentric chromosomes to shed light on and plant species. In this review, we describe how hol- general principles of chromosome segregation. ocentricity may be identified through cytological and molecular methods. By surveying the diversity of organ- Keywords centromere . holocentric . meiosis . isms with holocentric chromosomes, we estimate that the phylogeny. tandem repeat . chromosome Abbreviations Responsible Editor: Rachel O’Neill and Beth Sullivan. ChIP-seq Chromatin immunoprecipitation Electronic supplementary material The online version of this followed by sequencing article (doi:10.1007/s10577-012-9292-1) contains ChIP-chip Chromatin immunoprecipitation supplementary material, which is available to authorized users.
    [Show full text]
  • Subtelomere Organization in the Genome of the Microsporidian Encephalitozoon Cuniculi: Patterns of Repeated Sequences and Physic
    Dia et al. BMC Genomics (2016) 17:34 DOI 10.1186/s12864-015-1920-7 RESEARCH ARTICLE Open Access Subtelomere organization in the genome of the microsporidian Encephalitozoon cuniculi: patterns of repeated sequences and physicochemical signatures Ndongo Dia1*, Laurence Lavie2, Ngor Faye3, Guy Méténier2, Edouard Yeramian4, Christophe Duroure5, Bhen S. Toguebaye3, Roger Frutos6, Mbayame N. Niang1, Christian P. Vivarès2, Choukri Ben Mamoun7 and Emmanuel Cornillot8,9* Abstract Background: The microsporidian Encephalitozoon cuniculi is an obligate intracellular eukaryotic pathogen with a small nuclear genome (2.9 Mbp) consisting of 11 chromosomes. Although each chromosome end is known to contain a single rDNA unit, the incomplete assembly of subtelomeric regions following sequencing of the genome identified only 3 of the 22 expected rDNA units. While chromosome end assembly remains a difficult process in most eukaryotic genomes, it is of significant importance for pathogens because these regions encode factors important for virulence and host evasion. Results: Here we report the first complete assembly of E. cuniculi chromosome ends, and describe a novel mosaic structure of segmental duplications (EXT repeats) in these regions. EXT repeats range in size between 3.5 and 23.8 kbp and contain four multigene families encoding membrane associated proteins. Twenty-one recombination sites were identified in the sub-terminal region of E. cuniculi chromosomes. Our analysis suggests that these sites contribute to the diversity of chromosome ends organization through Double Strand Break repair mechanisms. The region containing EXT repeats at chromosome extremities can be differentiated based on gene composition, GC content, recombination sites density and chromosome landscape. Conclusion: Together this study provides the complete structure of the chromosome ends of E.
    [Show full text]
  • Genome-Wide Characterization of Satellite DNA Arrays in a Complex Plant Genome Using Nanopore Reads
    bioRxiv preprint doi: https://doi.org/10.1101/677575; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide characterization of satellite DNA arrays in a complex plant genome using nanopore reads by Tihana Vondrak1,2, Laura Ávila Robledillo1,2, Petr Novák1, Andrea Koblížková1, Pavel Neumann1 and Jiří Macas1,* (1) Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, CZ-37005, Czech Republic (2) University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic * Corresponding author e-mail: [email protected] phone: +420 387775516 1 bioRxiv preprint doi: https://doi.org/10.1101/677575; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 Background: Amplification of monomer sequences into long contiguous arrays is the main 3 feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in 4 its investigation because these arrays are in principle difficult to assemble. Here we explore an 5 alternative, assembly-free approach that utilizes ultra-long Oxford Nanopore reads to infer the 6 length distribution of satellite repeat arrays, their association with other repeats and the 7 prevailing sequence periodicities.
    [Show full text]
  • First Chromosome Analysis and Localization of the Nucleolar Organizer Region of Land Snail, Sarika Resplendens (Stylommatophora, Ariophantidae) in Thailand
    © 2013 The Japan Mendel Society Cytologia 78(3): 213–222 First Chromosome Analysis and Localization of the Nucleolar Organizer Region of Land Snail, Sarika resplendens (Stylommatophora, Ariophantidae) in Thailand Wilailuk Khrueanet1, Weerayuth Supiwong2, Chanidaporn Tumpeesuwan3, Sakboworn Tumpeesuwan3, Krit Pinthong4, and Alongklod Tanomtong2* 1 School of Science and Technology, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand 2 Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand 3 Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand 4 Biology Program, Faculty of Science and Technology, Surindra Rajabhat University, Muang, Surin 32000, Thailand Received July 23, 2012; accepted February 25, 2013 Summary We report the first chromosome analysis and localization of the nucleolar organizer re- gion of the land snail Sarika resplendens (Philippi 1846) in Thailand. The mitotic and meiotic chro- mosome preparations were carried out by directly taking samples from the ovotestis. Conventional and Ag-NOR staining techniques were applied to stain the chromosomes. The results showed that the diploid chromosome number of S. resplendens is 2n=66 and the fundamental number (NF) is 132. The karyotype has the presence of six large metacentric, two large submetacentric, 26 medium metacentric, and 32 small metacentric chromosomes. After using the Ag-NOR banding technique, one pair of nucleolar organizer regions (NORs) was observed on the long arm subtelomeric region of chromosome pair 11. We found that during metaphase I, the homologous chromosomes show synapsis, which can be defined as the formation of 33 ring bivalents, and 33 haploid chromosomes at metaphase II as diploid species.
    [Show full text]
  • Transposon Telomeres Are Widely Distributed in the Drosophila Genus: TART Elements in the Virilis Group
    Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group Elena Casacuberta and Mary-Lou Pardue* Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Mary-Lou Pardue, January 20, 2003 Telomeres of most animals, plants, and unicellular eukaryotes are long stretches of noncoding sequence, which can differ signifi- made up of tandem arrays of repeated DNA sequences produced cantly between copies of the element in the same Drosophila by the enzyme telomerase. Drosophila melanogaster has an un- stock. Both elements also encode Gag proteins whose sequence usual variation on this theme; telomeres consist of tandem arrays can vary as much as that of the noncoding regions (4). TART has of sequences produced by successive transpositions of two non- a second ORF (ORF2) encoding a protein with endonuclease LTR retrotransposons, HeT-A and TART. To explore the phyloge- and reverse transcriptase (RT) activities. As with retroviruses netic distribution of these variant telomeres, we have looked for (6), ORF2 is more conserved than the Gag coding sequence, and TART homologues in a distantly related Drosophila species, virilis. the most conserved part, RT, has been the only useful probe for We have found elements that, despite many differences in nucle- these cross-species homology searches. Although the high otide sequence, retain significant amino acid similarity to TART sequence divergence makes it difficult to study the telomere from D. melanogaster. These D. virilis TART elements have features elements, it also increases the probability that conserved features that characterize TART elements in D. melanogaster:(i) they are are of biological importance.
    [Show full text]
  • Satellite DNA Sequences in the Human Acrocentric Chromosomes: Information from Translocations and Heteromorphisms
    Am J Hum Genet 33:243-251, 1981 Satellite DNA Sequences in the Human Acrocentric Chromosomes: Information from Translocations and Heteromorphisms J. R. GOSDEN,1 S. S. LAWRIE, AND C. M. GOSDEN SUMMARY Satellite III DNA has been located by in situ hybridization in chromo- somes 1, 3-5,7,9, 10, 13-18,20-22, and Y and ribosomal DNA (rDNA) in the acrocentric chromosomes 13-15, 21, and 22. In the acrocentric chro- mosomes, the satellite DNA is located in the short arm. Here we report comparisons by in situ hybridization of the amount of satellite DNA in Robertsonian translocation and "normal variant" chro- mosomes with that in their homologs. In almost all dicentric Robertsonian translocations, the amount ofsatellite DNA is less than that in the normal homologs, but it is rarely completely absent, indicating that satellite DNA is located between the centromere and the nucleolus organizer region (NOR) and that the breakpoints are within the satellite DNA. The amount of satellite DNA shows a range of variation in "normal" chromosomes, and this is still more extreme in "normal variant" chromo- somes, those with large short arms (p+ or ph+) generally having more satellite DNA than those with small short arms (p- or ph-). The cytologi- cal satellites are heterogeneous in DNA content; some contain satellite DNA, others apparently do not, and the satellite DNA content is not related to the size or intensity of fluorescence of the satellites. The signifi- cance of these variations for the putative functions of satellite DNA is discussed. INTRODUCTION The human acrocentric chromosomes (D group: chromosomes 13, 14, and 15, and G group: chromosomes 21 and 22) have been the subject of extensive investigation.
    [Show full text]