Geological Society of America Bulletin, Published Online on 13 February 2014 As Doi:10.1130/B30935.1

Total Page:16

File Type:pdf, Size:1020Kb

Geological Society of America Bulletin, Published Online on 13 February 2014 As Doi:10.1130/B30935.1 Geological Society of America Bulletin, published online on 13 February 2014 as doi:10.1130/B30935.1 Geological Society of America Bulletin Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt J. Shaw, G. Gutiérrez-Alonso, S.T. Johnston and D. Pastor Galán Geological Society of America Bulletin published online 13 February 2014; doi: 10.1130/B30935.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by GeoRef from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. Copyright © 2014 Geological Society of America Geological Society of America Bulletin, published online on 13 February 2014 as doi:10.1130/B30935.1 Provenance variability along the Early Ordovician north Gondwana margin: Paleogeographic and tectonic implications of U-Pb detrital zircon ages from the Armorican Quartzite of the Iberian Variscan belt J. Shaw1,†, G. Gutiérrez-Alonso2, S.T. Johnston1, and D. Pastor Galán3 1School of Earth and Ocean Sciences, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada 2Departamento de Geología, Universidad de Salamanca, 33708 Salamanca, Spain 3Department of Earth Sciences, Universiteit Utrecht, P.O. Box 80.021, 3508 TA Utrecht, Netherlands ABSTRACT of the then low-lying Saharan Metacraton (2) a swath of presumed-exotic continental crust and Arabian-Nubian Shield. Accepting paleo- independently sutured to the south of zone 4 (e.g., Detrital zircon laser ablation–inductively magnetic constraints, a 90° counterclockwise Martínez Catalán et al., 2007). coupled plasma–mass spectrometry U-Pb age rotation is required to reorient the Iberian The Armorican Quartzite is characteristic of data from the Lower Ordovician Armorican portion to a pre-oroclinal (Late Carbonifer- the lower Paleozoic Gondwana passive-margin Quartzite (deformed passive margin strata ous) north-south trend. The mechanisms for sequence of zones 1–3. A 5–40-km-wide fault- of Gondwanan affi nity) of the Iberian Massif accommodating such a rotation are unclear. bound band of rock at the boundary between are presented herein. The S-shaped coupled zones 3 and 4 has, on the basis of structural data Iberian oroclines defi ned within these zones INTRODUCTION and stratigraphic correlations, been interpreted palinspastically restore to a 2300 km linear as being transitional between them (Pereira Variscan orogen with a paleomagnetically Detrital zircon age dating is a powerful tool in and Silva, 2001; Solá et al., 2008). The Ossa- constrained Late Carboniferous north-south deciphering sedimentary provenance, and con- Morena–Central Iberian transition zone, here- trend. Detrital zircons are used to assess straining paleogeography and tectonic evolution after referred to as the transition zone (Fig. 1), paleo geog raphy and interpreted geometry of continental realms. Sampling within restricted extends north from the sinistral Badajoz-Cor- of the Iberian portion of the Gondwana pas- areas through thick stratigraphic successions can doba shear zone to the Los Pedroches batholith sive margin. A common signature is identi- address questions regarding local tectonic evo- (Linnemann et al., 2008, and references therein). fi ed by (1) Neoproterozoic (ca. 500–850 Ma), lution (e.g., May et al., 2013; LeMaskin, 2012). It is characterized by a zone 4–type lower Edia- (2) Stenian–Tonian (ca. 0.9–1.1 Ga), and Alternatively, sampling over a wide area within caran–Cambrian stratigraphic sequence overlain lesser (3) Paleoproterozoic and (4) Archean a single stratigraphic level (formation) can yield by a zone 3–type Ordovician sequence (Bandres populations (ca. 1.8–2.15 and 2.5–2.7 Ga, formidable constraints on a variety of spatial et al., 2002; Pereira and Silva, 2001; Pereira respectively). Minor site-to-site variation variables at the point in time of interest, from et al., 2010). Though it is generally believed in rela tive proportion of widely ranging relative location between continental masses to that no Armorican Quartzite equivalent exists age groups suggests near-uniform distribu- continental geometry and orientation. within the Ordovician stratigraphic sequence of tion of a highly varied detrital input. Prov- This study presents detrital zircon age data zone 4 (Robardet and Gutiérrez-Marco, 1990a, enance analysis reveals strong correlations sampled from the Lower Ordovician Armorican 1990b, 2004), the Sierra Albarrana Quartzites, with Cambro-Ordo vician clastic rocks from Quartzite (sensu lato) over a geographical area of exposed just south of the transition zone bound- northeast African realms. Similarity with roughly 150,000 km2 within the Variscan orogen ary and loosely constrained as early Paleozoic underlying sequences suggests a common of Iberia. The Variscan orogen of Iberia is charac- in age (Azor et al., 1991; Marcos et al., 1991), paleogeography from the Ediacaran through terized by the continental-scale S-shaped Canta- have been suggested as possible correlatives early Paleozoic and persistence of a prov- brian–Central Iberian coupled oroclines (Aerden, (Azor et al., 1991). The Cantabrian–Central enance distinction within the autochthonous 2004; Martínez Catalán, 2011; Shaw et al., Iberian coupled oroclines were defined in, Iberian Massif. Consistent northward paleo- 2012) (Fig. 1), and is divisible into a series of and affect that portion of, the Variscan orogen fl ow within widespread northeast African tectonostratigraphic zones. From the core of the located north of the transition zone; the nature lower Paleozoic sedi mentary cover suggests Cantabrian orocline south, four of these zones, of the relationship between the coupled oro- long-distance sedimen tary transport across a the (1) Cantabrian, (2) West Asturian–Leonese, clines and that portion of the Iberian Massif North African peneplain from outlying base- (3) Central Iberian, and (4) Ossa-Morena, are that lies to their south (zone 4 and the southern ment terranes. We propose that the 2300-km- considered parts of autochthonous Gondwana. allochthon) remains unclear. long Cantabrian–Central Iberian portion Allochthonous terranes of the Iberian Variscan Paleomagnetic and structural studies have of the early Paleozoic Gondwana margin belt include (1) an ophiolite-bearing structural demonstrated that the Cantabrian orocline stretched east-west along the northern limits stack that overrides the hinterland zone 3 at the formed by lithospheric-scale vertical-axis rota- core of the Central Iberian orocline (e.g., Pérez- tion of an originally linear Variscan orogen in the †E-mail: [email protected]. Estaún et al., 1991, and references therein), and Late Carboniferous–earliest Permian (Kollmeier GSA Bulletin; Month/Month 2014; v. 1xx; no. X/X; p. 1–18; doi:10.1130/B30935.1; 9 fi gures; 4 tables; Data Repository item 2014083. For permission to copy, contact [email protected] 1 © 2014 Geological Society of America Geological Society of America Bulletin, published online on 13 February 2014 as doi:10.1130/B30935.1 Shaw et al. –9° –8° –7° –6° –5° –4° –3° –2° –1° strained using zircon provenance analyses that WALZ-01 Ordovician focus on comparison of peri-contemporaneous Precambrian and clastic sequences rather than on the comparison Barrios undifferentiated Paleozoic of clastic sequence against potential basement 43° WALZ-02 ZONE 1 source. The detailed Early Ordovician “snap- CZ-02 Allochthonous terranes shot” of the Iberian Gondwana margin revealed GCZ-06 Transition zone through detrital zircon ages yields broad and 42° ZONE 2 Variscan strike-slip signifi cant implications for the pre-Ordovician GCZ-03 shear zones paleogeography and post-Ordovician tectonic Alpine deformation front evolution of the Variscan orogen. 41° IBR-02 SCS-05 Armorican Quartzite zircon GEOLOGIC SETTING sample sites PNC-4 ZONE 3 40° This study The Armorican Quartzite Fernandez-Suarez et al. (2002a) The Armorican Quartzite consists
Recommended publications
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • G-012011-1E Geological Precambrian Timeline Midwest
    Copper Harbor Conglomerate Gunflint Formation: Breccia with white quartz Precambrian Geologic Events in the Mid-Continent of North America G-012011-1E 1 inch (Century Mine, Upper Peninsula MI) (Sibley Peninsula, Thunder Bay, ON) Compiled by: Steven D.J. Baumann, Alexandra B. Cory, Micaela M. Krol, Elisa J. Piispa Updated March 2013 Oldest known rock showing a dipole magnetic field: red dacite in Austrailia Paleomagnetic Line 3,800 3,700 3,600 3,500 3,400 3,300 3,200 3,100 3,000 2,900 2,800 2,700 2,600 2,500 2,400 2,300 2,200 2,100 2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1,100 1,000 900 800 700 600 500 Paleozoic Period Siderian Rhyacian Orosirian Statherian Calymmian Ectasian Stenian Tonian Cryogenian Ediacaran Eoarchean Paleoarchean Mesoarchean Neoarchean Era Paleoproterozoic Mesoproterozoic Neoproterozoic Eon Archean Proterozoic Pass Lake Kama Hill Sibley Group Sediments (Sibley Basin, Thunder Bay Area, ON) McGrath Gneiss McGrath Complex (EC MN) Metamorphic and cataclastic event Formation Formation Outan Island Formation Nipigon Formation Recent Era of Great Mid-continent Basin Formation (MI, IL, IA, IN, KY, MO) 2 inches Marshfield Archean Gneiss (C WI) Linwood Archean Migmatite (C WI) Sudbury Dike Swarm (SE ON) Quinnesec Formation Intrusions (NE WI) Quinnesec Formation Metamorphism (NE WI) Hatfield Gneiss (WC WI) Pre-Quinnesec Formations deposited (NE WI) Upper Rove Formation Baraboo Quartzite LEGEND (Sibley Peninsula, Thunder Bay, ON) Gray granodioritic phase Montevideo Gneiss (SW MN) Red granite phase Montevideo Gneiss
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • Paleogeographic Maps Earth History
    History of the Earth Age AGE Eon Era Period Period Epoch Stage Paleogeographic Maps Earth History (Ma) Era (Ma) Holocene Neogene Quaternary* Pleistocene Calabrian/Gelasian Piacenzian 2.6 Cenozoic Pliocene Zanclean Paleogene Messinian 5.3 L Tortonian 100 Cretaceous Serravallian Miocene M Langhian E Burdigalian Jurassic Neogene Aquitanian 200 23 L Chattian Triassic Oligocene E Rupelian Permian 34 Early Neogene 300 L Priabonian Bartonian Carboniferous Cenozoic M Eocene Lutetian 400 Phanerozoic Devonian E Ypresian Silurian Paleogene L Thanetian 56 PaleozoicOrdovician Mesozoic Paleocene M Selandian 500 E Danian Cambrian 66 Maastrichtian Ediacaran 600 Campanian Late Santonian 700 Coniacian Turonian Cenomanian Late Cretaceous 100 800 Cryogenian Albian 900 Neoproterozoic Tonian Cretaceous Aptian Early 1000 Barremian Hauterivian Valanginian 1100 Stenian Berriasian 146 Tithonian Early Cretaceous 1200 Late Kimmeridgian Oxfordian 161 Callovian Mesozoic 1300 Ectasian Bathonian Middle Bajocian Aalenian 176 1400 Toarcian Jurassic Mesoproterozoic Early Pliensbachian 1500 Sinemurian Hettangian Calymmian 200 Rhaetian 1600 Proterozoic Norian Late 1700 Statherian Carnian 228 1800 Ladinian Late Triassic Triassic Middle Anisian 1900 245 Olenekian Orosirian Early Induan Changhsingian 251 2000 Lopingian Wuchiapingian 260 Capitanian Guadalupian Wordian/Roadian 2100 271 Kungurian Paleoproterozoic Rhyacian Artinskian 2200 Permian Cisuralian Sakmarian Middle Permian 2300 Asselian 299 Late Gzhelian Kasimovian 2400 Siderian Middle Moscovian Penn- sylvanian Early Bashkirian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • (Globigerina Limestone Formation): New Preliminary Data Based on Calcareous Plankton
    Bollettino della Società Paleontologica Italiana, 46 (2-3), 2007, 175-181. Modena, 15 gennaio 2008175 Biostratigraphy and chronostratigraphy of the Maltese Lower Globigerina Limestone Member (Globigerina Limestone Formation): new preliminary data based on calcareous plankton Luca Maria FORESI, Roberto MAZZEI, Gianfranco SALVATORINI & Francesca DONIA L.M. Foresi, Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, I-53100 Siena, Italy; [email protected] R. Mazzei, Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, I-53100 Siena, Italy; [email protected] G. Salvatorini, Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, I-53100 Siena, Italy. F. Donia, Dipartimento di Scienze della Terra, Università di Siena, Via Laterina 8, I-53100 Siena, Italy; [email protected] KEY WORDS - Calcareous plankton biostratigraphy, Chattian, Lower Globigerina Limestone, Maltese Islands. ABSTRACT - The preliminary results of the study carried out on calcareous plankton (foraminifera and nannofossils) assemblages from the Maltese Lower Globigerina Limestone are presented here. The Lower Globigerina Limestone (LGL) is the lowermost member of the Globigerina Limestone Formation, widely outcropping in the Maltese Archipelago; this member has been generally referred to the Early Miocene (Aquitanian). The investigation of 78 samples from 11 sections (encompassing the whole succession of the unit) on Gozo and Malta islands (one of them close to the type section of the formation) has allowed us to assign a Chattian age (Late Oligocene) to the Lower Globigerina Limestone Member (LGLM). Globigerinoides primordius, Paragloborotalia opima nana, P. pseudokugleri, Subbotina gortanii, Globoturborotalita angulisuturalis, G. anguliofficinalis, and Coccolithus miopelagicus, Cyclicargolithus abisectus, Dictyococcites bisectus, D. scrippsae, Helicosphaera recta, Sphenolithus cf.
    [Show full text]
  • Karst Heritage
    Unit 4 – Karst Heritage Dirk De Ketelaere, Josianne Vella and Anna Spiteri Preamble In this unit, we examine the relation between hydrological processes, the geology of karst rock and the resultant landforms. While being described as ‘unusual’, the landforms may take such dramatic proportions that they merit the designation of a World Heritage Conservations Site. The Qawra/Dwejra area in Gozo is presented as a case study. “The importance of conserving representative karst areas for science and recreation has been recognized in many countries by the designation of national parks and reserves” (Ford et al., 1989) “Some of the best examples of normal faulting, karstification and solution subsidence, cliff recession, cave formation as a result of marine erosion, and incision of steep-sided valleys to be found in the Maltese Islands occur here” (Cassar et al, 2004) on the Qawra/Dwejra area in Gozo Karst Landscapes Karst landscapes or terrains represent a distinctive topography in which the landscape is largely shaped by the dissolving action of water on carbonate bedrock. This geological process, occurring over many thousands of years, results in unusual surface and subsurface features ranging from sinkholes, dolines, vertical shafts, disappearing streams and springs, to complex underground drainage systems and caves. The ‘engine’ that powers this natural process is the hydrological cycle, starting with the constant flow of rainfall over the rock surface which causes the chemical dissolution of the rock along fissures. Over time, these fissures gradually enlarge into veritable shafts and conduits, which allow a larger part of the rainwater to feed into the aquifers within a shorter period of time.
    [Show full text]
  • Alphabetical List
    LIST E - GEOLOGIC AGE (STRATIGRAPHIC) TERMS - ALPHABETICAL LIST Age Unit Broader Term Age Unit Broader Term Aalenian Middle Jurassic Brunhes Chron upper Quaternary Acadian Cambrian Bull Lake Glaciation upper Quaternary Acheulian Paleolithic Bunter Lower Triassic Adelaidean Proterozoic Burdigalian lower Miocene Aeronian Llandovery Calabrian lower Pleistocene Aftonian lower Pleistocene Callovian Middle Jurassic Akchagylian upper Pliocene Calymmian Mesoproterozoic Albian Lower Cretaceous Cambrian Paleozoic Aldanian Lower Cambrian Campanian Upper Cretaceous Alexandrian Lower Silurian Capitanian Guadalupian Algonkian Proterozoic Caradocian Upper Ordovician Allerod upper Weichselian Carboniferous Paleozoic Altonian lower Miocene Carixian Lower Jurassic Ancylus Lake lower Holocene Carnian Upper Triassic Anglian Quaternary Carpentarian Paleoproterozoic Anisian Middle Triassic Castlecliffian Pleistocene Aphebian Paleoproterozoic Cayugan Upper Silurian Aptian Lower Cretaceous Cenomanian Upper Cretaceous Aquitanian lower Miocene *Cenozoic Aragonian Miocene Central Polish Glaciation Pleistocene Archean Precambrian Chadronian upper Eocene Arenigian Lower Ordovician Chalcolithic Cenozoic Argovian Upper Jurassic Champlainian Middle Ordovician Arikareean Tertiary Changhsingian Lopingian Ariyalur Stage Upper Cretaceous Chattian upper Oligocene Artinskian Cisuralian Chazyan Middle Ordovician Asbian Lower Carboniferous Chesterian Upper Mississippian Ashgillian Upper Ordovician Cimmerian Pliocene Asselian Cisuralian Cincinnatian Upper Ordovician Astian upper
    [Show full text]