Aberrant DNA Methylation Involved in Obese Women with Systemic Insulin

Total Page:16

File Type:pdf, Size:1020Kb

Aberrant DNA Methylation Involved in Obese Women with Systemic Insulin Open Life Sci. 2018; 13: 201–207 Research Article Shao-Jun Zhang, Yan Wang, Yan-Lan Yang, Hong Zheng* Aberrant DNA methylation involved in obese women with systemic insulin resistance https://doi.org/10.1515/biol-2018-0024 epigenetic biomarkers that may be related to obesity- Received September 4, 2017; accepted January 8, 2018 associated insulin resistance. Our results provide new Abstract: Background: Epigenetics has been recognized insights into the epigenetic regulation of disease etiology as a significant regulator in many diseases. White adipose and also identify novel targets for insulin resistance tissue (WAT) epigenetic dysregulation is associated with treatment in obese women. systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in Keywords: obesity; insulin resistance; DNA methylation; obese women with systemic insulin resistance by DNA bioinformatics methylation microarray. Methods: The genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus 1 Introduction database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese Obesity, an emerging nutritional problem globally, has women were identified by Student’s t-test and methylation become the fifth leading risk for global deaths [1]. It is value differences. Network analysis was then performed associated with low-grade inflammation resulting from to reveal co-regulated genes of differentially methylated chronic activation of the innate immune system, and genes. Functional analysis was also implemented to can often lead to insulin resistance [2], a condition that reveal the underlying biological processes related to is characterized by elevated circulating levels of insulin systemic insulin resistance in obese women. Results: during fasting, despite normal or elevated glucose levels Relative to insulin sensitive obese women, we initially in the blood [3, 4]. The impaired ability of insulin to induce screened 10,874 differentially methylated CpGs, including cellular responses is a pathophysiological mechanism 7402 hyper-methylated sites and 6073 hypo-methylated that links obesity to metabolic disorders, such as type CpGs. Our analysis identified 4 significantly differentially 2 diabetes and cardiovascular disease [5-7]. Recently, methylated genes, including SMYD3, UST, BCL11A, and epigenetics has been recognized as a significant regulator BAI3. Network and functional analyses found that these in complex diseases. Both genetic and epigenetic factors differentially methylated genes were mainly involved in have been implicated in the development of systemic chondroitin and dermatan sulfate biosynthetic processes. insulin resistance. The association between insulin Conclusion: Based on our study, we propose several resistance and excess abdominal fat, particularly in intra- abdominal or visceral adipose tissue (VAT), is believed to be mediated by increased spontaneous hydrolysis of lipids *Corresponding author: Hong Zheng, Department of Endocrinology, (i.e. adipocyte lipolysis) [8, 9]. In addition, systemic IR is The Second Affiliated Hospital of Dalian Medical University, No. 467 characterized by ectopic triacylglycerol accumulation in Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China, skeletal muscle and the liver [10-12]. E-mail: [email protected] As the best-studied epigenetic modification, DNA Shao-Jun Zhang, Yan-Lan Yang, Department of Endocrinology, The People's Hospital of Shanxi Province , Taiyuan, Shanxi 030012, methylation is closely involved in several key biological China processes [13]. Growing evidence has indicated that DNA Shao-Jun Zhang, Department of Endocrinology, The Sixth Division methylation contributes to obesity associated insulin Hospital of Xinjiang Production and Construction Corps, Wujiaqu, resistance [14-16]. Candidate gene methylation studies Xinjiang 830025, China in animal models and humans have demonstrated Yan Wang, Medical Laboratory Diagnosis Center, Jinan Central Hospital, Jinan, Shandong 250013, China methylation changes in the promoters of various genes that are implicated in obesity, appetite control and Open Access. © 2018 Shao-Jun Zhang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution- NonCommercial-NoDerivs 4.0 License. 202 S.J. Zhang, et al. metabolism, insulin signaling, immunity, growth and interfere with hybridization, probes containing SNPs with circadian clock regulation [3, 17, 18]. Moreover, epigenome- minimum allelic frequency < 0.05 were removed from the wide association studies have been used to identify data, leaving 427,909 probes for subsequent analysis. novel genes and pathways related to obesity and obesity- induced complications. Previous studies have identified several obesity-associated inflammatory genes, such as 2.2 Differential methylation analysis UBASH3, TRIM3, HIF3A, and LY86 [19, 20]. Most recently, Fradin et al. [21] revealed 18 and 138 specific differentially In this study, the raw methylation score for each probe methylated CpGs in moderately and severely obese was expressed as methylation β-values. The β-value is a children, respectively, relative to lean children. Global and quantitative methylation measure for CpGs, ranging from site-specific differences in CpG methylation have been 0 (complete unmethylation) to 1 (full methylation). The associated with obesity and insulin resistance [22-24]. β-values of individual CpGs from the two conditions were However, to our knowledge, few studies have focused on obtained, and the mean β-value difference of each CpG the candidate methylated genes associated with systemic between two conditions was measured. CpG sites with insulin resistance in obese women. absolute mean β-value differences < 0.05 were removed Hence, in this study, we attempted to identify from this study. Moreover, a Student’s t-test was employed differential DNA methylation of genes and the underlying to compare the β-values of CpGs between obese women biological processes involved in systemic insulin with IR and those without IR. A threshold of p < 0.01 was resistance in obese women based on the genome-wide used in this study. Statistically significant differences methylation data. We anticipate that our work contribute between groups were required to show a false discovery to a better understanding of the underlying molecular rate (FDR) <0.05 following multiple-test correction by the mechanisms, and provide novel insights for the treatment Benjamini–Hochberg method. of obesity-related systemic insulin resistance. It is well known that methylation changes preferentially exist in genomic locations at intermediate methylation levels (0.2 < β <0.8) [27]. To reduce non- 2 Materials and Methods variable CpGs, only CpGs with 0.2 < β-values <0.8 were retained for subsequent analysis. In addition, a previous 2.1 Genome-wide DNA methylation data study indicated that many CpGs with β-value differences < 0.2 were difficult to reproduce [28]. Thus, only CpGs The global CpG methylation profile of omental adipose with mean β-value differences ≥ 0.2 were considered as tissue in obese women with systemic insulin resistance significantly different in our study. was downloaded from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database of NCBI, with the accession number of GSE76394 [24]. In 2.3 Network analysis this dataset, there were a total of 79 samples available, including 39 visceral adipose tissue specimens from After obtaining differentially methylated genes in IR obese obese women with systemic insulin resistance (IR group) women, we performed a network analysis to explore and 40 visceral adipose tissue samples from obese women co-regulated genes and reveal the biological functions without systemic insulin resistance (control group). DNA of those proteins. In this study, the protein-protein was assayed using the Illumina Human Methylation 450 interaction (PPI) data were obtained from the Search Tool Bead Chips (Illumina, San Diego, CA, USA). Detailed for the Retrieval of Interacting Genes (STRING, http:// sample characteristics have been described in the string-db.org/) database. Each interaction in STRING is previous study [24]. given a combined-score, reflecting the reliability of the Before analysis of differential methylation sites, interaction [29]. Here only the interactions with combined- quantitative normalization and adjustment of DNA score ≥ 0.4 were selected to construct the PPI sub-network, methylation data were performed using the Bioconductor and the network was visualized by Cytoscape (v3.4.0, Lumi [25] and BMIQ packages [26]. This dataset contained http://www.cytoscape.org/). 485,577 probes (covering 21,231 genes). Since probes overlapping single nucleotide polymorphisms (SNPs) Aberrant methylation in insulin resistant obese women 203 2.4 Functional analysis 21,231 genes). Following methylation data preprocessing, the methylation data for 427,909 autosomal CpG sites Generally, co-regulated genes tend to perform similar in 79 individuals remained for differential methylation biological functions. To analyze the underlying biological analysis. Initial analysis identified 10,874 differentially functions of genes involved in the differential methylation methylated CpGs (covering 5940 genes), including 7402 of CpGs, function analyses were implemented based on hyper-methylated sites and 3472 hypo-methylated CpGs, Gene Ontology (GO)
Recommended publications
  • Early Acute Microvascular Kidney Transplant Rejection in The
    CLINICAL RESEARCH www.jasn.org Early Acute Microvascular Kidney Transplant Rejection in the Absence of Anti-HLA Antibodies Is Associated with Preformed IgG Antibodies against Diverse Glomerular Endothelial Cell Antigens Marianne Delville,1,2,3 Baptiste Lamarthée,4 Sylvain Pagie,5,6 Sarah B. See ,7 Marion Rabant,3,8 Carole Burger,3 Philippe Gatault ,9,10 Magali Giral,11 Olivier Thaunat,12,13,14 Nadia Arzouk,15 Alexandre Hertig,16,17 Marc Hazzan,18,19,20 Marie Matignon,21,22,23 Christophe Mariat,24,25 Sophie Caillard,26,27 Nassim Kamar,28,29 Johnny Sayegh,30,31 Pierre-François Westeel,32 Cyril Garrouste,33 Marc Ladrière,34 Vincent Vuiblet,35 Joseph Rivalan,36 Pierre Merville,37,38,39 Dominique Bertrand,40 Alain Le Moine,41,42 Jean Paul Duong Van Huyen,3,8 Anne Cesbron,43 Nicolas Cagnard,3,44 Olivier Alibeu,3,45 Simon C. Satchell,46 Christophe Legendre,3,4,47 Emmanuel Zorn,7 Jean-Luc Taupin,48,49,50 Béatrice Charreau,5,6 and Dany Anglicheau 3,4,47 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Although anti-HLA antibodies (Abs) cause most antibody-mediated rejections of renal allo- grafts, non-anti–HLA Abs have also been postulated to contribute. A better understanding of such Abs in rejection is needed. Methods We conducted a nationwide study to identify kidney transplant recipients without anti-HLA donor-specific Abs who experienced acute graft dysfunction within 3 months after transplantation and showed evidence of microvascular injury, called acute microvascular rejection (AMVR).
    [Show full text]
  • Perlecan Antagonizes Collagen IV and ADAMTS9/GON-1 in Restricting the Growth of Presynaptic Boutons
    The Journal of Neuroscience, July 30, 2014 • 34(31):10311–10324 • 10311 Development/Plasticity/Repair Perlecan Antagonizes Collagen IV and ADAMTS9/GON-1 in Restricting the Growth of Presynaptic Boutons Jianzhen Qin,1,2 Jingjing Liang,1 and X Mei Ding1 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and 2University of Chinese Academy of Sciences, Beijing 100049, China In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presyn- apticboutons.Withoutthesecomponents,ectopicboutonsprogressivelyinvadeintothenonsynapticregion.Perlecan/UNC-52promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein. Key words: ADAMTS9/GON-1; basement membrane; perlecan/UNC-52; presynaptic boutons; Type IV collagen/EMB-9; Type XVIII collagen/CLE-1 Introduction wider and present in the form of a basal lamina or basement Synapses are specialized intercellular junctions between neu- membrane (BM) (Palay and Chan-Palay, 1976; Burns and Au- rons or between neurons and other excitable cells.
    [Show full text]
  • 3D Distribution of Perlecan Within Intervertebral Disc Chondrons Suggests Novel Regulatory Roles for This Multifunctional Modular Heparan Sulphate Proteoglycan A.J
    EuropeanAJ Hayes etCells al. and Materials Vol. 41 2021 (pages 73-89) DOI: 10.22203/eCM.v041a06 Nuclear and cytoplasmic localisation ISSN of1473-2262 perlecan 3D DISTRIBUTION OF PERLECAN WITHIN INTERVERTEBRAL DISC CHONDRONS SUGGESTS NOVEL REGULATORY ROLES FOR THIS MULTIFUNCTIONAL MODULAR HEPARAN SULPHATE PROTEOGLYCAN A.J. Hayes1 and J. Melrose2,3,4,* 1 Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK 2 Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia 3 Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia 4 Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia Abstract Perlecan is a modular, multifunctional heparan sulphate-proteoglycan (HS-PG) that is present in the pericellular and wider extracellular matrix of connective tissues. In the present study, confocal microscopy was used to study perlecan distribution within intervertebral disc chondrons. Perlecan immunolabel was demonstrated intracellularly and in close association with the cell nucleus within chondrons of both the annulus fibrosus (AF) and nucleus pulposus (NP). This observation is consistent with earlier studies that have localised HS-PGs with nuclear cytoskeletal components. Nuclear HS-PGs have been proposed to transport fibroblast growth factor (FGF)-1, FGF-2 and FGFR-1 into the cell nucleus, influencing cell proliferation and the cell-cycle. Perlecan has well-known interactive properties with FGF family members in the pericellular and extracellular matrix. Perinuclear perlecan may also participate in translocation events with FGFs.
    [Show full text]
  • Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
    Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”.
    [Show full text]
  • Perlecan Domain V Is Neuroprotective and Proangiogenic Following
    Research article Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents Boyeon Lee,1 Douglas Clarke,1 Abraham Al Ahmad,1,2 Michael Kahle,1 Christi Parham,1 Lisa Auckland,1 Courtney Shaw,1 Mehmet Fidanboylu,3 Anthony Wayne Orr,4 Omolara Ogunshola,2 Andrzej Fertala,5 Sarah A. Thomas,3 and Gregory J. Bix1,6 1Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas, USA. 2Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 3King’s College London, Institute of Pharmaceutical Science, London, United Kingdom. 4Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA. 5Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA. 6Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, College Station, Texas, USA. Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated lev- els of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats.
    [Show full text]
  • Basement Membranes* James M
    Basement membranes* James M. Kramer§, Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611 USA Table of Contents 1. Introduction ............................................................................................................................2 2. Collagen type IV .....................................................................................................................4 3. Laminins ................................................................................................................................5 4. Perlecan .................................................................................................................................6 5. Nidogen .................................................................................................................................9 6. Collagen type XVIII ............................................................................................................... 10 7. SPARC/Osteonectin ............................................................................................................... 11 8. Fibulin ................................................................................................................................. 11 9. Hemicentin ........................................................................................................................... 12 10. Integrins ............................................................................................................................
    [Show full text]
  • Cytokines, Matrix Metalloproteases, Angiogenic and Growth Factors in Tears of Normal Subjects and Vernal Keratoconjunctivitis Patients
    Allergy 2009 DOI: 10.1111/j.1398-9995.2008.01858.x Ó 2009 The Authors Journal compilation Ó 2009 Blackwell Munksgaard DOI: 10.1111/j.1398-9995.2008.01858.x Original article Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients Background: To detect the presence of multiple mediators and growth factors in A. Leonardi1, S. Sathe2, tears of vernal keratoconjunctivitis (VKC) patients with active disease using M. Bortolotti1, A. Beaton2, R. Sack2 stationary phase antibody arrays. 1Department of Neuroscience, Ophthalmology Unit, Methods: Tears were collected from 12 normal subjects (CT) and 24 active VKC University of Padua, Padua, Italy; 2SUNY College of patients. Tears were centrifuged and successively probed using three microwell Optometry, New York, NY, USA plate arrays specific for: (i) cytokines: interleukin (IL)-2, IL-4, IL-5, IL-8, IL-10, IL-12, IL-13, interferon-c and tumour necrosis factor-a; (ii) growth factors: basic fibroblast growth factor (bFGF), platelet-derived growth factor, thrombo- poietin, angiopoietin-2, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), keratocyte growth factor, tissue inhibitor of metallopro- tease (TIMP)-1 and heparin-binding epithelial growth factor (HB-EGF) and (iii) matrix metalloprotease (MMP)-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1 and TIMP-2. Results: Interleukin-8 signals were detected in all CT and highly detected in all VKC samples. The Th2-type cytokines, IL-4, IL-5 and IL-10 were detected only in tears of VKC patients. Signals for bFGF, HB-EGF, VEGF and HGF were Key words: cytokines; matrix metalloprotease; detected in 41–87% of VKC samples and in few CT samples.
    [Show full text]
  • Perlecan Maintains Microvessel Integrity in Vivo and Modulates Their Formation in Vitro
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura Perlecan Maintains Microvessel Integrity In Vivo and Modulates Their Formation In Vitro Erika Gustafsson1, Maylin Almonte-Becerril2,3, Wilhelm Bloch4, Mercedes Costell2* 1 Department of Experimental Pathology, Lund University, Lund, Sweden, 2 Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain, 3 Departamento de Infecto´mica y Patoge´nesis Molecular, Centro de Investigacio´n y de Estudios Avanzados del Instituto Polite´cnico Nacional, Me´xico Distrito Federal, Me´xico, 4 Department of Molecular and Cellular Sport Medicine, Cologne, Germany Abstract Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation.
    [Show full text]
  • Functional Role of the Overexpression of the Myelin and Lymphocyte
    Functional role of the overexpression of the myelin and lymphocyte protein MAL in Schwann cells Inauguraldissertation Zur Erlangung der Würde eines Doktors der Philosophie Vorgelegt der Philosophisch‐Naturwissenschaftlichen Fakultät der Universität Basel von Daniela Schmid aus Ramsen (SH) Basel, 2013 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von: Prof. M.A. Rüegg (Fakultätsverantwortlicher) Prof. N. Schaeren-Wiemers (Dissertationsleiterin) Prof. J. Kapfhammer (Korreferent) Basel, den 18. Juni 2013 Prof. J. Schibler (Dekan) To Michael 1. Acknowledgments 1. ACKNOWLEDGMENTS ................................................................................................................................ 6 2. ABBREVIATIONS ......................................................................................................................................... 7 3. SUMMARY ............................................................................................................................................... 10 4. INTRODUCTION ........................................................................................................................................ 11 4.1. THE NERVOUS SYSTEM AND MYELIN SHEATH COMPOSITION ..................................................................................... 11 4.2. SCHWANN CELL ORIGIN AND LINEAGE ................................................................................................................. 12 4.3. THE FUNCTIONAL ROLE OF THE BASAL LAMINA .....................................................................................................
    [Show full text]
  • (Perlecan) As a Therapeutic Target in Triple Negative Breast Cancer
    www.nature.com/scientificreports OPEN Discovery of HSPG2 (Perlecan) as a Therapeutic Target in Triple Negative Breast Cancer Received: 16 May 2019 Stephen Kalscheuer1, Vidhi Khanna1, Hyunjoon Kim1,6, Sihan Li2, Deepali Sachdev3,4, Accepted: 15 August 2019 Arthur DeCarlo5, Da Yang 2 & Jayanth Panyam 1,4 Published: xx xx xxxx In recent years, there have been signifcant advances in the treatment of breast cancer resulting in remarkably high survival rates. However, treatment options for metastatic triple negative breast cancer (TNBC) are quite limited due to a lack of identifable, unique markers. Using a phage display-based whole cell biopanning procedure, we developed two human antibodies that bind to tumor cells with a metastatic TNBC phenotype. Our studies further identifed domain 1 of HSPG2 (perlecan) protein as the cognate cell surface antigen bound by the antibody. Immunohistochemistry studies utilizing patient tissue samples revealed signifcant cell surface expression of HSPG2 in both primary tumors and metastatic lesions. Further, higher HSPG2 expression correlated with poor survival in TNBC. The afnity-matured antibody inhibited the growth of triple negative MDA-MB-231 tumors to a greater extent in nude mice than in NSG mice, pointing to the potential role of natural killer cell-mediated antibody-dependent cell cytotoxicity. This mechanism of action was confrmed through in vitro assays using mouse splenocytes and human peripheral blood mononuclear cells (PBMCs). These results suggest that HSPG2 is a promising target in metastatic TNBC and HSPG2-targeted antibodies could represent a potentially novel class of targeted therapeutics for TNBC. Triple negative breast cancer (TNBC) constitutes 10–15% of all breast cancers1.
    [Show full text]
  • Optical Microscopy and the Extracellular Matrix Structure: a Review
    cells Review Optical Microscopy and the Extracellular Matrix Structure: A Review Joshua J. A. Poole and Leila B. Mostaço-Guidolin * Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; [email protected] * Correspondence: [email protected] Abstract: Biological tissues are not uniquely composed of cells. A substantial part of their vol- ume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third har- monic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission deple- Citation: Poole, J.J.A.; tion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization Mostaço-Guidolin, L.B. Optical microscopy (PALM/fPALM), as well as their main advantages, limitations.
    [Show full text]
  • Fibroblast Growth Factor Binding Protein 1 (FGFBP1)
    PhD degree in Molecular Medicine (curriculum in Molecular Oncology) European School of Molecular Medicine (SEMM), University of Milan and University of Naples “Federico II” Settore disciplinare: Med/04 Fibroblast growth factor binding protein 1 (FGFBP1) contributes in the establishment and maintenance of the Blood Brain Barrier Azzurra Cottarelli IFOM, Milan Matricola n.R09406 Supervisor: Prof.ssa Elisabetta Dejana IFOM, Milan Cosupervisor: Dr.ssa Maria Grazia Lampugnani IFOM, Milan Anno accademico 2013-2014 "Two roads diverged in a wood, and I— I took the one less traveled by, And that has made all the difference." (Robert Frost - The road not taken) 3 TABLE OF CONTENTS LIST OF ABBREVIATIONS ............................................................................................................ 9 FIGURE INDEX .............................................................................................................................. 13 ABSTRACT ..................................................................................................................................... 17 1. INTRODUCTION ...................................................................................................................... 19 1.1 The Blood Brain Barrier (BBB) ............................................................................................... 19 1.1.1 Endothelial junctions .................................................................................................... 21 1.1.2 Molecular transport .....................................................................................................
    [Show full text]