Optical Microscopy and the Extracellular Matrix Structure: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Acute Microvascular Kidney Transplant Rejection in The
CLINICAL RESEARCH www.jasn.org Early Acute Microvascular Kidney Transplant Rejection in the Absence of Anti-HLA Antibodies Is Associated with Preformed IgG Antibodies against Diverse Glomerular Endothelial Cell Antigens Marianne Delville,1,2,3 Baptiste Lamarthée,4 Sylvain Pagie,5,6 Sarah B. See ,7 Marion Rabant,3,8 Carole Burger,3 Philippe Gatault ,9,10 Magali Giral,11 Olivier Thaunat,12,13,14 Nadia Arzouk,15 Alexandre Hertig,16,17 Marc Hazzan,18,19,20 Marie Matignon,21,22,23 Christophe Mariat,24,25 Sophie Caillard,26,27 Nassim Kamar,28,29 Johnny Sayegh,30,31 Pierre-François Westeel,32 Cyril Garrouste,33 Marc Ladrière,34 Vincent Vuiblet,35 Joseph Rivalan,36 Pierre Merville,37,38,39 Dominique Bertrand,40 Alain Le Moine,41,42 Jean Paul Duong Van Huyen,3,8 Anne Cesbron,43 Nicolas Cagnard,3,44 Olivier Alibeu,3,45 Simon C. Satchell,46 Christophe Legendre,3,4,47 Emmanuel Zorn,7 Jean-Luc Taupin,48,49,50 Béatrice Charreau,5,6 and Dany Anglicheau 3,4,47 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Although anti-HLA antibodies (Abs) cause most antibody-mediated rejections of renal allo- grafts, non-anti–HLA Abs have also been postulated to contribute. A better understanding of such Abs in rejection is needed. Methods We conducted a nationwide study to identify kidney transplant recipients without anti-HLA donor-specific Abs who experienced acute graft dysfunction within 3 months after transplantation and showed evidence of microvascular injury, called acute microvascular rejection (AMVR). -
Perlecan Antagonizes Collagen IV and ADAMTS9/GON-1 in Restricting the Growth of Presynaptic Boutons
The Journal of Neuroscience, July 30, 2014 • 34(31):10311–10324 • 10311 Development/Plasticity/Repair Perlecan Antagonizes Collagen IV and ADAMTS9/GON-1 in Restricting the Growth of Presynaptic Boutons Jianzhen Qin,1,2 Jingjing Liang,1 and X Mei Ding1 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and 2University of Chinese Academy of Sciences, Beijing 100049, China In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presyn- apticboutons.Withoutthesecomponents,ectopicboutonsprogressivelyinvadeintothenonsynapticregion.Perlecan/UNC-52promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein. Key words: ADAMTS9/GON-1; basement membrane; perlecan/UNC-52; presynaptic boutons; Type IV collagen/EMB-9; Type XVIII collagen/CLE-1 Introduction wider and present in the form of a basal lamina or basement Synapses are specialized intercellular junctions between neu- membrane (BM) (Palay and Chan-Palay, 1976; Burns and Au- rons or between neurons and other excitable cells. -
3D Distribution of Perlecan Within Intervertebral Disc Chondrons Suggests Novel Regulatory Roles for This Multifunctional Modular Heparan Sulphate Proteoglycan A.J
EuropeanAJ Hayes etCells al. and Materials Vol. 41 2021 (pages 73-89) DOI: 10.22203/eCM.v041a06 Nuclear and cytoplasmic localisation ISSN of1473-2262 perlecan 3D DISTRIBUTION OF PERLECAN WITHIN INTERVERTEBRAL DISC CHONDRONS SUGGESTS NOVEL REGULATORY ROLES FOR THIS MULTIFUNCTIONAL MODULAR HEPARAN SULPHATE PROTEOGLYCAN A.J. Hayes1 and J. Melrose2,3,4,* 1 Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK 2 Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia 3 Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia 4 Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia Abstract Perlecan is a modular, multifunctional heparan sulphate-proteoglycan (HS-PG) that is present in the pericellular and wider extracellular matrix of connective tissues. In the present study, confocal microscopy was used to study perlecan distribution within intervertebral disc chondrons. Perlecan immunolabel was demonstrated intracellularly and in close association with the cell nucleus within chondrons of both the annulus fibrosus (AF) and nucleus pulposus (NP). This observation is consistent with earlier studies that have localised HS-PGs with nuclear cytoskeletal components. Nuclear HS-PGs have been proposed to transport fibroblast growth factor (FGF)-1, FGF-2 and FGFR-1 into the cell nucleus, influencing cell proliferation and the cell-cycle. Perlecan has well-known interactive properties with FGF family members in the pericellular and extracellular matrix. Perinuclear perlecan may also participate in translocation events with FGFs. -
STED Fluorescence Microscopy: a Method of Resolution Enhancement Submitted by David Biss and Jason Neiser
STED Fluorescence Microscopy: A method of resolution enhancement Submitted by David Biss and Jason Neiser Introduction relaxed vibrational level of the ground electronic state. The microscope excitation light generates If geometrical aberrations are minimized in an a transition in the fluorophore from level L0 to optical system, the smallest spot size attainable is L1, a high vibrational level of the first excited the diffraction limited spot size. Confocal state. From here, the molecule undergoes a fast microscopy was the first method to extend vibrational decay from L1 to L2, and eventually resolution beyond the Abbe resolution limit and fluoresces to L3 by spontaneous emission. it added axial resolution to the system. This form of microscopy images a portion of the sample being investigated onto a confocal pinhole at the detection plane of the system. Since the invention of confocal microscopy other methods have been devised to reach beyond the standard diffraction limit. Some of these methods are 4π microscopy, two photon microscopy, near-field microscopy, and more recently, STimulated Emission Depletion (STED) fluorescence microscopy. [1, 2, 3] STED fluorescence microscopy takes standard fluorescence microscopy and introduces a technique to reduce the emitted spot size. STED microscopy uses stimulated emission to deplete fluorophores before they fluoresce. If this depletion occurs at the edges of the excited sample area the spot size (and volume) of the fluorescence can be reduced beyond the Fig. 1 Energy level diagram of a dye molecule. A short diffraction limit. wavelength pulse excites the molecule and it may be relaxed by either fluorescing or by stimulated emission via the STED Theory pulse. -
Super-Resolution STED Microscopy and Its Application in Neuroscience
Super-resolution STED microscopy and its application in neuroscience Katrin Willig 18th German-American Frontiers of Engineering Symposium Hamburg 20-23 March 2019 Nanoscale Microscopy and Molecular Physiology of the Brain MPI of Cluster of Excellence 171, Experimental DFG Research Center 103 Medicine 1 Resolution in far-field light microscopy diffraction limit: minimum resolvable distance l l a dmin d 2 nsina numerical aperture (NA) n: refractive index structure image “similar objects closer than about half the wavelength should not be distinguishable in a light microscope” Ernst Abbe 1873 2 Standard (confocal) vs. Superresolution (STED) 3 Confocal (fluorescence) microscopy x 200 nm Abbe‘s equation y λ d 2n sin a Excitation d Fluorescence Detection Dichroic Scanning Mirror 1 Device S1 Excitation Fluorescence S0 4 STED (STimulated Emission Depletion) microscopy x 200 nm Phase Plate y 0 2p STED Excitation d Fluorescence Detection Dichroic Dichroic Scanning Mirror 1 Mirror 2 Device Nobel Prize in Chemistry 2014 to Betzig, Hell & Moerner S1 "for the development of super-resolved fluorescence microscopy." . Excitation Stimul Emission STED beam: keeps molecules non-fluorescent Fluorescence S0 5 Diffraction limited resolution PSF 1 220 nm 0 -200 0 200 1.0 0.5 y 500 nm x Fluorescence 0.0 min max 0.0 0.5 1.0 1.5 I [GW/cm²] STED 6 Subdiffraction resolution Depletion distribution 1 132 nm 0 -200 0 200 1.0 0.5 y 500 nm Fluorescence x 0.0 min max 0.0 0.5 1.0 1.5 I [GW/cm²] STED 7 Subdiffraction resolution Depletion distribution 1 84 nm 0 -200 0 -
Super-Resolution STED Microscopy and Its Application in Neuroscience
Super-resolution STED microscopy and its application in neuroscience Katrin Willig Fluorescence microscopy is a widely used technique, especially in biology. It combines staining specificity with relatively simple imaging capabilities. Especially if applied in the far-field it is almost non-invasive and therefore ideal to study protein assemblies or dynamics in living cells, tissues or animals. Until recently it was widely accepted that far-field optical microscopes cannot visualize details closer than about half the wavelength of light. Therefore, electron microscopy is needed to reveal structural details at exceptionally high resolution, down to the molecular level. EM, though, lacks the ability to image dynamic changes of the same morphological structures; temporal information is only gathered via comparative studies prepared at different time-points. However, to understand how and why the sub-structure of cells changes, and what functional consequence this change induces, we need to visualize cells or even whole, intact living organism over extended periods of time, i.e. in longitudinal studies. However, given the poor optical resolution small sub- cellular structures have still not been accurately assessed by standard light microscopy techniques available due to the diffraction limited resolution of far-field light microscopy being ~200-300 nm. With the 2014 Nobel Prize in Chemistry ‘for the development of superresolved fluorescence microscopy’ for Betzig, Hell and Moerner, a novel family of light microscopy techniques became widely recognized, which surpass the limited resolution of light microscopy: The general terms ‘superresolution’ microscopy or ‘nanoscopy’ encompass several techniques, which can be divided in coordinate-targeted approaches (e.g. stimulated emission depletion microscopy (STED), reversible saturable optical fluorescent transition microscopy (RESOLFT)), and coordinate-stochastic approaches (e.g. -
Correlating STED and Synchrotron XRF Nano-Imaging Unveils
TOOLS AND RESOURCES Correlating STED and synchrotron XRF nano-imaging unveils cosegregation of metals and cytoskeleton proteins in dendrites Florelle Domart1,2,3, Peter Cloetens4, Ste´ phane Roudeau1,2, Asuncion Carmona1,2, Emeline Verdier3, Daniel Choquet3,5†, Richard Ortega1,2†* 1Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France; 2CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France; 3Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France; 4ESRF, the European Synchrotron, Grenoble, France; 5Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS, Bordeaux, France Abstract Zinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated- emission-depletion microscopy of proteins and synchrotron X-ray fluorescence imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-ab dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate *For correspondence: new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a [email protected] mechanism associated to neuronal plasticity and memory formation. †These authors contributed equally to this work Competing interests: The Introduction authors declare that no The neurobiology of copper and zinc is a matter of intense investigation since they have been competing interests exist. -
Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”. -
Perlecan Domain V Is Neuroprotective and Proangiogenic Following
Research article Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents Boyeon Lee,1 Douglas Clarke,1 Abraham Al Ahmad,1,2 Michael Kahle,1 Christi Parham,1 Lisa Auckland,1 Courtney Shaw,1 Mehmet Fidanboylu,3 Anthony Wayne Orr,4 Omolara Ogunshola,2 Andrzej Fertala,5 Sarah A. Thomas,3 and Gregory J. Bix1,6 1Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas, USA. 2Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 3King’s College London, Institute of Pharmaceutical Science, London, United Kingdom. 4Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA. 5Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA. 6Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, College Station, Texas, USA. Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated lev- els of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. -
Super-Resolution Deep Imaging with Hollow Bessel Beam STED Microscopy
Laser & Photonics Review DOI: 10.1002/lpor.201500151 Super-resolution deep imaging with hollow Bessel beam STED microscopy Wentao Yu1, Ziheng Ji1, Dashan Dong1, Xusan Yang2, Yunfeng Xiao1, 3, Qihuang Gong1, 3, Peng Xi2*, and Kebin Shi1, 3* 1State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China 2Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China *E-mail: [email protected] [email protected] The achievable resolution in STED systems explicitly relies Abstract—Stimulated emission depletion (STED) microscopy on the fluorophore depletion efficiency, i.e. the efficient use of has become a powerful imaging and localized excitation method photons delivered by the designated depletion beam. As a result, breaking the diffraction barrier for improved lateral spatial it is challenging to maintain consistent resolution as the foci resolution in cellular imaging, lithography, etc. Due to specimen- moves from the surface to deep inside of the specimens due to induced aberrations and scattering distortion, it is a great challenge for STED to maintain consistent lateral resolution the spherical aberration, scattering distortion and loss.[12, 15, deeply inside the specimens. Here we report on a deep imaging 20] Experimental and theoretical efforts have been reported to STED microscopy by using Gaussian -
STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices
Biophysical Journal Volume 101 September 2011 1277–1284 1277 STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices Nicolai T. Urban,† Katrin I. Willig,† Stefan W. Hell,†* and U. Valentin Na¨gerl‡§* †Max Planck Institute for Biophysical Chemistry, Go¨ttingen, Germany; ‡Interdisciplinary Institute for Neuroscience, Universite´ de Bordeaux, Bordeaux, France; and §Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS), UMR 5297, Bordeaux, France ABSTRACT It is difficult to investigate the mechanisms that mediate long-term changes in synapse function because synapses are small and deeply embedded inside brain tissue. Although recent fluorescence nanoscopy techniques afford improved resolution, they have so far been restricted to dissociated cells or tissue surfaces. However, to study synapses under realistic conditions, one must image several cell layers deep inside more-intact, three-dimensional preparations that exhibit strong light scattering, such as brain slices or brains in vivo. Using aberration-reducing optics, we demonstrate that it is possible to achieve stimulated emission depletion superresolution imaging deep inside scattering biological tissue. To illustrate the power of this novel (to our knowledge) approach, we resolved distinct distributions of actin inside dendrites and spines with a resolution of 60–80 nm in living organotypic brain slices at depths up to 120 mm. In addition, time-lapse stimulated emission depletion imaging revealed changes in actin-based structures inside spines and spine necks, and showed that these dynamics can be modulated by neuronal activity. Our approach greatly facilitates investigations of actin dynamics at the nanoscale within func- tionally intact brain tissue. INTRODUCTION Understanding the structural and molecular mechanisms resolution usually deteriorates quickly with imaging depth that mediate synaptic plasticity is one of the central chal- because of scattering, absorption, and aberrations induced lenges for neurobiological research. -
Lasers for Microscopy: Major Trends Marco Arrigoni, Nigel Gallaher, Darryl Mccoy, Volker Pfeufer and Matthias Schulze, Coherent Inc
Lasers for Microscopy: Major Trends Marco Arrigoni, Nigel Gallaher, Darryl McCoy, Volker Pfeufer and Matthias Schulze, Coherent Inc. Laser development for the microscopy market continues to be driven by key trends in applications, which currently include superresolution techniques, multiphoton applications in optogenetics and other areas of neuroscience, and even a shift in multiphoton imaging toward preclinical and clinical usage. In spite of its long history, optical microscopy – particularly laser-based microscopy – is a very dynamic field. New techniques continue to be developed, while existing techniques are being applied to new applications. For biologists, drug developers, clinical lab professionals and other scientists to fully exploit these new techniques and applications, parallel developments in laser technology are often required. This article will take a broad overview of three important trends in laser-based microscopy and examine how laser manufacturers are responding with products optimized to match the needs of these applications. Superresolution microscopy – optical switching of fluorescent labels To better understand the details of processes such as signaling and the control of gene expression, biologists need to correlate molecular-level events with macroscopic structures and dynamics. This has fueled rapid growth in superresolution microscopy techniques, often referred to as nanoscopy, that go beyond the classical spatial resolution limit set by diffraction. This limit is about half the wavelength of light (i.e., for visible light, approximately 200-250 nm) in the X-Y plane and, in the case of confocal microscopy, about 500 nm in the Z direction. Most superresolution techniques use CW lasers, often with fast internal or external (on/off) modulation.