Early Acute Microvascular Kidney Transplant Rejection in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Incidental Finding of Raised CA125
Case Report iMedPub Journals Critical Care Obstetrics and Gynecology 2019 http://www.imedpub.com/ Vol.5 No.1:3 ISSN 2471-9803 DOI: 10.21767/2471-9803.1000170 Incidental Finding of Raised CA125: a Cause for Concern? Farshad Tahmasebi1*, Rahul Nath1, Nava Sokolovsky1, Johannah Scaffidi1, Jane Boley1, Gautam Mehra1 and Ahmad Sayanseh1,2 1Department of Gynaecological Oncology, St Thomas’ Hospital, London, UK 2School of Life Course Sciences, King’s College London, Guy’s, Kings College and St. Thomas’ Hospital, London, UK, School of Medical Education, King’s College, London, UK *Corresponding author: Farshad Tahmasebi, Department of Gynaecological Oncology, St Thomas’ Hospital, London, UK, E-mail: [email protected] Received date: October 30, 2018; Accepted date: November 15, 2018; Published date: November 21, 2018 Copyright: © 2018 Tahmasebi F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Tahmasebi F, Nath R, Sokolovsky N, Scaffidi J, Boley J, et al. (2018) Incidental Finding of Raised CA125: a Cause for Concern? Crit Care Obst Gyne Vol.5 No.1:3. Although much research has been done to understand the molecular structure of CA 125, its functions remain a source of Abstract much speculation. It is expressed in tissues derived from embryonic coelomic epithelium such as endometrium, Mullerian Cancer antigen 125 (also known as carbohydrate antigen epithelium, peritoneum, pleura and pericardium [4]. Within 125 or CA 125) is an antigen first identified by Bast et al. -
Perlecan Antagonizes Collagen IV and ADAMTS9/GON-1 in Restricting the Growth of Presynaptic Boutons
The Journal of Neuroscience, July 30, 2014 • 34(31):10311–10324 • 10311 Development/Plasticity/Repair Perlecan Antagonizes Collagen IV and ADAMTS9/GON-1 in Restricting the Growth of Presynaptic Boutons Jianzhen Qin,1,2 Jingjing Liang,1 and X Mei Ding1 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and 2University of Chinese Academy of Sciences, Beijing 100049, China In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presyn- apticboutons.Withoutthesecomponents,ectopicboutonsprogressivelyinvadeintothenonsynapticregion.Perlecan/UNC-52promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein. Key words: ADAMTS9/GON-1; basement membrane; perlecan/UNC-52; presynaptic boutons; Type IV collagen/EMB-9; Type XVIII collagen/CLE-1 Introduction wider and present in the form of a basal lamina or basement Synapses are specialized intercellular junctions between neu- membrane (BM) (Palay and Chan-Palay, 1976; Burns and Au- rons or between neurons and other excitable cells. -
TACI:Fc Scavenging B Cell Activating Factor (BAFF) Alleviates Ovalbumin-Induced Bronchial Asthma in Mice
EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 3, 343-352, June 2007 TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice 1,2,3 2 Eun-Yi Moon and Sook-Kyung Ryu the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. 1 Department of Bioscience and Biotechnology Hypodiploid cell formation in BALF was decreased Sejong University by OVA-challenge but it was recovered by TACI:Fc Seoul 143-747, Korea treatment. Collectively, data suggest that asthmatic 2 Laboratory of Human Genomics symptom could be alleviated by scavenging BAFF Korea Research Institute of Bioscience and Biotechnology (KRIBB) and then BAFF could be a novel target for the Daejeon 305-806, Korea develpoment of anti-asthmatic agents. 3 Corresponding author: Tel, 82-2-3408-3768; Fax, 82-2-466-8768; E-mail, [email protected] Keywords: asthma; B-cell activating factor; ovalbu- and [email protected] min; transmembrane activator and CAML interactor protein Accepted 28 March 2007 Introduction Abbreviations: BAFF, B cell activating factor belonging to TNF- family; BALF, bronchoalveolar lavage fluid; OVA, ovalbumin; PAS, Mature B cell generation and maintenance are regu- periodic acid-Schiff; Prx, peroxiredoxin; TACI, transmembrane lated by B-cell activating factor (BAFF). BAFF is pro- activator and calcium modulator and cyclophilin ligand interactor duced by macrophages or dendritic cells upon stim- ulation with LPS or IFN- . BAFF belongs to the TNF family. Its biological role is mediated by the specific Abstract receptors, B-cell maturation antigen (BCMA), trans- membrane activator and calcium modulator and cy- Asthma was induced by the sensitization and chal- clophilin ligand interactor (TACI) and BAFF receptor, lenge with ovalbumin (OVA) in mice. -
3D Distribution of Perlecan Within Intervertebral Disc Chondrons Suggests Novel Regulatory Roles for This Multifunctional Modular Heparan Sulphate Proteoglycan A.J
EuropeanAJ Hayes etCells al. and Materials Vol. 41 2021 (pages 73-89) DOI: 10.22203/eCM.v041a06 Nuclear and cytoplasmic localisation ISSN of1473-2262 perlecan 3D DISTRIBUTION OF PERLECAN WITHIN INTERVERTEBRAL DISC CHONDRONS SUGGESTS NOVEL REGULATORY ROLES FOR THIS MULTIFUNCTIONAL MODULAR HEPARAN SULPHATE PROTEOGLYCAN A.J. Hayes1 and J. Melrose2,3,4,* 1 Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK 2 Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia 3 Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia 4 Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia Abstract Perlecan is a modular, multifunctional heparan sulphate-proteoglycan (HS-PG) that is present in the pericellular and wider extracellular matrix of connective tissues. In the present study, confocal microscopy was used to study perlecan distribution within intervertebral disc chondrons. Perlecan immunolabel was demonstrated intracellularly and in close association with the cell nucleus within chondrons of both the annulus fibrosus (AF) and nucleus pulposus (NP). This observation is consistent with earlier studies that have localised HS-PGs with nuclear cytoskeletal components. Nuclear HS-PGs have been proposed to transport fibroblast growth factor (FGF)-1, FGF-2 and FGFR-1 into the cell nucleus, influencing cell proliferation and the cell-cycle. Perlecan has well-known interactive properties with FGF family members in the pericellular and extracellular matrix. Perinuclear perlecan may also participate in translocation events with FGFs. -
Mucins: the Old, the New and the Promising Factors in Hepatobiliary Carcinogenesis
International Journal of Molecular Sciences Review Mucins: the Old, the New and the Promising Factors in Hepatobiliary Carcinogenesis Aldona Kasprzak 1,* and Agnieszka Adamek 2 1 Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Pozna´n,Poland 2 Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Pozna´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-61-8546441; Fax: +48-61-8546440 Received: 25 February 2019; Accepted: 10 March 2019; Published: 14 March 2019 Abstract: Mucins are large O-glycoproteins with high carbohydrate content and marked diversity in both the apoprotein and the oligosaccharide moieties. All three mucin types, trans-membrane (e.g., MUC1, MUC4, MUC16), secreted (gel-forming) (e.g., MUC2, MUC5AC, MUC6) and soluble (non-gel-forming) (e.g., MUC7, MUC8, MUC9, MUC20), are critical in maintaining cellular functions, particularly those of epithelial surfaces. Their aberrant expression and/or altered subcellular localization is a factor of tumour growth and apoptosis induced by oxidative stress and several anti-cancer agents. Abnormal expression of mucins was observed in human carcinomas that arise in various gastrointestinal organs. It was widely believed that hepatocellular carcinoma (HCC) does not produce mucins, whereas cholangiocarcinoma (CC) or combined HCC-CC may produce these glycoproteins. However, a growing number of reports shows that mucins can be produced by HCC cells that do not exhibit or are yet to undergo, morphological differentiation to biliary phenotypes. Evaluation of mucin expression levels in precursors and early lesions of CC, as well as other types of primary liver cancer (PLC), conducted in in vitro and in vivo models, allowed to discover the mechanisms of their action, as well as their participation in the most important signalling pathways of liver cystogenesis and carcinogenesis. -
MUC16 (CA125): Tumor Biomarker to Cancer Therapy, a Work in Progress
Felder et al. Molecular Cancer 2014, 13:129 http://www.molecular-cancer.com/content/13/1/129 REVIEW Open Access MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress Mildred Felder1†, Arvinder Kapur1†, Jesus Gonzalez-Bosquet2, Sachi Horibata1, Joseph Heintz3, Ralph Albrecht3, Lucas Fass1, Justanjyot Kaur1, Kevin Hu4, Hadi Shojaei1, Rebecca J Whelan4* and Manish S Patankar1* Abstract Over three decades have passed since the first report on the expression of CA125 by ovarian tumors. Since that time our understanding of ovarian cancer biology has changed significantly to the point that these tumors are now classified based on molecular phenotype and not purely on histological attributes. However, CA125 continues to be, with the recent exception of HE4, the only clinically reliable diagnostic marker for ovarian cancer. Many large-scale clinical trials have been conducted or are underway to determine potential use of serum CA125 levels as a screening modality or to distinguish between benign and malignant pelvic masses. CA125 is a peptide epitope of a3–5 million Da mucin, MUC16. Here we provide an in-depth review of the literature to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer. We focus on the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors. Finally, we consider previous and on-going efforts to develop therapeutic approaches to eradicate ovarian tumors by targeting MUC16. Even though CA125 is a crucial marker for ovarian cancer, the exact structural definition of this antigen continues to be elusive. The importance of MUC16/CA125 in the diagnosis, progression and therapy of ovarian cancer warrants the need for in-depth research on the biochemistry and biology of this mucin. -
Inhibitory Effects of Activin on the Growth and Morphogenesis of Primary and Transformed Mammary Epithelial Cells'
ICANCERRESEARCH56. I 155-I 163. March I. 19961 Inhibitory Effects of Activin on the Growth and Morphogenesis of Primary and Transformed Mammary Epithelial Cells' Qiu Yan Liu, Birunthi Niranjan, Peter Gomes, Jennifer J. Gomm, Derek Davies, R. Charles Coombes, and Lakjaya Buluwela2 Departments of Medical Oncology (Q. Y. L, P. G.. J. J. G., R. C. C., L B.J and Biochemistry (Q. Y. L. L B.J. Charing Cross and Westminster Medical School, Fuiham Palace Road. London W6 8RF; Division of Cell Biology and Experimental Pathology. Institute of Cancer Research, 15 Cotswald Rood, Sutton. Surrey SM2 SNG (B. NJ; and FACS Analysis Laboratory. imperial Cancer Research Fund, Lincoln ‘sInnFields. London WC2A 3PX (D. DI, United Kingdom ABSTRACT logical activities of activin. Indeed, two types of activin receptors have aLready been identified in the mouse (28) and several forms in Activin Is a member of the transforming growth factor fi superfamily, Xenopus (29, 30). The sequences of the Act-RI! (3 1), the TGF-@ type which is known to have activities Involved In regulating differentiation II receptor (32), the TGF-f3 type I receptor (33), and various activin and development. By using reverse transcrlption.PCR analysis on immu noafflnity.purlfied human breast cells, we have found that activin IJa and receptor-like genes (34) have been described. The comparison of these activin type II receptor are expressed by myoepithelial cells, whereas no sequences shows that they belong to a newly defined family of expression was detected In other breast cell types. In examining 15 breast membrane-bound, ligand-activated serine-threonine kinases (35). -
Proteins That Interact with the Mucin-Type Glycoprotein Msb2p
bioRxiv preprint doi: https://doi.org/10.1101/786475; this version posted September 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Msb2p Interacting Proteins Prabhakar et al. Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include Regulators of the Actin Cytoskeleton by Aditi Prabhakar, Nadia Vadaie, Thomas Krzystek, and Paul J. Cullen† Department of Biological Sciences at SUNY-Buffalo, 14260-1300 Running title: Msb2p interacting proteins Key Words: protein microarray, mucin, MAP kinase, actin cytoskeleton, Msb2p, actin capping, secretion, glutamine synthetase. † Corresponding author: Paul J. Cullen Address: Department of Biological Sciences 532 Cooke Hall State University of New York at Buffalo Buffalo, NY 14260-1300 Phone: (716)-645-4923 FAX: (716)-645-2975 e-mail: [email protected] 36 pages, 8 Figures, 3 Tables, , 1 Supplemental Table; 50,465 characters 1 bioRxiv preprint doi: https://doi.org/10.1101/786475; this version posted September 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Msb2p Interacting Proteins Prabhakar et al. ABSTRACT Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein, Msb2p. -
Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use
Molecules 2015, 20, 6342-6388; doi:10.3390/molecules20046342 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Heparin/Heparan Sulfate Proteoglycans Glycomic Interactome in Angiogenesis: Biological Implications and Therapeutical Use Paola Chiodelli, Antonella Bugatti, Chiara Urbinati and Marco Rusnati * Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy; E-Mails: [email protected] (P.C.); [email protected] (A.B.); [email protected] (C.U.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-030-371-7315; Fax: +39-030-371-7747. Academic Editor: Els Van Damme Received: 26 February 2015 / Accepted: 1 April 2015 / Published: 10 April 2015 Abstract: Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called “angiogenesis glycomic interactome”. -
Perlecan Domain V Is Neuroprotective and Proangiogenic Following
Research article Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents Boyeon Lee,1 Douglas Clarke,1 Abraham Al Ahmad,1,2 Michael Kahle,1 Christi Parham,1 Lisa Auckland,1 Courtney Shaw,1 Mehmet Fidanboylu,3 Anthony Wayne Orr,4 Omolara Ogunshola,2 Andrzej Fertala,5 Sarah A. Thomas,3 and Gregory J. Bix1,6 1Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas, USA. 2Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 3King’s College London, Institute of Pharmaceutical Science, London, United Kingdom. 4Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA. 5Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA. 6Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, College Station, Texas, USA. Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated lev- els of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. -
Inhibin A, B and Pro-Ac in Serum and Peritoneal Fluid in Postmenopausal Patients with Ovarian Tumors
European Journal of Endocrinology (2000) 142 334–339 ISSN 0804-4643 CLINICAL STUDY Inhibin A, B and pro-aC in serum and peritoneal fluid in postmenopausal patients with ovarian tumors Sirkka-Liisa Ala-Fossi1, Juhani Ma¨enpa¨a¨1, Merja Bla¨uer2, Pentti Tuohimaa2 and Reijo Punnonen1,3 1Department of Obstetrics and Gynecology, Tampere University Hospital, 2Department of Anatomy and 3 Medical School, University of Tampere, Tampere, Finland (Correspondence should be addressed to S-L Ala-Fossi, Department of Obstetrics and Gynecology, Tampere University Hospital, PO Box 2000, FIN- 33521 Tampere, Finland; Email: sirkka-liisa.ala-fossi@uta.fi) Abstract Objective: To compare serum and peritoneal fluid concentrations of inhibin A, B, and pro-aC in women with ovarian tumors. Methods: Serum and peritoneal fluid samples were taken from 41 postmenopausal women operated on for an ovarian tumor. Twenty-one patients with endometrial cancer formed a control group. Serum and peritoneal fluid inhibin A, B, and pro-aC concentrations, and serum FSH and tumor marker CA 125 (study group only) concentrations were analyzed. Results: Inhibin A was found in low concentrations (median 4.1 pg/ml, range < 2–29 pg/ml) in serum in most postmenopausal patients with epithelial ovarian carcinoma, whereas inhibin B was not measurable. Inhibin pro-aC circulated in high concentrations (median 125 pg/ml, range 37- >1000 pg/ml). All inhibins were found in clearly greater concentrations in the peritoneal fluid than in serum. International Federation of Gynecology and Obstetrics (FIGO) stage III-IV and poor differentiation grade were associated with significantly lower concentrations of inhibin A and pro- aC in the peritoneal fluid compared with stages I-II or low grade. -
Interactions of Mucins with Biopolymers and Drug Delivery Particles
INTERACTIONS OF MUCINS WITH BIOPOLYMERS AND DRUG DELIVERY PARTICLES Malmö University Health and Society Doctoral Dissertations 2008:2 © Olof Svensson 2008 ISBN 978-91-7104-212-5 ISSN 1653-5383 Holmbergs, Malmö 2008 OLOF SVENSSON INTERACTIONS OF MUCINS WITH BIOPOLYMERS AND DRUG DELIVERY PARTICLES Malmö University, 2008 The Faculty of Health and Society To my family CONTENTS ABSTRACT ................................................................................ 10 LIST OF PAPERS ......................................................................... 12 INTRODUCTION ......................................................................... 14 Background and aim ............................................................................ 14 The mucous gel and mucins ................................................................... 16 Polyelectrolyte multilayers ...................................................................... 22 MATERIALS AND METHODS ......................................................... 27 Proteins and polymers ............................................................................ 27 Surfaces .............................................................................................. 30 Ellipsometry ......................................................................................... 31 Particle electrophoresis ........................................................................... 40 Atomic force microscopy ........................................................................ 41 Electrochemistry