Contextual Music Information Retrieval and Recommendation: State of the Art and Challenges
Total Page:16
File Type:pdf, Size:1020Kb
COMPUTERSCIENCEREVIEW ( ) ± Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/cosrev Survey Contextual music information retrieval and recommendation: State of the art and challenges Marius Kaminskas∗, Francesco Ricci Faculty of Computer Science, Free University of BozenBolzano, Piazza Domenicani 3, 39100 Bolzano, Italy ARTICLEINFO ABSTRACT Article history: Increasing amount of online music content has opened new opportunities for Received 15 September 2011 implementing new effective information access services – commonly known as music Received in revised form recommender systems – that support music navigation, discovery, sharing, and formation 30 March 2012 of user communities. In the recent years a new research area of contextual (or situational) Accepted 7 April 2012 music recommendation and retrieval has emerged. The basic idea is to retrieve and suggest music depending on the user’s actual situation, for instance emotional state, or any other Keywords: contextual conditions that might influence the user’s perception of music. Despite the Music information retrieval high potential of such idea, the development of realworld applications that retrieve or Music recommender systems recommend music depending on the user’s context is still in its early stages. This survey Contextaware services illustrates various tools and techniques that can be used for addressing the research Affective computing challenges posed by contextaware music retrieval and recommendation. This survey Social computing covers a broad range of topics, starting from classical music information retrieval (MIR) and recommender system (RS) techniques, and then focusing on contextaware music applications as well as the newer trends of affective and social computing applied to the music domain. ⃝c 2012 Elsevier Inc. All rights reserved. Contents 1. Introduction .................................................................................................................................................................................2 2. Contentbased music information retrieval..................................................................................................................................3 2.1. Query by example..............................................................................................................................................................3 2.2. Query by humming............................................................................................................................................................4 2.3. Genre classification............................................................................................................................................................4 2.4. Multimodal analysis in music information retrieval ..........................................................................................................5 2.5. Summary ...........................................................................................................................................................................6 3. Music recommendation................................................................................................................................................................6 3.1. Collaborative filtering ........................................................................................................................................................6 3.1.1. General techniques...............................................................................................................................................7 3.1.2. Applications in the music domain........................................................................................................................7 ∗ Corresponding author. Email addresses: [email protected] (M. Kaminskas), [email protected] (F. Ricci). 15740137/$ see front matter ⃝c 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.cosrev.2012.04.002 Please cite this article in press as: M. Kaminskas, F. Ricci, Contextual music information retrieval and recommendation: State of the art and challenges, Computer Science Review (2012), doi:10.1016/j.cosrev.2012.04.002 2 COMPUTERSCIENCEREVIEW ( ) ± 3.1.3. Limitations ...........................................................................................................................................................8 3.2. Contentbased approach....................................................................................................................................................8 3.2.1. General techniques...............................................................................................................................................8 3.2.2. Applications in the music domain........................................................................................................................9 3.2.3. Limitations ...........................................................................................................................................................9 3.3. Hybrid approach ................................................................................................................................................................ 10 3.3.1. General techniques............................................................................................................................................... 10 3.3.2. Applications in the music domain........................................................................................................................ 10 3.4. Commercial music recommenders .................................................................................................................................... 11 3.4.1. Collaborativebased systems ................................................................................................................................ 11 3.4.2. Contentbased systems ........................................................................................................................................ 11 3.5. Summary ........................................................................................................................................................................... 11 4. Contextual and social music retrieval and recommendation........................................................................................................ 12 4.1. Contextual music recommendation and retrieval.............................................................................................................. 12 4.1.1. Environmentrelated context................................................................................................................................ 13 4.1.2. Userrelated context ............................................................................................................................................. 16 4.1.3. Multimedia context .............................................................................................................................................. 17 4.1.4. Summary.............................................................................................................................................................. 18 4.2. Emotion recognition in music............................................................................................................................................ 18 4.2.1. Emotion models for music cognition.................................................................................................................... 18 4.2.2. Machine learning approaches to emotion recognition in music ........................................................................... 19 4.2.3. Summary.............................................................................................................................................................. 21 4.3. Music and the social web................................................................................................................................................... 21 4.3.1. Tag acquisition ..................................................................................................................................................... 22 4.3.2. Tag usage for music recommendation and retrieval............................................................................................. 25 4.3.3. Summary.............................................................................................................................................................. 26 5. Conclusions.................................................................................................................................................................................. 26 References .................................................................................................................................................................................... 27 1. Introduction user’s context, e.g., her mood, or her current location and activity [2]. In fact, a study on users’ musical information Music has always played a major role in human enter needs [3] showed that people often seek music for a certain tainment. With the coming of digital music and Internet occasion, event, or an emotional state. Moreover, the authors technologies, a huge amount of music content has become of a similar study [4] concluded that there