Kandidat 109

Total Page:16

File Type:pdf, Size:1020Kb

Kandidat 109 INFO310 0 Advanced Topics in Model-Based Information Systems Kandidat 109 Oppgaver Oppgavetype Vurdering Status Introduction Dokument Automatisk poengsum Levert Plagiarism and Declaration Dokument Automatisk poengsum Levert 1 Essay Filopplasting Manuell poengsum Levert INFO310 0 Advanced Topics in Model-Based Information Systems Emnekode INFO310 PDF opprettet 16.11.2016 16:36 Vurderingsform INFO310 Opprettet av Andreas Lothe Opdahl Starttidspunkt: 03.11.2016 14:00 Antall sider 22 Sluttidspunkt: 09.11.2016 14:00 Oppgaver inkludert Nei Sensurfrist Ikke satt Skriv ut automatisk rettede Nei 1 Kandidat 109 Seksjon 1 1 OPPGAVE Essay Upload your file here. Maximum one file. BESVARELSE Filopplasting Filnavn 9066477_cand-9333784_9157556 Filtype pdf Filstørrelse 1660.232 KB Opplastingstid 09.11.2016 09:38:21 Neste side Besvarelse vedlagt INFO310 0 Advanced Topics in Model-Based Information Systems Page 2 av 22 Kandidat 109 SEMANTICS TECHNOLOGIES IN STREAMING SERVICES By Gonzalo Molina Gallego INFO310 0 Advanced Topics in Model-Based Information Systems Page 3 av 22 Kandidat 109 INDEX INTRODUCTION ......................................................................................................................... 3 THE ARISING OF STREAMING SERVICES ............................................................................ 3 VIDEO STREAMING SERVICES .......................................................................................... 4 MUSIC STREAMING SERVICES .......................................................................................... 5 RECOMMENDER SYSTEMS ..................................................................................................... 5 TYPES OF RECOMMENDER SYSTEMS ............................................................................. 5 COLLABORATIVE FILTERING ........................................................................................ 5 CONTENT-BASED FILTERING ........................................................................................ 6 HYBRID RECOMMENDER ............................................................................................... 6 SEMANTIC RECOMMENDER SYSTEM .............................................................................. 6 PANDORA AND MUSIC GENOME PROJECT ........................................................................ 7 SEMANTIC SIMILARITY METHOD .................................................................................... 8 MUSIC GENOME PROJECT .................................................................................................. 8 SUPPORT VECTOR MACHINES ...................................................................................... 9 MY CONTRIBUTION – TESTING PANDORA..................................................................... 9 JINNI AND MOVIE GENOME PROJECT ............................................................................... 12 CONCLUSION & CHALLENGES ............................................................................................ 13 FIGURES .................................................................................................................................... 14 REFERENCES ............................................................................................................................ 20 INFO310 0 Advanced Topics in Model-Based Information Systems Page 4 av 22 Kandidat 109 INTRODUCTION Nowadays we can see the rapid growth of streaming services, they offer us a large collection of media content and it does not need to download whole file. This is possible by the improvement of Internet network, bandwidth and storage. These advances combined with powerful computers are the principal reasons of the popularization of several streaming services. But in these past few years, we also see how the advantages of semantic technologies and the Web 2.0, and now the semantics technologies are present in some streaming services. On one hand, there are streaming music services, leads by Spotify. Spotify is the most popular streaming music service, it is in almost the whole world and it has a big database of songs, but does not have the best recommender system. Instead, exist other music streaming service, it is not able to use in many countries, but uses semantics technologies for recommend and discover new music that would like to the user. This service is Pandora Internet Radio, based on Music Genome, that offers music streaming and smart recommendations. Pandora is capable to analyses songs and creates a user’s profile based on the tastes of users. All this data about different songs is store in Music Genome and each song has approximately 450 tags or attributes to be compared with user’s tastes. On the other hand, we have movie streaming services and the most popular is Netflix, but Netflix at the beginning had a problem, it had not a good recommendation system. It created Netflix Prize to search the best engine to analyse user’s profile and tastes, but another recommender search arises, this recommender engine is Jinni. Jinni is the Pandora for movies, also uses a database like the Music Genome, but in this case, is Movie Genome, composed by thousands of tags to describe and analyse a movie. In this paper, we are going to see why semantic recommendation are popular, what is the history of these recommender systems and how semantic recommendation systems work. THE ARISING OF STREAMING SERVICES First of all, we should analyse when and how streaming services appears and how impact to people. Big companies like Netflix or Spotify are now increasingly used rather than TV or radio and that’s only the beginning of this new tendency. Streaming media is multimedia that is constantly received by and presented to an end-user while being delivered by a provider. Is an alternative to download because the end-user can use its data file (maybe a movie or music) before the entire file has been transmitted [1]. Through streaming media, the live streaming appears. With the live streaming, we can watch on Internet events happening in real-time, delivered to us via a television signals in real-time. INFO310 0 Advanced Topics in Model-Based Information Systems Page 5 av 22 Kandidat 109 With the improvements and the growth of the streaming media and the advances in computer networking, combined with powerful computers and fast Internet, several services or delivers of social media content has been created. The main improvement was the support of RTSP protocol. This protocol is used by media players and streaming services to control the transmission. Figure 1 shows how streaming media works. Nowadays, Jinni is one of the most popular recommendation engine for movies and Pandora for music, they use semantics search to improve the accuracy of the search and recommendation, for that reason, big social media companies are interested in this new technology, but before to talk deeply about these two companies, we should understand the explosive growth of streaming services. VIDEO STREAMING SERVICES Between the 19th and 20th ages, the television was invented and improved until to be in every house. TV is the main information system and is basically the easier way to influence people, for example the 99% of households in Unites States possess at least one television. According to the A.C. Nielsen Company, the average American spent more than 4 hours TV-watching [2]. Netflix provides streaming media and video on demand (VOD) – VOD are systems which allows users to watch video content when they choose to. Nowadays, Netflix has more than 85 million users in Worldwide and it revenues rise to 6.7$ billion. Can Netflix and new video-streaming systems dethrone Television? Video-streaming systems are used by almost the half of the people in Unites States, more precisely, in the 42% American households. Mainly, the video-streaming systems are more popular between the young people, the older people are still use the pay-TV [3]. As we have said before, each time, more and more teenagers join the new tendency of using other devices to view films instead of TV. In the Figure 2 we see the percentage of time watching TV shows by device in US. The time watching the TV is still the higher one in each range of ages, but if you focus only in the first range and in the last, you can see this tendency of using other devices. Finally, the Figure 3 shows the clear victory of online streaming over rent or purchase movies, in no case people prefer rent or purchase a film, they use online streaming to watch it [4]. The TV is still the favourite device to watch movies or TV shows, but in a few years, we will see how the online streaming platforms grow up and if we combine the advantages of streaming media with the semantic recommendation, streaming platforms will overtake live-TV. INFO310 0 Advanced Topics in Model-Based Information Systems Page 6 av 22 Kandidat 109 MUSIC STREAMING SERVICES With Spotify, we can listen our favourite music without download it in our smartphone or computer, because Spotify provides a digital music-streaming service [5]. But not only Spotify is helping music panorama, also there are many big companies like Google Play Music, Amazon Prime Music and Pandora. The global music market has a big problem with the piracy and the last years have been really difficult to music companies, but now tendency is changing to a better situation. The last 2015, streaming music services grow fast – more than 66%– and they overcome music physical format. Streaming music represents
Recommended publications
  • Movie Genome: Alleviating New Item Cold Start in Movie Recommendation
    User Modeling and User-Adapted Interaction https://doi.org/10.1007/s11257-019-09221-y Movie genome: alleviating new item cold start in movie recommendation Yashar Deldjoo, et al. [full author details at the end of the article] Received: 23 December 2017 / Accepted in revised form: 19 January 2019 © The Author(s) 2019 Abstract As of today, most movie recommendation services base their recommendations on col- laborative filtering (CF) and/or content-based filtering (CBF) models that use metadata (e.g., genre or cast). In most video-on-demand and streaming services, however, new movies and TV series are continuously added. CF models are unable to make predic- tions in such a scenario, since the newly added videos lack interactions—a problem technically known as new item cold start (CS). Currently, the most common approach to this problem is to switch to a purely CBF method, usually by exploiting textual meta- data. This approach is known to have lower accuracy than CF because it ignores useful collaborative information and relies on human-generated textual metadata, which are expensive to collect and often prone to errors. User-generated content, such as tags, can also be rare or absent in CS situations. In this paper, we introduce a new movie recommender system that addresses the new item problem in the movie domain by (i) integrating state-of-the-art audio and visual descriptors, which can be automati- cally extracted from video content and constitute what we call the movie genome; (ii) exploiting an effective data fusion method named canonical correlation analysis, which was successfully tested in our previous works Deldjoo et al.
    [Show full text]
  • Intelligent User Interfaces for Music Discovery
    Knees, P., et al. (2020). Intelligent User Interfaces for Music Discovery. Transactions of the International Society for Music Information 7,60,5 Retrieval, 3(1), pp. 165–179. DOI: https://doi.org/10.5334/tismir.60 OVERVIEW ARTICLE Intelligent User Interfaces for Music Discovery Peter Knees*, Markus Schedl† and Masataka Goto‡ Assisting the user in finding music is one of the original motivations that led to the establishment of Music Information Retrieval (MIR) as a research field. This encompasses classic Information Retrieval inspired access to music repositories that aims at meeting an information need of an expert user. Beyond this, however, music as a cultural art form is also connected to an entertainment need of potential listeners, requiring more intuitive and engaging means for music discovery. A central aspect in this process is the user interface. In this article, we reflect on the evolution of MIR-driven intelligent user interfaces for music browsing and discovery over the past two decades. We argue that three major developments have transformed and shaped user interfaces during this period, each connected to a phase of new listening practices. Phase 1 has seen the development of content-based music retrieval interfaces built upon audio processing and content description algorithms facilitating the automatic organization of repositories and finding music according to sound qualities. These interfaces are primarily connected to personal music collections or (still) small commercial catalogs. Phase 2 comprises interfaces incorporating collaborative and automatic semantic description of music, exploiting knowledge captured in user-generated metadata. These interfaces are connected to collective web platforms. Phase 3 is dominated by recommender systems built upon the collection of online music interaction traces on a large scale.
    [Show full text]
  • Recommender Systems User-Facing Decision Support Systems
    Recommender Systems User-Facing Decision Support Systems Michael Hahsler Intelligent Data Analysis Lab (IDA@SMU) CSE, Lyle School of Engineering Southern Methodist University EMIS 5/7357: Decision Support Systems February 22, 2012 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 1 / 44 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 2 / 44 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 3 / 44 Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 4 / 44 Table of Contents 1 Recommender Systems & DSS 2 Content-based Approach 3 Collaborative Filtering (CF) Memory-based CF Model-based CF 4 Strategies for the Cold Start Problem 5 Open-Source Implementations 6 Example: recommenderlab for R 7 Empirical Evidence Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 5 / 44 Decision Support Systems ? Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 6 / 44 Decision Support Systems \Decision Support Systems are defined broadly [...] as interactive computer-based systems that help people use computer communications, data, documents, knowledge, and models to solve problems and make decisions." Power (2002) Main Components: Knowledge base Model User interface Michael Hahsler (IDA@SMU) Recommender Systems EMIS 5/7357: DSS 6 / 44 ! A recommender system is a decision support systems which help a seller to choose suitable items to offer given a limited information channel. Recommender Systems Recommender systems apply statistical and knowledge discovery techniques to the problem of making product recommendations. Sarwar et al. (2000) Advantages of recommender systems (Schafer et al., 2001): Improve conversion rate: Help customers find a product she/he wants to buy.
    [Show full text]
  • Pandora's Music Recommender 1 Introduction to Pandora 2 Description of Pandora Problem Space
    Pandora’s Music Recommender Michael Howe 1 Introduction to Pandora One of the great promises of the internet and Web 2.0 is the opportunity to expose people to new types of content. Companies like Amazon and Netflix provide customers with ideas for new items to purchase based on current or previous selections. For instance, someone who rented “Star Wars” at Netflix might be presented with “The Matrix” as another movie to rent. The challenge in this strategy is to make suggestions in a reasonable amount of time that the user will mostly like based on the known list of what the user already enjoys. People will only pay attention to the recommendations of a service a finite number of times before they lose trust. Repeatedly suggest content that the user hates and the user will look for new content elsewhere. Also, a user will only pay attention to a service’s recommendation if they arrive in a reasonable amount of time. Make the user wait longer than they are willing and they will again turn elsewhere for content suggestions. Accuracy and speed are critical to a service’s success. Pandora exposes people to music with an online radio station where a user builds up “stations” based on musical interests. The user indicates in each station one or more songs or artists that he or she likes. Based on these preferences Pandora plays similar songs that the user might also like. As Pandora plays the user can further refine the station by giving a “thumbs up” or a “thumbs down” to a particular song.
    [Show full text]
  • Music Recommendation Algorithms: Discovering Weekly Or Discovering
    MUSIC RECOMMENDATION ALGORITHMS Music Recommendation Algorithms: Discovering Weekly or Discovering Weakly? Jennie Silber Muhlenberg College, Allentown, PA, USA Media & Communication Department Undergraduate High Honors Thesis April 1, 2019 1 MUSIC RECOMMENDATION ALGORITHMS 2 MUSIC RECOMMENDATION ALGORITHMS Abstract This thesis analyzes and assesses the cultural impact and economic viability that the top music streaming platforms have on the consumption and discovery of music, with a specific focus on recommendation algorithms. Through the support of scholarly and journalistic research as well as my own user experience, I evaluate the known constructs that fuel algorithmic recommendations, but also make educated inferences about the variables concealed from public knowledge. One of the most significant variables delineated throughout this thesis is the power held by human curators and the way they interact with algorithms to frame and legitimize content. Additionally, I execute my own experiment by creating new user profiles on the two streaming platforms popularly used for the purpose of discovery, Spotify and SoundCloud, and record each step of the music discovery process experienced by a new user. After listening to an equal representation of all genre categories within each platform, I then compare the genre, release year, artist status, and content promotion gathered from my listening history to the algorithmically-generated songs listed in my ‘Discover Weekly’ and ‘SoundCloud Weekly’ personalized playlists. The results from this experiment demonstrate that the recommendation algorithms that power these discovery playlists intrinsically facilitate the perpetuation of a star- driven, “winner-take-all” marketplace, where new, popular, trendy, music is favored, despite how diverse of a selection the music being listened to is.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Bag-Of-Concepts As a Movie
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Bag-of-Concepts as a Movie Genome and Representation A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer Science by Colin Zhou Committee in charge: Professor Shlomo Dubnov, Chair Professor Sanjoy Dasgupta Professor Lawrence Saul 2016 The Thesis of Colin Zhou is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION For Mom and Dad iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication.................................................................................................................. iv Table of Contents....................................................................................................... v List of Figures and Tables.......................................................................................... vi Abstract of the Thesis................................................................................................ vii Introduction................................................................................................................ 1 Chapter 1 Background............................................................................................... 3 1.1 Vector Space Models............................................................................... 3 1.1.1. Bag-of-Words........................................................................
    [Show full text]
  • A Movie Recommender System: MOVREC Using Machine Learning Techniques Ashrita Kashyap1, Sunita
    ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.6 A Movie Recommender System: MOVREC using Machine Learning Techniques Ashrita Kashyap1, Sunita. B2, Sneh Srivastava3, Aishwarya. PH4, Anup Jung Shah5 Department of Computer Science & Engineering SAIT, Bengaluru, Karnataka, India Abstract: This paper discuss about recommendations of the movies. A movie recommendation is important in our social life due to its strength in providing enhanced entertainment. Such a system can suggest a set of movies to users based on their interest, or the popularities of the movies. A recommendation system is used for the purpose of suggesting items to purchase or to see. They direct users towards those items which can meet their needs through cutting down large database of Information. A recommender system, or a recommendation system (sometimes replacing 'system' with a synonym such as platform or engine), is a subclass of information filtering system that seeks to predict the "rating" or "preference" a user would give to an item[1][2]. They are primarily used in commercial applications. MOVREC also help users to find the movies of their choices based on the movie experience of other users in efficient and effective manner without wasting much time in useless browsing. Keywords: Filtering, Recommendation System, Recommender. I. INTRODUCTION emphasizing other attributes when a user "likes" a song. This is an example of a content-based approach. Recommender systems usually make use of either or both collaborative filtering and content-based filtering (also known as Each type of system has its strengths and weaknesses. In the the personality-based approach),[3] as well as other systems above example, Last.fm requires a large amount of information such as knowledge-based systems.
    [Show full text]
  • Five Approaches to Collecting Tags for Music
    FIVE APPROACHES TO COLLECTING TAGS FOR MUSIC Douglas Turnbull Luke Barrington Gert Lanckriet UC San Diego UC San Diego UC San Diego dturnbul@cs.ucsd.edu lbarrington@ucsd.edu gert@ece.ucsd.edu ABSTRACT There are a number of key concepts to consider when com- paring these approaches. The cold start problem refers to the We compare five approaches to collecting tags for music: fact songs that are not annotated cannot be retrieved. This conducting a survey, harvesting social tags, deploying anno- problem is related to popularity bias in that popular songs (in tation games, mining web documents, and autotagging audio the short-head) tend to be annotated more thoroughly than content. The comparison includes a discussion of both scala- unpopular songs (in the long-tail)[11]. This often leads bility (financial cost, human involvement, and computational to a situation in which a short-head song is ranked above resources) and quality (the cold start problem & popularity a long-tail song despite the fact that the long-tail song may bias, strong vs. weak labeling, vocabulary structure & size, be more semantically relevant. We prefer an approach that and annotation accuracy). We then describe one state-of- avoids the cold start problem (e.g., autotagging). If this is the-art system for each approach. The performance of each not possible, we prefer approaches in which we can explic- system is evaluated using a tag-based music information itly control which songs are annotated (e.g., survey, games), retrieval task. Using this task, we are able to quantify the rather than an approach in which only the more popular songs effect of popularity bias on each approach by making use are annotated (e.g., social tags, web documents).
    [Show full text]
  • DEEP LEARNING for MUSIC RECOMMENDATION: Machine Listening & Collaborative Filtering
    DEEP LEARNING FOR MUSIC RECOMMENDATION: Machine Listening & Collaborative Filtering ORIOL NIETO ONIETO@PANDORA.COM SEMINAR ON MUSIC KNOWLEDGE EXTRACTION USING MACHINE LEARNING POMPEU FABRA UNIVERSITY BARCELONA DECEMBER 4, 2016 Outline • Pandora Overview • Large Scale Music Recommendation with Deep Learning: • Machine Listening • Collaborative Filtering Outline • Pandora Overview • Large Scale Music Recommendation with Deep Learning: • Machine Listening • Collaborative Filtering TODAY 78 M 22 H 75 B + Monthly Listeners Average Listening per Month Thumbs 10 B 180 K 55 % Stations Artists Spinning per Month of all Music Streaming in USA Content&Based Collective) Intelligence Personalized Filtering Outline • Pandora Overview • Large Scale Music Recommendation with Deep Learning: • Machine Listening • Collaborative Filtering Content&Based Collective) Intelligence Personalized Filtering Short Time Fourier Transform MY GUITAR GENTLY WEEPS - THE BEATLES Extracting Information Beats Downbeats Chords Structure “electric guitar”, “drums”, “male singer”, “pop”, “classic rock” Hand Crafted Features Beats Downbeats Chords MFCCs Structure Spectral Rolloff Spectral Centroid Structural Features Chromagrams Tempograms “electric guitar”, CERNs “drums”, … “male singer”, “pop”, “classic rock” Learned Features Beats Downbeats Chords Structure DEEP LEARNING (Mostly Convolutional Neural Networks) “electric guitar”, “drums”, “male singer”, “pop”, http://blogs-images.forbes.com/kevinmurnane/files/2016/03/google-deepmind-artificial-intelligence-2-970x0-970x646.jpg
    [Show full text]
  • A Hybrid Approach to Music Recommendation: Exploiting Collaborative Music Tags and Acoustic Features Jaime C
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2014 A Hybrid Approach to Music Recommendation: Exploiting Collaborative Music Tags and Acoustic Features Jaime C. Kaufman University of North Florida Suggested Citation Kaufman, Jaime C., "A Hybrid Approach to Music Recommendation: Exploiting Collaborative Music Tags and Acoustic Features" (2014). UNF Graduate Theses and Dissertations. 540. https://digitalcommons.unf.edu/etd/540 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2014 All Rights Reserved A HYBRID APPROACH TO MUSIC RECOMMENDATION: EXPLOITING COLLABORATIVE MUSIC TAGS AND ACOUSTIC FEATURES by Jaime C. Kaufman A thesis submitted to the School of Computing in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences UNIVERSITY OF NORTH FLORIDA SCHOOL OF COMPUTING December 2014 Copyright (©) 2014 by Jaime C. Kaufman All rights reserved. Reproduction in whole or in part in any form requires the prior written permission of Jaime C. Kaufman or designated representative. ii The thesis, “A Hybrid Approach to Music Recommendation: Exploiting Collaborative Music Tags and Acoustic Features,” submitted by Jaime C. Kaufman in partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences has been Approved by the thesis committee: Date Dr. Ching-Hua Chuan Thesis Advisor and Committee Chairperson Dr. Sherif Elfayoumy Dr. Karthikeyan Umapathy Accepted for the School of Computing: Dr.
    [Show full text]
  • Combining Content Information with an Item-Based Collaborative Filter
    Volume 2 │ Issue 2 │ 2017 Combining Content Information with an Item-Based Collaborative Filter Daryl Bagley Harding University Arkansas Eta Chapter Vol. 2(2), 2017 Article Title: Combining Content Information with an Item-Based Collaborative Filter DOI: 10.21081/AX0126 ISSN: 2381-800X Key Words: algorithms, anime, collaborative filtering, content analysis, recommendation This work is licensed under a Creative Commons Attribution 4.0 International License. Author contact information is available from the Editor at editor@alphachihonor.org. Aletheia—The Alpha Chi Journal of Undergraduate Scholarship • This publication is an online, peer-reviewed, interdisciplinary undergraduate journal, whose mission is to promote high quality research and scholarship among undergraduates by showcasing exemplary work. • Submissions can be in any basic or applied field of study, including the physical and life sciences, the social sciences, the humanities, education, engineering, and the arts. • Publication in Aletheia will recognize students who excel academically and foster mentor/mentee relationships between faculty and students. • In keeping with the strong tradition of student involvement in all levels of Alpha Chi, the journal will also provide a forum for students to become actively involved in the writing, peer review, and publication process. • More information and instructions for authors is available under the publications tab at www.AlphaChiHonor.org. Questions to the editor may be directed to editor@alphachihonor.org. Alpha Chi is a national college honor society that admits students from all academic disciplines, with membership limited to the top 10 percent of an institution’s juniors, seniors, and graduate students. Invitation to membership comes only through an institutional chapter.
    [Show full text]
  • Matrix Factorization and Collaborative Filtering
    10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Matrix Factorization and Collaborative Filtering MF Readings: (Koren et al., 2009) Matt Gormley Lecture 25 April 19, 2017 1 Reminders • Homework 8: Graphical Models – Release: Mon, Apr. 17 – Due: Mon, Apr. 24 at 11:59pm • Homework 9: Applications of ML – Release: Mon, Apr. 24 – Due: Wed, May 3 at 11:59pm 2 Outline • Recommender Systems – Content Filtering – Collaborative Filtering (CF) – CF: Neighborhood Methods – CF: Latent Factor Methods • Matrix Factorization – Background: Low-rank Factorizations – Residual matrix – Unconstrained Matrix Factorization • Optimization problem • Gradient Descent, SGD, Alternating Least Squares • User/item bias terms (matrix trick) – Singular Value Decomposition (SVD) – Non-negative Matrix Factorization • Extra: Matrix Multiplication in ML – Matrix Factorization – Linear Regression – PCA – (Autoencoders) – K-means 7 RECOMMENDER SYSTEMS 8 Recommender Systems A Common Challenge: – Assume you’re a company selling items of some sort: movies, songs, products, etc. – Company collects millions of ratings from users of their items – To maximize profit / user happiness, you want to recommend items that users are likely to want 9 Recommender Systems 10 Recommender Systems 11 Recommender Systems 12 Recommender Systems Problem Setup • 500,000 users • 20,000 movies • 100 million ratings • Goal: To obtain lower root mean squared error (RMSE) than Netflix’s existing system on 3 million held out ratings 13 Recommender Systems 14 Recommender Systems • Setup: – Items: movies, songs, products, etc. (often many thousands) – Users: watchers, listeners, purchasers, etc. (often many millions) Doctor Doctor Strange Star Trek: Beyond Zootopia – Feedback: Alice 1 5 5-star ratings, not-clicking ‘next’, purchases, etc.
    [Show full text]