Tracking the Treatments of Tomorrow

Total Page:16

File Type:pdf, Size:1020Kb

Tracking the Treatments of Tomorrow NOV/DEC 2020 VOL. 15, NO. 8 | RETINATODAY.COM What’s in the Retina Pipeline? Tracking the treatments of tomorrow. THE LATEST FINDINGS FROM A LOOK AT FUTURE THERAPEUTICS THE PROMISE OF SUSTAINED-RELEASE AMD TREATMENT TRIALS FOR DIABETIC RETINOPATHY POLYMER TECHNOLOGIES 1120RT_cover.indd 1 12/4/20 3:43 PM This is Laser-ablated micro-surface is designed to support atraumatic ILM peel initiation1 Optimized grasping platform and angled tip closure to help mitigate membrane shredding2 GRIESHABER® DSP IMPORTANT PRODUCT INFORMATION Caution: Federal (USA) law restricts this device to sale by, or on the order of, a physician. Indications for Use: GRIESHABER® DSP instruments are a line of single-use vitreoretinal microinstruments which are used in ophthalmic surgery, for cases either in the anterior or the posterior segment. The GRIESHABER® Advanced Backflush Handles DSP are a family of instruments for fluid and gas handling in vitreoretinal surgery. Warnings and Precautions: • Potential risk from reuse or reprocessing GRIESHABER® DSP instruments include: foreign particle introduction to the eye; reduced cutting or grasping performance; path leaks or obstruction resulting in reduced fluidics performance. • Verify correct tip attachment, function and tip actuation before placing it into the eye for surgery. • For light fiber instruments: Minimize light intensity and duration of exposure to the retina to reduce risk of retinal photic injury. The light fiber instruments are designed for use with an ALCON® illumination source. • Good clinical practice dictates the testing for adequate irrigation and aspiration flow prior to entering the eye. If stream of fluid is weak or absent, good fluidics response will be jeopardized. • Use appropriate pressure supply to ensure a stable IOP. • If unwanted tissue gets engaged to the aspiration port, it should be released by interrupting aspiration before moving the instrument. Attention: Please refer to the product labeling for a complete listing of indications, warnings, and precautions. Reference: 1. Data on File. Alcon Laboratories Inc; May 2018. 2. Data on File. Alcon Laboratories Inc; September 2017. © 2018 Novartis 5/18 US-GUS-18-E-1175 US-GUS-18-E-1175 RT.indd 1 1/8/20 10:05 AM This is Designed to: Enhance stability with a continuously open port and CONSTELLATION® Vision System’s IOP compensation1 Reduce pulsatile traction with 20 000 cuts per minute using 25+® and 27+® gauge probes*, 2,3 Improve vitreous flow4 Enable closer access to tissue plane with beveled tip5 *At similar single-blade flow rates MIVS IMPORTANT PRODUCT INFORMATION Caution: Federal law restricts this device to sale by, or on the order of, a physician. Indications for Use: The CONSTELLATION® Vision System is an ophthalmic microsurgical system that is indicated for both anterior segment (i.e., phacoemulsification and removal of cataracts) and posterior segment (i.e., vitreoretinal) ophthalmic surgery. The ULTRAVIT® Vitrectomy Probe is indicated for vitreous cutting and aspiration, membrane cutting and aspiration, dissection of tissue and lens removal. The valved entry system is indicated for scleral incision, canulae for posterior instrument access and venting of valved cannulae. The infusion cannula is indicated for posterior segment infusion of liquid or gas. Warnings and Precautions: • The infusion cannula is contraindicated for use of oil infusion. • Attach only Alcon supplied products to console and cassette luer fittings. Improper usage or assembly could result in a potentially hazardous condition for the patient. Mismatch of surgical components and use of settings not specifically adjusted for a particular combination of surgical components may affect system performance and create a patient hazard. Do not connect surgical components to the patient’s intravenous connections. • Each surgical equipment/component combination may require specific surgical setting adjustments. Ensure that appropriate system settings are used with each product combination. Prior to initial use, contact your Alcon sales representative for in-service information. • Care should be taken when inserting sharp instruments through the valve of the Valved Trocar Cannula. Cutting instrument such as vitreous cutters should not be actuated during insertion or removal to avoid cutting the valve membrane. Use the Valved Cannula Vent to vent fluids or gases as needed during injection of viscous oils or heavy liquids. • Visually confirm that adequate air and liquid infusion flow occurs prior to attachment of infusion cannula to the eye. • Ensure proper placement of trocar cannulas to prevent sub-retinal infusion. • Leaking sclerotomies may lead to post operative hypotony. • Vitreous traction has been known to create retinal tears and retinal detachments. • Minimize light intensity and duration of exposure to the retina to reduce the risk of retinal photic injury. ATTENTION: Please refer to the CONSTELLATION® Vision System Operators Manual for a complete listing of indications, warnings and precautions. References: 1. Irannejad A, Tambat S, Abulon DJK. Retropulsion and mass flow of 27-gauge vitrectomy probes: comparison of dual-blade/flat-tipped probes and single-blade/beveled probes. Poster presented at: 18th Congress of the European Society of Retina Specialists; September 20–23, 2018; Vienna, Austria. 2. Alcon data on file. Alcon Laboratories, Inc; June 2018. 3. Alcon data on file. Alcon Laboratories, Inc; June 2018. 4. Alcon data on file. Alcon Laboratories, Inc; June 2018. 5. Alcon data on file. Alcon Laboratories, Inc; May 2017. ©2019 Alcon 5/19 US-GAU-19-E-0842 US-GAU-19-E-0842 RT.indd 1 1/8/20 10:05 AM EDITORIAL ADVISORY BOARD CHIEF MEDICAL ASSOCIATE Thomas Albini Pravin U. Dugel John W. Kitchens Elias Reichel EDITOR MEDICAL EDITOR Miami, FL Phoenix, AZ Lexington, KY Boston, MA Allen C. Ho Robert L. Avery J. Fernando Arevalo Jay S. Duker Derek Y. Kunimoto Carl D. Regillo Philadelphia, PA Santa Barbara, CA Baltimore, MD Boston, MA Phoenix, AZ Philadelphia, PA Carl C. Awh Jorge Fortun Baruch Kuppermann Kourous A. Rezaei Nashville, TN Miami, FL Irvine, CA Chicago, IL SECTION EDITORS G. William Aylward Thomas R. Friberg Rohit Ross Lakhanpal Philip J. Rosenfeld RETINA PEARLS GLOBAL PERSPECTIVES London, UK Pittsburgh, PA Owings Mills, MD Miami, FL Dean Eliott Albert J. Augustin Caroline R. Baumal Julia A. Haller Theodore Leng Steven D. Schwartz Boston, MA Karlsruhe, Germany Boston, MA Philadelphia, PA Palo Alto, CA Los Angeles, CA Ingrid U. Scott Ehab El Rayes Rubens Belfort Jr. Tarek S. Hassan Xiaoxin Li Carol L. Shields Hershey, PA Cairo, Egypt São Paulo, Brazil Royal Oak, MI Beijing, China Philadelphia, PA Audina M. Berrocal Stanislao Rizzo Miami, FL Jeffrey Heier Jordi M. Mones Richard F. Spaide BUSINESS MATTERS Boston, MA Barcelona, Spain New York, NY Florence, Italy María H. Berrocal Alan Ruby S.K. Steven Houston III Andrew A. Moshfeghi Ramin Tadayoni Royal Oak, MI San Juan, Puerto Rico Lihteh Wu Lake Mary, FL Los Angeles, CA Paris, France San José, Costa Rica David M. Brown MEDICAL RETINA Houston, TX Jason Hsu Timothy G. Murray Sjakon George Tahija Philadelphia, PA Miami, FL Jordana G. Fein FELLOWS’ FOCUS David S. Boyer Jakarta, Indonesia Fairfax, VA Michael J. Ammar Los Angeles, CA Michael Ip Anton Orlin Nadia Waheed Los Angeles, CA New York, NJ Boston, MA Heeral R. Shah Philadelphia, PA Robison V. Paul Chan Chicago, IL Glenn J. Jaffe Yusuke Oshima Joplin, MO George A. Williams Luv Patel Steve Charles Durham, NC Osaka, Japan Royal Oak, MI EYETUBE RETINA CHIEF Philadelphia, PA Memphis, TN Kazuaki Kadonosono Kirk H. Packo Charles C. Wykoff Michael A. Klufas Matthew R. Starr Allen Chiang Yokohama City, Japan Chicago, IL Houston, TX Philadelphia, PA Philadelphia, PA Philadelphia, PA Peter K. Kaiser Jonathan L. Prenner Young Hee Yoon David R. Chow Cleveland, OH New Brunswick, NJ Seoul, South Korea VISUALLY SPEAKING Mississauga, Canada Richard S. Kaiser Aleksandra Rachitskaya Manish Nagpal Kim Drenser Philadelphia, PA Cleveland, OH Gujarat, India Royal Oak, MI Szilárd Kiss Ehsan Rahimy New York, NY Palo Alto, CA BUSINESS David Levine, Executive Vice President, Stephen Daily, Executive Editor, News Digital & Custom Media +1 484 581 1871; [email protected] David Cox, President/Cofounder +1 609 933 6799; [email protected] +1 484 581 1814; [email protected] Cara Deming, Director, Special Projects Laura O’Connor, Director, +1 484 581 1889; [email protected] Adam Krafczek Jr, Esq, Cofounder Market Analysis & Strategy +1 484 581 1815; [email protected] +1 484 581 1860; [email protected] ART/PRODUCTION Tamara Bogetti, MBA Alvin Fu, Senior Director, Analytics & Technology Executive Vice President/Group Publisher +1 484 581 1888; [email protected] John Follo, Creative/Production Director +1 714 878 0568; [email protected] +1 484 581 1811; [email protected] Janet Burk, Publisher Dominic Condo, Art/Production Director +1 214 394 3551; [email protected] EDITORIAL +1 484 581 1834; [email protected] Gaynor Morrison, Rebecca Hepp, Editor-in-Chief Joe Benincasa, Digital Art Director Vice President, Sales +1 484 581 1880; [email protected] +1 484 581 1822; [email protected] +1 484 581 1836; [email protected] Katie Herman, Associate Editor Rachel McHugh, Associate Art Director Barbara Bandomir, Vice President, Operations +1 484 581 1897; [email protected] +1 484 581 1853; [email protected] +1 484 581 1810; [email protected] Tim Donald, ELS, Consulting Editor Camela Pastorius, CMP, Vice President, [email protected] Meetings &
Recommended publications
  • Neuroanatomy Crash Course
    Neuroanatomy Crash Course Jens Vikse ∙ Bendik Myhre ∙ Danielle Mellis Nilsson ∙ Karoline Hanevik Illustrated by: Peder Olai Skjeflo Holman ​ Second edition October 2015 The autonomic nervous system ● Division of the autonomic nervous system …………....……………………………..………….…………... 2 ● Effects of parasympathetic and sympathetic stimulation…………………………...……...……………….. 2 ● Parasympathetic ganglia ……………………………………………………………...…………....………….. 4 Cranial nerves ● Cranial nerve reflexes ………………………………………………………………….…………..…………... 7 ● Olfactory nerve (CN I) ………………………………………………………………….…………..…………... 7 ● Optic nerve (CN II) ……………………………………………………………………..…………...………….. 7 ● Pupillary light reflex …………………………………………………………………….…………...………….. 7 ● Visual field defects ……………………………………………...................................…………..………….. 8 ● Eye dynamics …………………………………………………………………………...…………...………….. 8 ● Oculomotor nerve (CN III) ……………………………………………………………...…………..………….. 9 ● Trochlear nerve (CN IV) ………………………………………………………………..…………..………….. 9 ● Trigeminal nerve (CN V) ……………………………………………………................…………..………….. 9 ● Abducens nerve (CN VI) ………………………………………………………………..…………..………….. 9 ● Facial nerve (CN VII) …………………………………………………………………...…………..………….. 10 ● Vestibulocochlear nerve (CN VIII) …………………………………………………….…………...…………. 10 ● Glossopharyngeal nerve (CN IX) …………………………………………….……….…………...………….. 10 ● Vagus nerve (CN X) …………………………………………………………..………..…………...………….. 10 ● Accessory nerve (CN XI) ……………………………………………………...………..…………..………….. 11 ● Hypoglossal nerve (CN XII) …………………………………………………..………..…………...………….
    [Show full text]
  • Microscopic Anatomy of the Eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian Globes Mammalian Phylogeny General Anatomy Dog
    Microscopic Anatomy of the eye Dog Cat Horse Rabbit Monkey Richard R Dubielzig Mammalian globes Mammalian Phylogeny General Anatomy Dog Arterial Blood Vessels of the Orbit General Anatomy Dog * Horizontal section Long Posterior Ciliary a. Blood enters the globe Short Post. Ciliary a Long Post. Ciliary a. Anterior Ciliary a. Blood Supply General Anatomy Dog Major arterial circle of the iris Orbital Anatomy Dog Brain Levator Dorsal rectus Ventral rectus Zygomatic Lymph node Orbital Anatomy Dog Orbital Anatomy Dog Cartilaginous trochlea and the tendon of the dorsal oblique m. Orbital Anatomy Dog Rabbit Orbital Anatomy Dog Zygomatic salivary gland mucinous gland Orbital Anatomy Dog Gland of the Third Eyelid Eye lids (dog) Eye lids (dog) Meibomian glands at the lid margin Holocrine secretion Eye lids (primate) Upper tarsal plate Lower tarsal plate Eye lids (rabbit) The Globe The Globe Dog Cat Orangutan Diurnal Horse Diurnal Cornea Epithelium Stromal lamellae Bowman’s layer Dolphin Descemet’s m Endothelium TEM of surface epithelium Cornea Doubling of Descemet’s Vimentin + endothelium Iris Walls: The vertebrate eye Iris Sphincter m. Dilator m Blue-eye, GFAP stain Iris Collagen Iris Cat Sphinctor m. Dilator m. Iris Cat Phyomelanocytes Iris Equine Corpora nigra (Granula iridica) seen in ungulates living without shade Ciliary body Pars plicata Ciliary muscle Pars plana Ciliary body Zonular ligaments Ciliary body Primarily made of fibrillin A major component of elastin Ciliary body Alcian Blue staining acid mucopolysaccharides: Hyaluronic acid Ciliary
    [Show full text]
  • Central Serous Choroidopathy
    Br J Ophthalmol: first published as 10.1136/bjo.66.4.240 on 1 April 1982. Downloaded from British Journal ofOphthalmology, 1982, 66, 240-241 Visual disturbances during pregnancy caused by central serous choroidopathy J. R. M. CRUYSBERG AND A. F. DEUTMAN From the Institute of Ophthalmology, University of Nijmegen, Nijmegen, The Netherlands SUMMARY Three patients had during pregnancy visual disturbances caused by central serous choroidopathy. One of them had a central scotoma in her first and second pregnancy. The 2 other patients had a central scotoma in their first pregnancy. Symptoms disappeared spontaneously after delivery. Except for the ocular abnormalities the pregnancies were without complications. The complaints can be misinterpreted as pregnancy-related optic neuritis or compressive optic neuropathy, but careful biomicroscopy of the ocular fundus should avoid superfluous diagnostic and therapeutic measures. Central serous choroidopathy (previously called lamp biomicroscopy of the fundus with a Goldmann central serous retinopathy) is a spontaneous serous contact lens showed a serous detachment of the detachment of the sensory retina due to focal leakage neurosensory retina in the macular region of the from the choriocapillaris, causing serous fluid affected left eye. Fluorescein angiography was not accumulation between the retina and pigment performed because of pregnancy. In her first epithelium. This benign disorder occurs in healthy pregnancy the patient had consulted an ophthal- adults between 20 and 45 years of age, who present mologist on 13 June 1977 for exactly the same with symptoms of diminished visual acuity, relative symptoms, which had disappeared spontaneously http://bjo.bmj.com/ central scotoma, metamorphopsia, and micropsia. after delivery.
    [Show full text]
  • Neuroimaging in Ophthalmology
    Saudi Journal of Ophthalmology (2012) 26, 401–407 Oculoplastic Imaging Update Neuroimaging in ophthalmology ⇑ James D. Kim, MD, MS b; Nafiseh Hashemi, MD a; Rachel Gelman, BA c; Andrew G. Lee, MD a,b,c,d,e, Abstract In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, manage- ment, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. Keywords: Neuroophthalmology, Imaging, Magnetic resonance imaging, Computed tomography Ó 2012 Saudi Ophthalmological Society, King Saud University. All rights reserved. http://dx.doi.org/10.1016/j.sjopt.2012.07.001 Introduction Computed tomography Advances in neuroimaging have revolutionized the evalua- The computed tomography (CT) scan obtains image by tion, management, and treatment of neuro-ophthalmic disor- conventional X-ray technology. The CT X-ray source moves ders. Despite the ever-increasing resolution ability of modern around the patient and the X-ray detectors located on the neuroimaging technology, it remains critical that both the opposite side of the X-ray source measure the amount of ordering eye physician and the interpreting radiologist com- attenuation.
    [Show full text]
  • Eleventh Edition
    SUPPLEMENT TO April 15, 2009 A JOBSON PUBLICATION www.revoptom.com Eleventh Edition Joseph W. Sowka, O.D., FAAO, Dipl. Andrew S. Gurwood, O.D., FAAO, Dipl. Alan G. Kabat, O.D., FAAO Supported by an unrestricted grant from Alcon, Inc. 001_ro0409_handbook 4/2/09 9:42 AM Page 4 TABLE OF CONTENTS Eyelids & Adnexa Conjunctiva & Sclera Cornea Uvea & Glaucoma Viitreous & Retiina Neuro-Ophthalmic Disease Oculosystemic Disease EYELIDS & ADNEXA VITREOUS & RETINA Blow-Out Fracture................................................ 6 Asteroid Hyalosis ................................................33 Acquired Ptosis ................................................... 7 Retinal Arterial Macroaneurysm............................34 Acquired Entropion ............................................. 9 Retinal Emboli.....................................................36 Verruca & Papilloma............................................11 Hypertensive Retinopathy.....................................37 Idiopathic Juxtafoveal Retinal Telangiectasia...........39 CONJUNCTIVA & SCLERA Ocular Ischemic Syndrome...................................40 Scleral Melt ........................................................13 Retinal Artery Occlusion ......................................42 Giant Papillary Conjunctivitis................................14 Conjunctival Lymphoma .......................................15 NEURO-OPHTHALMIC DISEASE Blue Sclera .........................................................17 Dorsal Midbrain Syndrome ..................................45
    [Show full text]
  • Intracranial Mass Lesion in a Patient Being Followed up for Amblyopia
    DOI: 10.4274/tjo.galenos.2020.36360 Turk J Ophthalmol 2020;50:317-320 Case Report Intracranial Mass Lesion in a Patient Being Followed up for Amblyopia Ali Mert Koçer, Bayazıt İlhan, Anıl Güngör Ulucanlar Ophthalmology Trainig and Research Hospital, Clinic of Ophthalmology, Ankara, Turkey Abstract A 12-year-old boy being followed up for amblyopia presented to our hospital with visual disturbance in the left eye. The patient’s best corrected visual acuity on Snellen chart was 1.0 in the right eye and 0.3 in the left eye. Increased horizontal cup-to-disc ratio was detected on dilated fundus examination. Retinal nerve fiber layer measurement showed diffuse nerve fiber loss and visual field test showed bitemporal hemianopsia. Magnetic resonance imaging revealed a lesion that filled and widened the sella and suprasellar cistern and compressed the optic chiasm. The patient was operated with transcranial approach. The pathologic examination revealed craniopharyngioma. Keywords: Amblyopia, craniopharyngioma, hemianopsia Introduction cylindrical refractive errors of 1.5-2 diopters (D) or more and is more common in hyperopic eyes than in myopia.2 Amblyopia is poor best corrected visual acuity (BCVA) in one Craniopharyngioma is a benign tumor that develops from or both eyes due to low vision or abnormal binocular interaction the remnant of Rathke’s pouch and is located in the sellar/ without any detectable structural defect in the eye or visual parasellar region.3 It shows a bimodal age distribution, with pathways. Amblyopic vision loss can be corrected if treated at patients usually diagnosed between the ages of 5 and 14 or after an early age.
    [Show full text]
  • Ultrasound Biomicroscopy of the Peripheral Retina and the Ciliary Body in Degenerative Retinoschisis Associated with Pars Plana Cysts
    976 Br J Ophthalmol 2001;85:976–982 Ultrasound biomicroscopy of the peripheral retina and the ciliary body in degenerative retinoschisis associated with pars plana cysts Giuseppe Mannino, Romualdo Malagola, Solmaz Abdolrahimzadeh, Gianfrancesco M Villani, Santi M Recupero Abstract pathogenetic mechanism has been attributed Aim—To evaluate the ciliary body and to circulatory disturbances, the motility of peripheral retina in degenerative retino- accommodation, vitreous traction, holes in the schisis associated with pars plana cysts inner lamina, autolysis of retinal cells in the using ultrasound biomicroscopy (UBM). peripheral retina, osmotic procedures, and Methods—18 eyes of 12 patients with transudate from the choriocapillaris.17 Histo- degenerative retinoschisis associated with chemical studies have shown that the content pars plana cysts were selected through of the cystoid spaces and schisis of the periph- binocular indirect ophthalmoscopy and eral retina is hyaluronic acid.18 The same mate- Goldmann three mirror lens examination, rial had been found in pars plana cysts,18–20 both with scleral depression. These pa- where it would accumulate owing to an active tients were studied in detail with UBM. secretion from the non-pigment epithelium of Results—Study of the ciliary body with the ciliary body and especially of the pars UBM showed pars plana cysts of diVerent plana.19 Subsequent splitting of the ciliary pig- size and uneven shape. In cross sections ment and non-pigment epithelial layers would the morphology of pars plana cysts in lead to pars plana cyst formation. Once the detail and the close relation of the cysts similarity of the content of pars plana cysts and with the oral region and the peripheral of cystoid degeneration and retinoschisis of the retina, where areas of cystoid degenera- peripheral retina had been disclosed, the tion and retinoschisis were present, were hypothesis that retinoschisis also was caused by observed.
    [Show full text]
  • Ciliary Body
    Ciliary body S.Karmakar HOD Introduction • Ciliary body is the middle part of the uveal tract . It is a ring (slightly eccentric ) shaped structure which projects posteriorly from the scleral spur, with a meridional width varying from 5.5 to 6.5 mm. • It is brown in colour due to melanin pigment. Anteriorly it is confluent with the periphery of the iris (iris root) and anterior part of the ciliary body bounds a part of the anterior chamber angle. Introduction • Posteriorly ciliary body has a crenated or scalloped periphery, known as ora serrata, where it is continuous with the choroid and retina. The ora serrata exhibits forward extensions,known as dentate process, which are well defined on the nasal side and less so temporally. • Ciliary body has a width of approximately 5.9 mm on the nasal side and 6.7 mm on the temporal side. Extension of the ciliary body On the outside of the eyeball, the ciliary body extends from a point about 1.5 mm posterior to the corneal limbus to a point 6.5 to 7.5 mm posterior to this point on the temporal side and 6.5 mm posterior on the nasal side. Parts of ciliary body • Ciliary body, in cross section, is a triangular structure ( in diagram it can be compared as ∆ AOI). Outer side of the triangle (O) is attached with the sclera with suprachoroidal space in between. Anterior side of the triangle (A) forms part of the anterior & posterior chamber. In its middle, the iris is attached. The inner side of the triangle (I) is divided into two parts.
    [Show full text]
  • Arşiv Kaynak Tarama Dergisi Gebelik Ve
    Arşiv Kaynak Tarama Dergisi Archives Medical Review Journal Pregnancy and Eye Gebelik ve Göz Anubhav Chauhan Department of Ophthalmology, Regional Hospital Hamirpur, Himachal Pradesh, India ABSTRACT Visual obscurations are common during pregnancy. The ocular effects of pregnancy may be physiological, pathological or may be modifications of pre-existing conditions. While most of the described changes are transient in nature, others extend beyond delivery and may lead to permanent visual impairment. Also, pregnancy can affect vision through systemic disease that are either specific to the pregnancy itself or systemic diseases that occur more frequently in relation to pregnancy. Neuro-ophthalmological disorders should be kept in mind in pregnant women presenting with visual acuity or field loss. Therefore, it is important to be aware of the ocular changes in pregnancy in order to counsel and advice women who currently are, or are planning to become pregnant. Key words: Ocular, pregnancy, blindness. ÖZET Göz kararmaları gebelikte yaygın olarak görülür. Gebeliğin göze etkileri fizyolojik, patolojik ya da önceden var olmuş modifikasyonlar olabilir. Tanımlanan değişikliklerin çoğu doğal olarak ortaya çıkarken genelde geçicidir fakat diğerleri doğumdan sonrasına aktarılarak kalıcı görme bozukluğuna neden olabilir. Ayrıca gebelik ya da gebeliğin kendine özgü sistemik hastalıklar veya gebelik ile ilişkili daha sık meydana gelen sistemik hastalıklar aracılığıyla görüşü etkileyebilir. Nöro-oftalmolojik bozukluklar gebe kadınlarda görsel netlik ya da görsel alan kaybı ile başvurduklarında akılda bulundurulmalıdır. Bu bağlamda gebelik planlaması yapan kadınlara danışma ve tavsiye verme için gebelikteki oküler değişikliklerinin farkında olmak çok büyük önem arz etmektedir. Anahtar kelimeler: Oküler, gebelik, körlük. 2016; 25(1):1-13 Archives Medical Review Journal Arşiv Kaynak Tarama Dergisi .
    [Show full text]
  • Ptosis As the Early Manifestation of Pituitary Tumour
    188 British7ournal ofOphthalmology, 1990,74, 188-191 CASE REPORT Br J Ophthalmol: first published as 10.1136/bjo.74.3.188 on 1 March 1990. Downloaded from Ptosis as the early manifestation of pituitary tumour May Yung Yen, Jorn Hon Liu, Sheng Ji Jaw Abstract skull was normal, but a CT scan of the brain Three patients who developed unilateral ptosis showed an enlarged pituitary fossa with marginal followed by partial third nerve palsy were enhancement, which was compatible with found to have a pituitary tumour. The visual pituitary adenoma. field defects were minimal and asymptomatic. The patient underwent trans-sphenoid hypo- Two patients had a chromophobe adenoma physectomy on 7 May 1985. The visual fields and one patient had a prolactinoma. The became full and the oculomotor palsy dis- importance of recognising a pituitary tumour appeared one week after the operation (Fig 3). as the cause of acquired unilateral ptosis is The tumour was a chromophobe adenoma, emphasised. diffuse type. Loss of vision and visual field are the predomi- nant ocular symptoms of pituitary tumour. In 1000 cases of pituitary tumours reported by Hollenhorst and Younge,' 613 patients had visual symptoms; 421 of them had loss of vision as their presenting complaint. Pituitary adenomas cause disorders of eye movements even less commonly than they pro- duce loss of vision and visual field, and those disorders usually occur late in the course of the disease. http://bjo.bmj.com/ We now report three cases which presented with the main complaint of unilateral ptosis due to pituitary tumour. Case reports on September 23, 2021 by guest.
    [Show full text]
  • MCV/Q, Medical College of Virginia Quarterly, Vol. 10 No. 4
    CLINICAL ADVANCES IN MEDICAL AND SURGICAL NEUROLOGY PART II \ When cardiac complaints occur in the absence of organic findings, underlying anxiety may be one factor The influence of anxiety on heart function Excessive anxiety is one of a combina, tion of factors that may trigger a series of maladaptive functional reactions which can generate further anxiety. Often involved in this vicious circle are some cardiac arrhyth, mias, paroxysmal supraventricular tachycar, dia and premature systoles. When these symptoms resemble those associated with actual organic disease, the overanxious patient needs reassurance that they have no Before prescribing, please consult complete product information, a summary of which follows: Indications: Relief of anxiety and tension occurring alone or accom­ panying various disease states. Contraindications: Patients with known hypersensitivity to the drug. Warnings: Caution patients about possible combined effects with alco­ hol and other CNS depressants. As with all CNS-acting drugs, caution patients against hazardous occupations requiring complete mental alertness (e.g., oper­ ating machinery, driving). Though physical and psychological dependence have rarely been reported on recommended doses, use caution in administer­ ing to addiction-prone individuals or those who might increase dosage; with­ drawal symptoms (including convulsions), following discontinuation of the drug and similar to those seen with barbiturates, have been reported. Use of any drug in pregnancy, lactation, or in women of childbearing age requires that its potential benefits be weighed against its possible hazards. Precautions: In the elderly and debilitated, and in children over six, limit to smallest effective dosage (initially 10 mg or less per day) to preclude ataxia or oversedation, increasing gradually as needed and tolerated.
    [Show full text]
  • Condensed Table of Contents
    Condensed Table of Contents 1 Introduction G.O.H. NAUMANN, FRIEDRICH E. KRUSE 1 2 General Ophthalmic Pathology: Principal Indications and Complications, Comparing Intra- and Extraocular Surgery G.O.H. NAUMANN, F.E. KRUSE 7 3 Special Anatomy and Pathology in Surgery of the Eyelids, Lacrimal System, Orbit and Conjunctiva L.M. HOLBACH 29 3.1 Eyelids L.M. HEINDL, L.M. HOLBACH 30 3.2 Lacrimal Drainage System L.M. HEINDL, A. JÜNEMANN, L.M. HOLBACH 45 3.3 Orbit L.M. HOLBACH, L.M. HEINDL, R.F. GUTHOFF 49 3.4 Conjunctiva and Limbus Corneae C. CURSIEFEN, F.E. KRUSE, G.O.H. NAUMANN 67 4 General Pathology for Intraocular Microsurgery: Direct Wounds and Indirect Distant Effects G.O.H. NAUMANN, F.E. KRUSE 76 5 Special Anatomy and Pathology in Intraocular Microsurgery 5.1 Cornea and Limbus C. CURSIEFEN, F.E. KRUSE, G.O.H. NAUMANN 97 5.2 Glaucoma Surgery A. JÜNEMANN, G.O.H. NAUMANN 131 5.3 Iris G.O.H. NAUMANN 152 5.4 CiüaryBody G.O.H. NAUMANN 176 5.5 Lens and Zonular Fibers U. SCHLÖTZER-SCHREHARDT, G.O.H. NAUMANN 217 Bibliografische Informationen digitalisiert durch http://d-nb.info/973635800 gescannt durch XII Condensed Table of Contents 5.6 Retina and Vitreous A.M. JOUSSEN and G.O.H. NAUMMAN with Contributions by S.E. COUPLAND, E.R. TAMM, B. KIRCHHOF, N. BORNFELD 255 5.7 Optic Nerve and Elschnig's Scleral Ring C.Y. MARDIN, G.O.H. NAUMANN 335 6 Influence of Common Generalized Diseases on Intraocular Microsurgery G.O.H.
    [Show full text]