Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation DISSERTATION Titel der Dissertation „Characterization of potential vaccine antigens from Moraxella catarrhalis and nontypeable Haemophilus influenzae with focus on iron metabolism“ Verfasserin Mag.rer.nat. Margarita Smidt angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 091 441 Dissertationsgebiet lt. Studienblatt: Genetik - Mikrobiologie Betreuer: Univ. Prof. Dr. Alexander von Gabain ____________________________________________________________Table of contents ACKNOWLEDGEMENTS.................................................................................................VII 1 ABSTRACT ..................................................................................................................... 1 2 KURZFASSUNG............................................................................................................. 3 3 INTRODUCTION ........................................................................................................... 5 3.1 OTITIS MEDIA – A POLYMICROBIAL AND MULTIFACTORIAL DISEASE ...............................5 3.1.1 Otitis media disease and pathogens causing otitis media..........................................5 3.1.2 Interactions of M. catarrhalis and NTHI with the immune system and mechanisms of immune evasion....................................................................................7 3.1.3 Risk factors for otitis media............................................................................................9 3.1.4 The burden of otitis media and current treatment....................................................10 3.2 VACCINES AGAINST OTITIS MEDIA: ACHIEVEMENTS AND CHALLENGES........................11 3.3 ANIMAL MODELS FOR OTITIS MEDIA AND CORRELATES OF PROTECTION ......................12 3.4 EVALUATION OF VACCINE ANTIGENS FOR THE PREVENTION OF OTITIS MEDIA.............14 3.4.1 Potential vaccine antigens and virulence factors of M. catarrhalis ..........................14 3.4.2 Potential vaccine antigens and virulence factors of NTHI.......................................16 3.5 THE IMPORTANCE OF IRON FOR PATHOGENESIS...............................................................17 3.5.1 Iron metabolism in bacteria – NTHI and M. catarrhalis............................................18 3.5.2 Iron‐regulated proteins as potential vaccine candidates..........................................20 3.6 DEFINING THE ANTIGENOME OF M. CATARRHALIS AND NTHI.......................................21 3.7 AIM OF THE STUDIES ...........................................................................................................24 4 MATERIALS AND METHODS.................................................................................. 25 4.1 BACTERIAL STRAINS AND PLASMID CONSTRUCTS ...........................................................25 4.2 GENERAL METHODS ............................................................................................................26 4.2.1 SDS‐Polyacrylamide gel electrophoresis....................................................................26 4.2.2 Agarose gel electrophoresis..........................................................................................26 I ____________________________________________________________Table of contents 4.2.3 Western blot analysis ....................................................................................................26 4.2.4 Southern blot analysis...................................................................................................27 4.2.5 Isolation of genomic DNA............................................................................................27 4.2.6 Isolation of RNA ............................................................................................................28 4.2.7 PCR ..................................................................................................................................28 4.3 M. CATARRHALIS GROWTH CONDITIONS...........................................................................28 4.3.1 Autoagglutination of M. catarrhalis .............................................................................29 4.4 NTHI GROWTH CONDITIONS ............................................................................................29 4.5 PREPARATION OF BACTERIAL LYSATES ..............................................................................30 4.6 PROTEOMIC ANALYSIS ........................................................................................................30 4.6.1 Preparation of whole membranes from M. catarrhalis and NTHI ...........................30 4.6.2 Preparation of outer membrane vesicles from M. catarrhalis...................................30 4.6.3 Preparation of the outer membrane from NTHI .......................................................30 4.6.4 Mass spectrometry.........................................................................................................31 4.7 CLONING OF ANTIGENS FOR RECOMBINANT EXPRESSION ...............................................31 4.8 RECOMBINANT EXPRESSION OF ANTIGENS IN E. COLI......................................................32 4.9 GENERATION OF MOUSE HYPERIMMUNE SERA AGAINST M. CATARRHALIS AND NTHI RECOMBINANT PROTEINS ...................................................................................................33 4.10 DETERMINATION OF ANTIBODY TITRES BY ELISA...........................................................33 4.11 FLOW CYTOMETRY...............................................................................................................33 4.12 M. CATARRHALIS GENE DELETION MUTANTS ....................................................................34 4.12.1 Generation of M. catarrhalis gene deletion mutants ..................................................34 4.12.2 Antibiotic sensitivity test ..............................................................................................34 4.12.3 M. catarrhalis complementation using plasmid pEMCJH04‐KAN..........................34 4.13 CHARACTERIZATION OF MSP22.........................................................................................35 4.13.1 Cloning of msp22 for expression in M. catarrhalis......................................................35 II ____________________________________________________________Table of contents 4.13.2 Purification of Msp22 from M. catarrhalis...................................................................35 4.13.3 Determination of heme‐dependent peroxidase activity...........................................36 4.14 GENERATION OF NTHI GENE DELETION MUTANT HXUAΔ .............................................37 4.15 PROTECTION STUDIES .........................................................................................................37 4.15.1 Intranasal immunization ..............................................................................................37 4.15.2 Mouse challenge ............................................................................................................37 4.15.3 Euthanasia, tissue collection and bacterial culture ...................................................38 4.16 MICROARRAY ANALYSIS.....................................................................................................38 4.16.1 NimbleGen 4x72K array design...................................................................................38 4.16.2 cDNA synthesis and labeling.......................................................................................38 4.16.3 Hybridization of labeled cDNA with 4x72K array and array scanning.................39 4.16.4 Evaluation of Microarray data.....................................................................................39 4.16.5 Quantitative RT‐PCR.....................................................................................................40 4.17 PRIMER ORDER AND SEQUENCING.....................................................................................40 5 RESULTS M. CATARRHALIS..................................................................................... 41 5.1 THE MEMBRANE PROTEOME OF M. CATARRHALIS SHOWS OVERLAP WITH THE ANTIGENOME .......................................................................................................................41 5.2 M. CATARRHALIS GROWTH IS SIGNIFICANTLY DIMINISHED DURING IRON‐LIMITING CONDITIONS AND CAN BE RESTORED BY IRON REPLETION ..............................................44 5.3 OUTER MEMBRANE VESICLES ISOLATED FROM M. CATARRHALIS CULTURES CONTAIN IRON‐REPRESSIBLE AND IRON‐INDUCIBLE PROTEINS .......................................................45 5.4 IN VIVO AND IN VITRO EVALUATION OF M. CATARRHALIS CANDIDATE ANTIGENS ........48 5.4.1 Recombinant expression of M. catarrhalis proteins in E. coli....................................48 5.4.2 Identification of three protective candidates .............................................................49 5.4.3 In vitro expression of M. catarrhalis candidate antigens............................................52 III ____________________________________________________________Table of contents 5.5 CHARACTERIZATION OF M. CATARRHALIS GENE DELETION MUTANTS...........................53 5.5.1 Generation and confirmation of gene deletion mutants in M. catarrhalis ..............53 5.5.2 M. catarrhalis gene deletion mutants do not show increased sensitivity to selected antibiotics........................................................................................................................57
Recommended publications
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • A Metagenomic Insight Into the Role Of
    A METAGENOMIC INSIGHT INTO THE ROLE OF WASTEWATER TREATMENT PLANTS AS POTENTIAL HOTSPOT FOR ANTIBIOTIC RESISTANT BACTERIA AND ANTIBIOTIC RESISTANCE GENES by PO-CHENG TANG Submitted in fulfilment of the academic requirements for the degree of Master of Science (MSc) in the Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science at the University of KwaZulu-Natal, Durban, South Africa. June 2016 As the candidate’s supervisor, I have approved this dissertation for submission. Name: ____________________Prof. A. O. Olaniran Signed: ____________________ Date: _______________ i Abstract The magnitude of the global freshwater crisis is underestimated. Although international and national efforts have implemented strategies to safeguard these precious resources, the consequential effect of continued deterioration of water quality on the available options for water usage is still a major area of concern. Contamination of surface water resources resulting from inadequate treated effluent discharge from wastewater treatment plants (WWTPs) has previously been indicated as an important topic requiring continued investigations. Often, these discharges introduce large amounts of organic matter and nutrients which could lead to eutrophication and temporary oxygen deficiencies, ultimately disrupting the natural biotic community structure and its important ecological functions. In addition, pathogenic bacteria and antibiotic resistance genes (ARGs) present in the wastewater discharged increases public health risks due to their disease causing potential and dissemination of resistance determinants, respectively. This could result in increased cases of diseases such as dysentery, cholera, skin infections and typhoid, leading to higher rates of mortality and morbidity, placing further stresses on the public health system. Hence, better management and minimisation of microbial pathogens and antibiotic resistant bacteria in WWTPs is crucial to prevent the dissemination of potential pathogens and ARGs into the environment.
    [Show full text]
  • Affy ID Fold Change P-Value Realtive Change Annotation Derivation
    Supplemental Table 2: Gene changes at 60 minutes in adherent versus non-adherent samples Affy_ID Fold change p-value Realtive_change Annotation Derivation of annotation A4052_s_at 4.313332633 0.024012538 Increase_in_Adherent trpE; anthranilate synthase component I (EC:4.1.3.27); K01657 anthranilate synthase component I [EC:4.1.3.27] ecw:EcE24377A_1463 V1799_s_at 3.972247924 0.033307448 Increase_in_Adherent hscB; co-chaperone HscB ; K04082 molecular chaperone HscB sdy:SDY_2723 V0231_s_at 3.95580421 0.000284517 Increase_in_Adherent ssb; single-stranded DNA-binding protein ; K03111 single-strand DNA-binding protein sdy:SDY_4508 SB5_0275_s_at 3.893614168 1.07E-05 Increase_in_Adherent hypothetical protein ; K02040 phosphate transport system substrate-binding protein sbo:SBO_3421 K3820_x_at 3.763692747 7.60E-05 Increase_in_Adherent putative holin protein eoj:ECO26_3693 O2ColV121_at 3.647435418 2.22E-05 Increase_in_Adherent NO_KEGG_DATA NO_KEGG_DATA SD1_2456_x_at 3.566304619 0.015156769 Increase_in_Adherent putative fructose-like phosphotransferase EIIB subunit 3 ; K11202 PTS system, fructose-specific IIB-like component [EC:2.7.1.69] sbc:SbBS512_E4440 SDY_4180_x_at 3.540687986 4.18E-05 Increase_in_Adherent NO_KEGG_DATA NO_KEGG_DATA D1328_s_at 3.533442346 0.004222188 Increase_in_Adherent NO_KEGG_DATA NO_KEGG_DATA A0552_s_at 3.51323466 0.019815913 Increase_in_Adherent hscB; co-chaperone HscB ; K04082 molecular chaperone HscB sdy:SDY_2723 b3350_s_at 3.455476842 0.000165312 Increase_in_Adherent NO_KEGG_DATA NO_KEGG_DATA V0624_x_at 3.388319399 0.000108353
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0186168 A1 Konieczka Et Al
    US 2016O1861 68A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0186168 A1 Konieczka et al. (43) Pub. Date: Jun. 30, 2016 (54) PROCESSES AND HOST CELLS FOR Related U.S. Application Data GENOME, PATHWAY. AND BIOMOLECULAR (60) Provisional application No. 61/938,933, filed on Feb. ENGINEERING 12, 2014, provisional application No. 61/935,265, - - - filed on Feb. 3, 2014, provisional application No. (71) Applicant: ENEVOLV, INC., Cambridge, MA (US) 61/883,131, filed on Sep. 26, 2013, provisional appli (72) Inventors: Jay H. Konieczka, Cambridge, MA cation No. 61/861,805, filed on Aug. 2, 2013. (US); James E. Spoonamore, Publication Classification Cambridge, MA (US); Ilan N. Wapinski, Cambridge, MA (US); (51) Int. Cl. Farren J. Isaacs, Cambridge, MA (US); CI2N 5/10 (2006.01) Gregory B. Foley, Cambridge, MA (US) CI2N 15/70 (2006.01) CI2N 5/8 (2006.01) (21) Appl. No.: 14/909, 184 (52) U.S. Cl. 1-1. CPC ............ CI2N 15/1082 (2013.01); C12N 15/81 (22) PCT Filed: Aug. 4, 2014 (2013.01); C12N 15/70 (2013.01) (86). PCT No.: PCT/US1.4/49649 (57) ABSTRACT S371 (c)(1), The present disclosure provides compositions and methods (2) Date: Feb. 1, 2016 for genomic engineering. Patent Application Publication Jun. 30, 2016 Sheet 1 of 4 US 2016/O186168 A1 Patent Application Publication Jun. 30, 2016 Sheet 2 of 4 US 2016/O186168 A1 &&&&3&&3&&**??*,º**)..,.: ××××××××××××××××××××-************************** Patent Application Publication Jun. 30, 2016 Sheet 3 of 4 US 2016/O186168 A1 No.vaegwzºkgwaewaeg Patent Application Publication Jun. 30, 2016 Sheet 4 of 4 US 2016/O186168 A1 US 2016/01 86168 A1 Jun.
    [Show full text]
  • DIFFERENTIAL GENE EXPRESSION of Piscirickettsia Salmonis
    DIFFERENTIAL GENE EXPRESSION OF Piscirickettsia salmonis STRAINS IN ADAPTIVE RESPONSE TO DIFFERENT CULTURE SYSTEMS: A STRATEGY TO IDENTIFY POSSIBLE INTRACELLULAR SURVIVAL MECHANISMS AND PATHOGENICITY DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT) DER FAKULTÄT FÜR BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG Vorgelegt von Tamara Scarlett Vera Sepúlveda Aus Valdivia, Chile 2013 Das Promotionsgesuch wurde eingereicht am: 1.08.2013 Die Arbeit wurde angeleitet von: Dr. Gernot Längst Dr. Jaime Figueroa Die vorgelegte Dissertation mit dem Titel DIFFERENTIAL GENE EXPRESSION OF Piscirickettsia salmonis STRAINS IN ADAPTIVE RESPONSE TO DIFFERENT CULTURE SYSTEMS: A STRATEGY TO IDENTIFY POSSIBLE INTRACELLULAR SURVIVAL MECHANISMS AND PATHOGENICITY von Tamara Vera Sepúlveda entstand unter der gemeinsamen Betreuung der Universitaet Regensburg und der Universidad Austral de Chile im Rahmen des bi- nationalen Promotionsprogramms RegenVald als Doppelpromotion. UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DIFFERENTIAL GENE EXPRESSION OF Piscirickettsia salmonis STRAINS IN ADAPTIVE RESPONSE TO DIFFERENT CULTURE SYSTEMS: A STRATEGY TO IDENTIFY POSSIBLE INTRACELLULAR SURVIVAL MECHANISMS AND PATHOGENICITY DOCTORAL THESIS TAMARA SCARLETT VERA SEPÚLVEDA VALDIVIA – CHILE 2013 DIFFERENTIAL GENE EXPRESSION OF Piscirickettsia salmonis STRAINS IN ADAPTIVE RESPONSE TO DIFFERENT CULTURE SYSTEMS: A STRATEGY TO IDENTIFY POSSIBLE INTRACELLULAR SURVIVAL MECHANISMS AND PATHOGENICITY Thesis submitted to the Faculty of Sciences of the Universidad Austral de Chile in partial satisfaction of the requirements for the degree Doctor in Science on Cellular and Molecular Biology. by TAMARA SCARLETT VERA SEPÚLVEDA Valdivia - Chile 2013 A mis padres Eflorcina y Dagoberto por su cariño y apoyo incondicional A Daniel por su amor, comprensión, ayuda y paciencia ACKNOWLEDGEMENTS I want to express my sincere gratitude to Dr.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • IDENTIFICATION of NATIVE 20S PROTEASOMAL SUBSTRATES in the HALOARCHAEON Haloferax Volcanii THROUGH DEGRADOMIC and PHOSPHOPROTEOMIC ANALYSIS
    IDENTIFICATION OF NATIVE 20S PROTEASOMAL SUBSTRATES IN THE HALOARCHAEON Haloferax volcanii THROUGH DEGRADOMIC AND PHOSPHOPROTEOMIC ANALYSIS By PHILLIP A. KIRKLAND A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 © 2007 Phillip Kirkland 2 To my mother, Kelly Kirkland; my grandmother Judy Jansen; and to the loving memory of Mr. and Mrs. L.V. Stevens. 3 ACKNOWLEDGMENTS I would like to express my deepest gratitude to Dr. Julie Maupin for her patience and guidance. Many thanks go to the Maupin lab staff (Matt Humbard, Wei Li, and Guanguin Zhou) and to former graduates Dr. Chris Reuter and Gosia Gil for all of their help and support. My sincerest thanks go to my supervisory committee (Dr. James Preston, Dr. Madeline Rasche, Dr. Richard Lamont, Dr. Peter Kima and Dr. Eric Triplett) for their insight. I owe a debt of gratitude to John Moore, Phi Do, Dr. Franz St. John, Youngnyun Kim, John Rice and the entire Microbiology and Cell Science Department. I am also extremely grateful to all of those who have offered help and support with instrumentation, bioinformatics and general proteomic endeavors including Dr. Stan Stevens, Scott McClung, Dr. Marjorie Chow and Dr. Alfred Chung and the entire ICBR staff as well as Dr. Jennifer Busby and Valerie Cavett at Scripps Florida. Finally, I am eternally grateful for the support and encouragement of my family and friends: my mom, Kelly Kirkland, my grandmother Judy Jansen, my fiancé Shelley Cooper, Jeremy and Matt Jones, William Knapp, and the Smith, Bright, Blair, Stevens and Jansen families and my great grandparents, the late Lavert V.
    [Show full text]
  • Supporting Information
    Supporting Information © Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 © Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Supporting Information for Identification of Protein Fold Topology Shared between Different Folds Inhibited by Natural Products Bernadette M. McArdle, Ronald J. Quinn* Table S-1 Result of data-mining for natural product inhibitors of the Zincin-like fold [a] NP/derivative NP type/ mode Inhibits Potency PDB Fold Doesn’t Inhibit Fold [41, [41] [44] [44] [45] actinonin peptide deformylase Ki = 0.28 nM 1q1y 1ix1 Peptide ACE Zincin-like 42] [41] [45] IC50 = 0.8 nM 1g2a deformylase (IC50 > 100 µM) [42] [46] Ki = 0.3 nM 1lqw [46] Ki = 0.012 -0.025 1lqy µM[43] 1lru[46] aminopeptidase P Creatinase/ 1lry[46] (3.4.11.9)[101] aminopeptidase Kis = 0.135 µM[94] no pdb glutamyl ?homology with meprin A Kii = 1.57 µM[94] ?Zincin-like aminopeptidase TET (homology with (3.4.11.7)[96] astacin) Kis = 130 µM[94] aminopeptidase W ?no pdb astacin Kii = 9500 µM[94] Zincin-like (3.4.11.16)[96] no sequence [95] IC50 = 25 nM no pdb aminopeptidase A ? [96] alanyl aminopeptidase IC50 = 2 µM ?Zincin-like (?EC) [87-91] [97] [97] (N/M) (3.4.11.2) IC50 = 0.4 µg/mL (homology with IC50 >100µg/mL LTA4H) [98] Ki = 1.4 mM arginine [99] human neutrophil IC50 = 0.3 µM Zincin-like aminopeptidase (B) ?Zincin-like [97] collagenase (MMP-8) (3.4.11.6) IC 50 > (homology with [99] IC50 = 0.19 µM 100 µg/mL LTA4H) [45] collagenase IC50 = 1 µM Zincin-like (MMP-1) [99] IC50 = 0.33 µM gelatinase B Zincin-like (MMP-9) [99] IC50 = 1.7
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]
  • Exploring the Interactions and the Metabolome of the Soil
    1 Supplementary Material 2 Do size and shape matter? Exploring the interactions and the 3 metabolome of the soil isolate Hylemonella gracilis 4 5 Olaf Tyc1,2*, Purva Kulkarni1,3, Adam Ossowicki1, Vittorio Tracanna4, Marnix H. 6 Medema4, Peter van Baarlen5, W.F.J. van Ijcken6, Koen J. F. Verhoeven1 and Paolina 7 Garbeva1, 7 8 9 1Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, PO 10 BOX 50, 6700 AB Wageningen, Netherlands 11 12 2Goethe University, Department of Internal Medicine I, University Hospital Frankfurt, 13 Theodor-Stern-Kai 7, 60590 Frankfurt, Germany 14 15 3Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 16 zuid 10, 6525 GA Nijmegen, Netherlands 17 18 4Wageningen University, Department of Plant Sciences, Bioinformatics Group, 19 Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands 20 21 5Wageningen University, Department of Animal Sciences, Host-Microbe Interactomics, 22 Postbus 338, 6700 WD Wageningen, Netherlands 23 24 6Center for Biomics, Erasmus University Medical Center, Building Ee, Room Ee6.79b 25 Wytemaweg 80, 3015 CN Rotterdam Rotterdam, Netherlands 26 27 7Department of Plant and Environmental Sciences, Faculty of Natural and Life Sciences, 28 University of Copenhagen, Denmark 29 30 Correspondence: 31 Goethe University, Department of Internal Medicine I, University Hospital Frankfurt, 32 Theodor-Stern-Kai 7, 60590 Frankfurt, Germany, E-Mail: [email protected] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Supplementary Figure 1: Schematic overview of the isolation method used to isolate H. 50 gracilis from soil. 51 52 53 Supplementary Figure 2: Box plots for the significantly differentially abundant metabolites 54 and their corresponding ion intensity maps found using Mass spectrometry imaging (MSI) 55 during the interaction of H.
    [Show full text]
  • Metabolic Engineering of Escherichia Coli For
    Zhu et al. Microb Cell Fact (2020) 19:129 https://doi.org/10.1186/s12934-020-01369-2 Microbial Cell Factories RESEARCH Open Access Metabolic engineering of Escherichia coli for efcient production of L-alanyl-L-glutamine Jiangming Zhu1 , Wei Yang1, Bohua Wang1, Qun Liu1,2, Xiaotong Zhong1,2, Quanxiu Gao3, Jiezheng Liu1,2, Jianzhong Huang3*, Baixue Lin1,2* and Yong Tao1,2 Abstract Background: L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other felds. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efcient biotechnological process for the industrial production of AQ. Results: A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA–glsB to block the frst step in glutamine metabolism, and glnE–glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production.
    [Show full text]