Metabolic Engineering of Escherichia Coli For

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Engineering of Escherichia Coli For Zhu et al. Microb Cell Fact (2020) 19:129 https://doi.org/10.1186/s12934-020-01369-2 Microbial Cell Factories RESEARCH Open Access Metabolic engineering of Escherichia coli for efcient production of L-alanyl-L-glutamine Jiangming Zhu1 , Wei Yang1, Bohua Wang1, Qun Liu1,2, Xiaotong Zhong1,2, Quanxiu Gao3, Jiezheng Liu1,2, Jianzhong Huang3*, Baixue Lin1,2* and Yong Tao1,2 Abstract Background: L-Alanyl-L-glutamine (AQ) is a functional dipeptide with high water solubility, good thermal stability and high bioavailability. It is widely used in clinical treatment, post-operative rehabilitation, sports health care and other felds. AQ is mainly produced via chemical synthesis which is complicated, time-consuming, labor-intensive, and have a low yield accompanied with the generation of by-products. It is therefore highly desirable to develop an efcient biotechnological process for the industrial production of AQ. Results: A metabolically engineered E. coli strain for AQ production was developed by over-expressing L-amino acid α-ligase (BacD) from Bacillus subtilis, and inactivating the peptidases PepA, PepB, PepD, and PepN, as well as the dipeptide transport system Dpp. In order to use the more readily available substrate glutamic acid, a module for glutamine synthesis from glutamic acid was constructed by introducing glutamine synthetase (GlnA). Additionally, we knocked out glsA–glsB to block the frst step in glutamine metabolism, and glnE–glnB involved in the ATP-dependent addition of AMP/UMP to a subunit of glutamine synthetase, which resulted in increased glutamine supply. Then the glutamine synthesis module was combined with the AQ synthesis module to develop the engineered strain that uses glutamic acid and alanine for AQ production. The expression of BacD and GlnA was further balanced to improve AQ production. Using the fnal engineered strain p15/AQ10 as a whole-cell biocatalyst, 71.7 mM AQ was produced with a productivity of 3.98 mM/h and conversion rate of 71.7%. Conclusion: A metabolically engineered strain for AQ production was successfully developed via inactivation of peptidases, screening of BacD, introduction of glutamine synthesis module, and balancing the glutamine and AQ synthesis modules to improve the yield of AQ. This work provides a microbial cell factory for efcient production of AQ with industrial potential. Keywords: AQ, Metabolic engineering, Whole-cell biocatalysis, L-amino acid α-ligase, Glutamine synthase Background [7] and improving the adaptability of organism to stress Glutamine (l-Gln) plays an important role in maintaining [8]. During disease or stress conditions, demand out- intestinal function [1–4], promoting immune function [5, paces supply, and glutamine becomes conditionally 6], maintaining homeostasis of the internal environment essential [9]. Te supply of exogenous l-glutamine or glutamyl dipeptide is an important nutritional solution to *Correspondence: [email protected]; [email protected] reduce glutamine defciency in vivo, and can be applied 1 Chinese Academy of Sciences Key Laboratory of Microbial Physiological in clinical treatment. However, some characteristics of and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China glutamine such as low solubility in water, easy decompo- 3 National Engineering Research Center of Industrial Microbiology sition and poor thermal stability, as well as production of and Fermentation Technology, College of Life Sciences, Fujian Normal toxic pyroglutamate during heat sterilization restricted University, Fuzhou 350117, Fujian, People’s Republic of China Full list of author information is available at the end of the article © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Zhu et al. Microb Cell Fact (2020) 19:129 Page 2 of 10 its application in medicine. Otherwise, as a result of its produced more than 100 mM AQ in 47 h of fermenta- unstable nature, the low yield of glutamine during the tion [20]. Whole-cell biocatalysis can be used to perform purifcation process is a great challenge [10]. enzyme cascade reaction, improve catalytic efciency, l-Alanyl-l-glutamine (abbreviated as AQ) is a dipeptide of and simplify the preparation process. glutamine and alanine, which is more stable and water-sol- A metabolically engineered E. coli strain for AQ pro- uble than glutamine. AQ is hydrolyzed to release glutamine duction was developed by over-expressing l-amino acid and alanine in vivo. While it acts as a source of glutamine, α-ligase (BacD) from Bacillus subtilis and inactivating AQ has higher bioavailability and a short half-life [11], and native peptidases. In order to use a more readily avail- does not cause cumulative damage to the body, so it is used able substrate, the glutamine synthesis module based as a substitute for glutamine in clinical practice. on introducing glutamine synthetase (GlnA) was con- Te commercial demand for AQ is increasing with the structed and optimized. Ten glutamine synthesis mod- expansion of new applications and the development of ule was combined with the AQ synthesis module to use new products based on AQ. Chemical and biotechno- glutamic acid and alanine for AQ production. Te pro- logical methods for AQ production have been developed tein expression of BacD and GlnA was further balanced [12–16]. AQ can be synthesized by chemical condensa- to improve the AQ production. Finally, we used the engi- tion of benzyloxycarbonyl-l-alanine and methyl glu- neered strain to develop a whole-cell biocatalytic process tamate via activated ester [17] or triphenyl phosphine/ for AQ production (Fig. 1). Tis work provides an envi- hexachloroethane condensation, which used to require ronmentally friendly, highly efcient and cost-efective complex steps such as amino acid activation, subunit process for industrial biosynthesis of AQ. protection, and removing the protective groups. Enzy- matic processes for AQ production have been developed Results using an α-amino acid ester acyltransferase [18, 19]. Construction of the AQ synthesis module Tabata and Hashimoto engineered Escherichia coli by Te E. coli strain p01/BW25113, overexpressing BacD expressing l-amino acid α-ligase (BacD), which catalyzes from Bacillus subtilis (BsBacD) which catalyzes the the formation of AQ in an ATP-dependent manner, and formation of AQ from alanine and glutamine, was Fig. 1 Schematic presentation of the AQ metabolic pathway in engineered E. coli. The GlnA and BacD were co-expressed. Discontinued arrows represent the enzymatic activities that have been eliminated. GlsA glutaminase 1, GlsB glutaminase 2, GlnE fused glutamine synthetase deadenylase/adenylyltransferase, GlnB nitrogen regulatory protein PII-1, PepA aminopeptidase A/I, PepB aminopeptidase B, PepD peptidase D, PepN aminopeptidase N, Dpp dipeptide ABC transporter DppABCDF Zhu et al. Microb Cell Fact (2020) 19:129 Page 3 of 10 Fig. 3 AQ production by engineered strains over-expressing BacD homologs from diferent species. Ba, BacD from Bacillus altitudinis; Fig. 2 Extracellular titers of AQ produced by engineered strains Bs, BacD from Bacillus subtilis; Bv, BacD from Beta vulgaris; Vc, BacD overexpressing BsBacD. WT wild type; BW, AQ06, AQ09, AQ10 were from Vibrio campbellii; Pm, BacD from Perkinsus marinus; Sr, BacD transformed with plasmid p01. The engineered strains were induced from Streptomyces rubrolavendulae; Bsa, BacD from Bacillus safensis; and suspended in a reaction mixture containing 50 mM glutamine, Blo, BacD from Bifdobacterium longum subsp. Infantis; Pf, BacD from 50 mM alanine, and 10 mM magnesium chloride. The bioconversion Pseudomonas fuorescens reactions were performed at 30 °C and 200 rpm for 18 h. Glucose was supplemented at a concentration of 10 mM every 3 h previously reported BacD homologs and those used in constructed for the production of AQ. Extracellular AQ this study (Additional fle 1: Fig. S1). Te genes encod- concentration was measured by HPLC, and 2.0 mM AQ ing BacD homologs from diferent species were codon- was obtained (Fig. 2). optimized by Nanjing Generay (China) and cloned into In E. coli, peptidases encoded by pepA, pepB, pepD and strain AQ10 (BW25113, ∆glnEB, ∆glsAB, ∆lpxM, ∆pep- pepN, have been reported to degrade a broad spectrum of ABDN, ∆dpp). Te performance of diferent BacD pro- dipeptides [20, 21], and inactivating them might reduce teins was investigated in vivo, using the respective strains AQ degradation. It was reported that deletion of dpp, as a whole-cell biocatalysts. Te result showed that the encoding a dipeptide ABC transporter increased AQ accu- strain overexpressing BaBacD (from Bacillus altitudinis) mulation [20, 22, 23]. By knocking out the genes pepN, produced higher amount of AQ (19.2 mM) than strains pepA, pepB, pepD and dpp, the degradation of AQ was with other BacD homologs. By comparison, 7.9 mM AQ alleviated. In the starting host BW25113, 20 mM AQ was was obtained using the strain overexpressing BsBacD completely degraded after 3 h, compared to only 1.3 mM (from Bacillus subtilis) (Fig. 3). Although there was solu- in the chassis AQ09 (BW25113ΔpepN, ΔpepA, ΔpepB, ble expression of BvBacD (from Beta vulgaris), VcBacD ΔpepD, Δdpp) after 6 h.
Recommended publications
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio Alginolyticus
    國 立 交 通 大 學 生物科技研究所 碩士論文 溶藻弧菌胺醯組胺酸雙胜肽酶之生化特性分析 及其功能性胺基酸之研究 Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus 研究生: 陳怡親 指導教授: 吳東昆 博士 中華民國九十六年七月 Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus 研究生:陳怡親 Student: Yi-Chin Chen 指導教授:吳東昆 博士 Advisor: Dr. Tung-Kung Wu 國 立 交 通 大 學 生物科技研究所 碩士論文 A Thesis Submitted to Department of Biological Science and Technology College of Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in Biological Science and Technology July, 2007 Hsinchu, Taiwan, Republic of China 中華民國九十六年七月 溶藻弧菌胺醯組胺酸雙胜肽酶之生化特性分析及其功能性胺基酸 之研究 研究生:陳怡親 指導教授:吳東昆 博士 國立交通大學 生物科技研究所碩士班 摘要 胺醯組胺酸雙胜肽酶(PepD, EC 3.4.13.3)為胜肽酶家族M20 中的一員。胜肽酶家族M20 中的酵素皆屬於金屬雙胜肽酶,而經由研究發現可被應用於抗菌、癌症的臨床治療及神 經傳導物質的調控等方面。過去對於細菌中胺醯組胺酸雙胜肽酶的研究很少,只針對其 序列和部分生化特性進行探討,並無其生理角色或活性區胺基酸相關之研究。本論文將 溶藻弧菌pepD基因殖入pET-28a(+)質體中,表現出N端帶有His-tag之重組蛋白,並利用 Ni-NTA親和層析管柱純化之。純化出的蛋白質對於特定的Xaa-His雙胜肽(例如: L-carnosine)具有水解的能力,但無水解三胜肽之活性。經酵素動力學研究,溶藻弧菌 -1 PepD蛋白對雙胜肽L-carnosine之Km與kcat值分別為 0.36 mM與 8.6 min 。經由序列分析 預測溶藻弧菌PepD蛋白上胺基酸位置His80、Asp82、Asp119、Glu149、Glu150、Asp173 及His461 為活性區胺基酸。其中將所預測影響金屬鍵結之胺基酸Asp119 以及扮演催化 角色之胺基酸Glu149 分別進行飽和定點突變,發現大部分之突變蛋白皆失去或降低原 有之活性。此外,以同屬M20 胜肽酶家族之PepV蛋白結晶結構為模板做出溶藻弧菌PepD 蛋白之同源模擬,顯示出相同之活性區胺基酸。因此,根據本論文實驗結果將首次提出 胺醯組胺酸雙胜肽酶活性區胺基酸之分佈情形與其可能扮演之功能。 I Characterization of Functional Residues for Catalysis and Kinetics of Aminoacylhistidine Dipeptidase from Vibrio alginolyticus Student : Yi-Chin Chen Advisor : Dr. Tung-Kung Wu Institute of Biological Science and Technology National Chiao Tung University Abstract Proteins of the aminoacylase-1/metallopeptidase 20 (Acyl/M20) family were characterized to contain a zinc-binding domain at their active site. Aminoacylhistidine dipeptidase (PepD, EC 3.4.13.3) is a member of peptidase family M20 which catalyzes the cleavage and release of N-terminal amino acid, usually are neutral or hydrophobic residue, from Xaa-His peptide or polypeptide.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • The Role of Diallyl Thiosulfinate Associated with Nuciferine And
    Cai_Stesura Seveso 27/03/18 09:29 Pagina 59 DOI: 10.4081/aiua.2018.1.59 ORIGINAL PAPER The role of diallyl thiosulfinate associated with nuciferine and diosgenin in the treatment of premature ejaculation: A pilot study Tommaso Cai 1, Andrea Cocci 2, Giamartino Cito 2, Bruno Giammusso 3, Alessandro Zucchi 4, Francesco Chiancone 5, Maurizio Carrino 5, Francesco Mastroeni 6, Francesco Comerci 7, Giorgio Franco 8, Alessandro Palmieri 9 1 Department of Urology, Santa Chiara Regional Hospital, Trento, Italy; 2 Department of Urology, University of Florence, Florence, Italy; 3 Department of Andrology, Policlinico Morgagni, Catania, Italy; 4 Department of Urology, University of Perugia, Perugia, Italy; 5 Department of Urology, Cardarelli Hospital, Naples, Italy; 6 Department of Urology, Azienda Ospedaliera Papardo, Messina, Italy 7 Urologist, Bologna, Italy; 8 Department of Urology, Sapienza University of Rome, Rome, Italy; 9 Department of Urology, University of Naples, Federico II, Naples, Italy. Summary Objective: To assess the efficacy and safety with prevalence rates of 20-30%, probably affecting of an association of diallyl thiosulfinate with every man at some point in his life (2, 3). It may result nuciferine and diosgenin in the treatment of a group of patients in unsatisfactory sexual intercourse for both partners, suffering from premature ejaculation (PE), primary or second- decreasing sexual self-confidence and self-esteem and ary to erectile dysfunction (ED). resulting in an overall reduction of quality of life (QoL) Materials and methods: From July 2015 to October 2016, 143 (4). Lifelong PE occurs within 30-60 seconds after vagi- patients (mean age 25.3; range 18-39) affected by PE complet- ed the study and were finally analyzed in this phase I study.
    [Show full text]
  • A Mycobacterium Avium Subsp. Paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2016 A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival Abirami Kugadas University of Minnesota, Boston Elise A. Lamont University of Minnesota, Saint Paul John Bannantine USDA ARS National Animal Disease Center, [email protected] Fernanda Miyagaki Shoyama Michigan State University, [email protected] Evan Brenner USDA ARS National Animal Disease Center See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agriculture Commons Kugadas, Abirami; Lamont, Elise A.; Bannantine, John; Shoyama, Fernanda Miyagaki; Brenner, Evan; Janagama, Harish K.; and Sreevatsan, Srinand, "A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival" (2016). Publications from USDA-ARS / UNL Faculty. 2391. https://digitalcommons.unl.edu/usdaarsfacpub/2391 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Abirami Kugadas, Elise A. Lamont, John Bannantine, Fernanda Miyagaki Shoyama, Evan Brenner, Harish K. Janagama, and Srinand Sreevatsan This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdaarsfacpub/2391 ORIGINAL RESEARCH published: 22 August 2016 doi: 10.3389/fcimb.2016.00085 A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival Abirami Kugadas 1†, Elise A.
    [Show full text]
  • Disease-Related Cellular Protein Networks Differentially Affected
    www.nature.com/scientificreports OPEN Disease‑related cellular protein networks diferentially afected under diferent EGFR mutations in lung adenocarcinoma Toshihide Nishimura1,8*, Haruhiko Nakamura1,2,8, Ayako Yachie3,8, Takeshi Hase3,8, Kiyonaga Fujii1,8, Hirotaka Koizumi4, Saeko Naruki4, Masayuki Takagi4, Yukiko Matsuoka3, Naoki Furuya5, Harubumi Kato6,7 & Hisashi Saji2 It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) afect downstream molecular networks and pathways. This study aimed to provide information on the infuences of these mutations. The study assessed 36 protein expression profles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identifed 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen- activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identifed various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our fndings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
    [Show full text]
  • Preferred Drug List 4-Tier
    Preferred Drug List 4-Tier 21NVHPN13628 Four-Tier Base Drug Benefit Guide Introduction As a member of a health plan that includes outpatient prescription drug coverage, you have access to a wide range of effective and affordable medications. The health plan utilizes a Preferred Drug List (PDL) (also known as a drug formulary) as a tool to guide providers to prescribe clinically sound yet cost-effective drugs. This list was established to give you access to the prescription drugs you need at a reasonable cost. Your out- of-pocket prescription cost is lower when you use preferred medications. Please refer to your Prescription Drug Benefit Rider or Evidence of Coverage for specific pharmacy benefit information. The PDL is a list of FDA-approved generic and brand name medications recommended for use by your health plan. The list is developed and maintained by a Pharmacy and Therapeutics (P&T) Committee comprised of actively practicing primary care and specialty physicians, pharmacists and other healthcare professionals. Patient needs, scientific data, drug effectiveness, availability of drug alternatives currently on the PDL and cost are all considerations in selecting "preferred" medications. Due to the number of drugs on the market and the continuous introduction of new drugs, the PDL is a dynamic and routinely updated document screened regularly to ensure that it remains a clinically sound tool for our providers. Reading the Drug Benefit Guide Benefits for Covered Drugs obtained at a Designated Plan Pharmacy are payable according to the applicable benefit tiers described below, subject to your obtaining any required Prior Authorization or meeting any applicable Step Therapy requirement.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • Dysregulation of Macrophage PEPD in Obesity Determines Adipose Tissue Fbro-Infammation and Insulin Resistance
    Dysregulation of macrophage PEPD in obesity determines adipose tissue bro-inammation and insulin resistance Vanessa Pellegrinelli ( [email protected] ) Institute of Metabolic Science Segio Rodriguez-Cuenca MRC Metabolic Diseases Unit, University of Cambridge Christine Rouault Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics) Hanna Schilbert Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University Sam Virtue University of Cambridge Jose Maria Moreno-Navarrete Institut d'Investigació Biomèdica de Girona Guillaume Bidault University of Cambridge https://orcid.org/0000-0002-8396-9962 Maria del Carmen Vázquez Borrego Maimonides Institute of Biomedical Research of Cordoba (IMIBIC) Ana Rita Dias Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge Boas Pucker Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University Martin Dale University of Cambridge Metabolic Research Laboratories Mark Campbell University of Cambridge Stefania Carobbio Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge Judith Aron-Wisnewsky Page 1/30 Assistance-Publique Hôpitaux de Paris, Nutrition department, Pitié-Salpêtrière hospital Silvia Mora Department of Molecular and Cellular Physiology, Institute of Translational Medicine, The University of Liverpool Mauro Masiero The Beijer Laboratory and Department
    [Show full text]
  • Prolidase Deficiency
    Prolidase deficiency Author: Professor Jaak Jaeken1 Creation Date: August 2001 Update: January 2004 Scientific Editor: Professor Jean-Marie Saudubray 1Center for Metabolic Disease, University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium. [email protected] Abstract Keywords Disease name Excluded diseases Diagnostic criterium Differential diagnosis Prevalence Clinical description Management Etiology Diagnostic methods Genetic counseling Antenatal diagnosis Unresolved questions References Abstract Prolidase deficiency is a very rare autosomal recessive disease. Prevalence remains unknown, some 40 cases have been reported. It is characterized by mild to severe skin lesions particularly on the face, palms, lower legs and soles, besides variable other features. Patients excrete massive amounts of iminodipeptides in urine due to a deficiency of the exopeptidase prolidase. The activity of this enzyme can be measured in hemolysates, leukocytes or fibroblasts. Mutations in the PEPD gene on chromosome 19p13.2 have been observed. The skin ulcers respond partially to local treatment. Keywords prolidase, iminodipeptiduria Disease name Clinical description Prolidase deficiency First symptoms start between birth and young adult age. Most characteristic are the skin Excluded diseases lesions ranging from mild to severe, including Lathyrism recalcitrant ulcerations. They are mostly located on the face, the palms, the lower legs and the Diagnostic criterium soles. Other features are facial dysmorphy, Prolidase deficiency psychomotor retardation and recurrent infections. Differential diagnosis Systemic lupus erythematosus Management This is limited to treatment of the skin ulcers with Prevalence oral ascorbate, manganese (cofactor of Unknown; some 40 individuals have been prolidase), inhibitors of collagenase, and local reported. Jaeken J; Prolidase deficiency. Orphanet encyclopedia, January 2004. http://www.orpha.net/data/patho/GB/uk-prolidase.pdf 1 applications of L-proline-and glycine-containing References ointments.
    [Show full text]
  • Mechanisms of Addiction
    Mechanisms of Addiction Prof David Nutt, FMedSci Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London W12 0NN, UK. [email protected] www.tocris.com What is addiction? Although the term addiction is controversial because it can be stigmatizing and divisive, we use it here as a useful shorthand for the processes by which people become dependent on the use of drugs, or activities such as gambling, to the point where it distorts and even takes over their lives. The key feature of drug addiction is the inability to stop using the drug despite clear evidence of harm; the drug becomes progressively more important, dominating life at the expense of family, friends and work. Not all those who use drugs become addicted and factors that predispose to addiction include the class of drug, family history of addiction and propensity to withdrawal reactions and craving. Using drugs to deal with psychiatric problems is particularly likely to lead to addiction. Brain Circuits Associated with Addiction Classes of Addictive Drugs Products available from Tocris Stimulants Stimulants are drugs that act by releasing dopamine and, D Cocaine, (D)-Amphetamine sulfate, 3 Morphine, Mephedrone, in some cases, blocking its reuptake. This class includes Threo-methylphenidate D cocaine (and crack), amphetamine and its derivatives such 1,5 MAO as metamphetamine (crystal meth) and methylphenidate, + ATP (R)-(-)-Deprenyl, Moclobemide DA and some cathinones, such as mephedrone. Their actions DAT PFC AC are dependent on speed of brain penetration, with smoking cAMP PKA GBR 12909, Tetrabenazine, Reserpine, MAO VMAT and iv injection the most addictive routes, but are largely – (±)-MDMA CREB Dopamine D and D ACG unaffected by dopamine receptor antagonists.
    [Show full text]
  • Glutamate Receptor Ion Channels: Structure, Regulation, and Function Stephen Traynelis, Emory University Lonnie P
    Glutamate Receptor Ion Channels: Structure, Regulation, and Function Stephen Traynelis, Emory University Lonnie P. Wollmuth, SUNY Stony Brook Chris J. McBain, Eunice Kennedy Shriver Natl Inst Child Hlth & Hum Frank S. Menniti, CyclicM LLC Katie M. Vance, Emory University Kevin K. Ogden, Emory University Kasper B. Hansen, Emory University Hongjie Yuan, Emory University Scott J. Myers, Emory University Raymond Dingledine, Emory University Journal Title: Pharmacological Reviews Volume: Volume 62, Number 3 Publisher: American Society for Pharmacology and Experimental Therapeutics (ASPET) | 2010-09-01, Pages 405-496 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1124/pr.109.002451 Permanent URL: https://pid.emory.edu/ark:/25593/tws3d Final published version: http://dx.doi.org/10.1124/pr.109.002451 Copyright information: U.S. Government work not protected by U.S. copyright Accessed September 23, 2021 7:10 AM EDT Glutamate Receptor Ion Channels: Structure, Regulation, and Function Stephen Traynelis, Emory University Lonnie P. Wollmuth, Stony Brook University Chris J. McBain, Eunice Kennedy Shriver National Institute of Child Health and Human Development Frank S. Menniti, cyclicM LLC Katie M. Vance, Emory University Kevin K. Ogden, Emory University Kasper B. Hansen, Emory University Hongjie Yuan, Emory University Scott J. Myers, Emory University Raymond J Dingledine, Emory University Journal Title: Pharmacological Reviews Volume: Volume 62, Number 3 Publisher: American Society for Pharmacology and Experimental Therapeutics (ASPET) | 2010-09, Pages 405-496 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1124/pr.109.002451 Permanent URL: http://pid.emory.edu/ark:/25593/f867k Final published version: http://pharmrev.aspetjournals.org/content/62/3/405 Copyright information: U.S.
    [Show full text]