FDA Pesticide Residue Monitoring Program Reports and Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACEPHATE (Addendum)
3 ACEPHATE (addendum) First draft prepared by Professor P.K. Gupta 1 and Dr Angelo Moretto 2 1 Rajinder Nagar, Bareilly, UP, India; 2 Dipartimento Medicina Ambientale e Sanità Pubblica, Università di Padova, Padova, Italy Explanation..........................................................................................................3 Evaluation for acceptable daily intake.................................................................4 Biochemical aspects ......................................................................................4 Oral absorption, distribution, excretion and metabolism .......................4 Toxicological studies.....................................................................................5 Acute toxicity.........................................................................................5 Short-term studies of toxicity.................................................................6 Special studies........................................................................................7 Studies on inhibition of cholinesterase activity in vitro ..................7 Short-term study of neurotoxicity ...................................................7 Developmental neurotoxicity..........................................................9 Observations in humans ..............................................................................10 Comments..........................................................................................................12 Toxicological evaluation ...................................................................................13 -
Insecticide Residue Analyses in Cucumbers Sampled from Çanakkale Open Markets1 Çanakkale Açık Pazarlarından Örneklenen Hıyarlarda Insektisit Kalıntı Analizleri
Türk. entomol. derg., 2020, 44 (4): 449-460 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.767482 E-ISSN 2536-491X Original article (Orijinal araştırma) Insecticide residue analyses in cucumbers sampled from Çanakkale open markets1 Çanakkale açık pazarlarından örneklenen hıyarlarda insektisit kalıntı analizleri Hayriye ÇATAK2 Osman TİRYAKİ3* Abstract The aim of this study was to investigate four insecticide residues in cucumbers with the aid of QuEChERS 2007.1 method. For method verification assessment, pesticide-free cucumber matrix was spiked with 0.1, 1 and 10 times of MRL for each pesticide. The QuEChERS-LC-MS/MS analytical method revealed that the detection limits of the insecticides were below the MRLs and the overall recovery of method was 97.7%. These figures were within the SANTE recovery limits (60-140%) and the values specified for the repeatability (≤20%). Cucumbers were collected from six different stands (A-F) at Çanakkale open markets for 6 weeks between 23 November and 28 December 2018. Residues of each sampling time and each stand were assessed. Acetamiprid residue of 257g and 236 µg/kg were detected in week 5 from stand B and in week 2 from stand E, respectively. These values are close to MRL (300 µg/kg). Formetanate hydrochloride residue of the week 3 from stand F (36.3 µg/kg) was more than MRL of 10 µg/kg. Pirimiphos methyl and chlorpyrifos residues were not detected in cucumbers. Theoretical maximum daily intake assessment showed that there was no chronic exposure risk for these four pesticides through cucumber consumption. Keywords: Cucumber, insecticide residues, QuEChERS, risk assessment, toxicology Öz Bu çalışma hıyarlarda dört insektisit kalıntısını QuEChERS 2007.1 yöntemi ile belirlemek amacıyla yapılmıştır. -
Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait
International Journal of Environmental Research and Public Health Article Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait Mustapha F. A. Jallow *, Dawood G. Awadh, Mohammed S. Albaho, Vimala Y. Devi and Nisar Ahmad Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; [email protected] (D.G.A.); [email protected] (M.S.A.); [email protected] (V.Y.D.); [email protected] (N.A.) * Correspondence: [email protected]; Tel.: +965-249-8984 Received: 1 May 2017; Accepted: 12 July 2017; Published: 25 July 2017 Abstract: The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. -
Common and Chemical Names of Herbicides Approved by the WSSA
Weed Science 2010 58:511–518 Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Below is the complete list of all common and chemical of herbicides as approved by the International Organization names of herbicides approved by the Weed Science Society of for Standardization (ISO). A sponsor may submit a proposal America (WSSA) and updated as of September 1, 2010. for a common name directly to the WSSA Terminology Beginning in 1996, it has been published yearly in the last Committee. issue of Weed Science with Directions for Contributors to A herbicide common name is not synonymous with Weed Science. This list is published in lieu of the selections a commercial formulation of the same herbicide, and in printed previously on the back cover of Weed Science. Only many instances, is not synonymous with the active ingredient common and chemical names included in this complete of a commercial formulation as identified on the product list should be used in WSSA publications. In the absence of label. If the herbicide is a salt or simple ester of a parent a WSSA-approved common name, the industry code number compound, the WSSA common name applies to the parent as compiled by the Chemical Abstracts Service (CAS) with compound only. CAS systematic chemical name or the systematic chemical The chemical name used in this list is that preferred by the name alone may be used. The current approved list is also Chemical Abstracts Service (CAS) according to their system of available at our web site (www.wssa.net). -
Carbamate Pesticides Aldicarb Aldicarb Sulfoxide Aldicarb Sulfone
Connecticut General Statutes Sec 19a-29a requires the Commissioner of Public Health to annually publish a list setting forth all analytes and matrices for which certification for testing is required. Connecticut ELCP Drinking Water Analytes Revised 05/31/2018 Microbiology Total Coliforms Fecal Coliforms/ E. Coli Carbamate Pesticides Legionella Aldicarb Cryptosporidium Aldicarb Sulfoxide Giardia Aldicarb Sulfone Carbaryl Physicals Carbofuran Turbidity 3-Hydroxycarbofuran pH Methomyl Conductivity Oxamyl (Vydate) Minerals Chlorinated Herbicides Alkalinity, as CaCO3 2,4-D Bromide Dalapon Chloride Dicamba Chlorine, free residual Dinoseb Chlorine, total residual Endothall Fluoride Picloram Hardness, Calcium as Pentachlorophenol CaCO3 Hardness, Total as CaCO3 Silica Chlorinated Pesticides/PCB's Sulfate Aldrin Chlordane (Technical) Nutrients Dieldrin Endrin Ammonia Heptachlor Nitrate Heptachlor Epoxide Nitrite Lindane (gamma-BHC) o-Phosphate Metolachlor Total Phosphorus Methoxychlor PCB's (individual aroclors) Note 1 PCB's (as decachlorobiphenyl) Note 1 Demands Toxaphene TOC Nitrogen-Phosphorus Compounds Alachlor Metals Atrazine Aluminum Butachlor Antimony Diquat Arsenic Glyphosate Barium Metribuzin Beryllium Paraquat Boron Propachlor Cadmium Simazine Calcium Chromium Copper SVOC's Iron Benzo(a)pyrene Lead bis-(2-ethylhexyl)phthalate Magnesium bis-(ethylhexyl)adipate Manganese Hexachlorobenzene Mercury Hexachlorocyclopentadiene Molybdenum Nickel Potassium Miscellaneous Organics Selenium Dibromochloropropane (DBCP) Silver Ethylene Dibromide (EDB) -
488 Subpart A—Organic Pesticide Chemicals Manufacturing
§ 455.11 40 CFR Ch. I (7–1–12 Edition) chemical products and be considered a this subpart are applicable to dis- ‘‘stand-alone’’ PFPR facility. charges resulting from the manufac- ture of the following organic active in- [43 FR 17776, Apr. 25, 1978, as amended at 50 FR 40701, Oct. 4, 1985; 51 FR 44911, Dec. 15, gredients: Aldrin, BHC, Captan, 1986; 58 FR 50689, Sept. 28, 1993; 61 FR 57548, Chlordane, DDD, DDE, DDT, Dichloran, Nov. 6, 1996] Dieldrin, Endosulfan, Endrin, Hepta- chlor, Lindane, Methoxychlor, Mirex, Subpart A—Organic Pesticide PCNB, Toxaphene, Trifluralin, Chemicals Manufacturing Azinphos Methyl, Demeton-O, Demeton-S, Diazinon, Disulfoton, Mal- Subcategory athion, Parathion Methyl, Parathion Ethyl, Aminocarb, Carbaryl, SOURCE: 43 FR 44846, Sept. 29, 1978, unless Methiocarb, Mexacarbate, Propoxur, otherwise noted. Barban, Chlorpropham, Diuron, Fenuron, Fenuron-TCA, Linuron, § 455.11 Compliance date for pretreatment standards for existing Monuron, Monuron-TCA, Neubron, sources (PSES). Propham, Swep, 2,4-D, Dicamba, Silvex, 2,4,5-T, Siduron, Perthane, and All discharges subject to Dicofol. pretreatment standards for existing (c) The intermediates used to manu- sources (PSES) in subparts A and B of facture the active ingredients and ac- this part must comply with the stand- tive ingredients used solely in experi- ards no later than September 28, 1993. mental pesticides are excluded from [61 FR 57549, Nov. 6, 1996] coverage in this subpart. Insecticidal pathogenic organisms such as Bacillus § 455.20 Applicability; description of thuringiensis, insect growth hormones, the organic pesticide chemicals plant extracts such as pyrethrins; sex manufacturing subcategory. attractants and botanicals such as Ro- (a) For the purpose of calculating and tenone are also excluded from BPT applying effluent limitations for COD, coverage in this subpart. -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Herbicide Mode of Action Table High Resistance Risk
Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®), -
B Commission Regulation (Eu)
02010R0037 — EN — 29.09.2018 — 035.001 — 1 This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authentic versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. Those official texts are directly accessible through the links embedded in this document ►B COMMISSION REGULATION (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin (Text with EEA relevance) (OJ L 15, 20.1.2010, p. 1) Amended by: Official Journal No page date ►M1 Commission Regulation (EU) No 758/2010 of 24 August 2010 L 223 37 25.8.2010 ►M2 Commission Regulation (EU) No 759/2010 of 24 August 2010 L 223 39 25.8.2010 ►M3 Commission Regulation (EU) No 761/2010 of 25 August 2010 L 224 1 26.8.2010 ►M4 Commission Regulation (EU) No 890/2010 of 8 October 2010 L 266 1 9.10.2010 ►M5 Commission Regulation (EU) No 914/2010 of 12 October 2010 L 269 5 13.10.2010 ►M6 Commission Regulation (EU) No 362/2011 of 13 April 2011 L 100 26 14.4.2011 ►M7 Commission Regulation (EU) No 363/2011 of 13 April 2011 L 100 28 14.4.2011 ►M8 Commission Implementing Regulation (EU) No 84/2012 of 1 L 30 1 2.2.2012 February 2012 ►M9 Commission Implementing Regulation (EU) No 85/2012 of 1 L 30 4 2.2.2012 February 2012 ►M10 Commission Implementing Regulation (EU) No 86/2012 of 1 L 30 6 2.2.2012 February 2012 ►M11 Commission -
Acifluorfen Sorption, Degradation, and Mobility in a Mississippi Delta Soil
Acifluorfen Sorption, Degradation, and Mobility in a Mississippi Delta Soil L. A. Gaston* and M. A. Locke ABSTRACT repulsion effects, acifluorfen is sorbed by soil or soil Potential surface water and groundwater contaminants include her- constituents (Pusino et al., 1991; Ruggiero et al., 1992; bicides that are applied postemergence. Although applied to the plant Pusino et al., 1993; Gennari et al., 1994b; NeÁgre et al., canopy, a portion of any application reaches the soil either directly 1995; Locke et al., 1997). Although the extent of sorp- or via subsequent foliar washoff. This study examined sorption, degra- tion in soil is generally proportional to OC content dation, and mobility of the postemergence herbicide acifluorfen (5-[2- (Gennari et al., 1994b; NeÁgre et al., 1995; Locke et al., chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) in Dundee 1997), sorption likely involves processes other than par- silty clay loam (fine-silty, mixed, thermic, Aeric Ochraqualf) taken titioning between aqueous and organic matter phases. from conventional till (CT) and no-till (NT) field plots. Homogeneous In particular, acifluorfen forms complexes with divalent surface and subsurface samples were used in the sorption and degrada- tion studies; intact soil columns (30 cm long and 10 cm diam.) were and trivalent cations (Pusino et al., 1991; Pusino et al., used in the mobility study. Batch sorption isotherms were nonlinear 1993) that may be sorbed or precipitated. Complex for- (Freundlich model) and sorption paralleled organic C (OC) content. mation and subsequent sorption may partially account All tillage by depth combinations of soil exhibited a time-dependent for increased acifluorfen sorption with decreasing soil approach to sorption equilibrium that was well described by a two- pH or increasing cation exchange capacity (Pusino et site equilibrium±kinetic model. -
40 CFR Ch. I (7–1–18 Edition) § 455.61
§ 455.61 40 CFR Ch. I (7–1–18 Edition) from: the operation of employee show- § 455.64 Effluent limitations guidelines ers and laundry facilities; the testing representing the degree of effluent of fire protection equipment; the test- reduction attainable by the applica- ing and emergency operation of safety tion of the best available tech- showers and eye washes; or storm nology economically achievable water. (BAT). (d) The provisions of this subpart do Except as provided in 40 CFR 125.30 not apply to wastewater discharges through 125.32, any existing point from the repackaging of microorga- source subject to this subpart must nisms or Group 1 Mixtures, as defined achieve effluent limitations rep- under § 455.10, or non-agricultural pes- resenting the degree of effluent reduc- ticide products. tion attainable by the application of the best available technology economi- § 455.61 Special definitions. cally achievable: There shall be no dis- Process wastewater, for this subpart, charge of process wastewater pollut- means all wastewater except for sani- ants. tary water and those wastewaters ex- § 455.65 New source performance cluded from the applicability of the standards (NSPS). rule in § 455.60. Any new source subject to this sub- § 455.62 Effluent limitations guidelines part which discharges process waste- representing the degree of effluent water pollutants must meet the fol- reduction attainable by the applica- lowing standards: There shall be no dis- tion of the best practicable pollut- charge of process wastewater pollut- ant control technology (BPT). ants. Except as provided in 40 CFR 125.30 through 125.32, any existing point § 455.66 Pretreatment standards for existing sources (PSES). -
Reduction of Nitroaromatic Pesticides with Zero-Valent Iron
Chemosphere 54 (2004) 255–263 www.elsevier.com/locate/chemosphere Reduction of nitroaromatic pesticides with zero-valent iron Young-Soo Keum, Qing X. Li * Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Ag Sci 218, Honolulu, HI 96822, USA Received 5 February 2003; received in revised form 4 June 2003; accepted 4 August 2003 Abstract Reduction of eleven nitroaromatic pesticides was studied with zero-valent iron powder. Average half-lives ranged from 2.8 to 6.3 h and the parent compounds were completely reduced after 48–96 h. The di-nitro groups of the 2,6- dinitroaniline herbicides were rapidly reduced to the corresponding diamines, with a negligible amount of partially reduced monoamino or nitroso products. Low levels of de-alkylated products were observed after 10 days. The nitro group of the organophosphorus insecticides was reduced dominantly to the monoamines but in a slower rate than the 2,6-dinitroanilines. A trace amount of oxon products was found. Reduction of nitro to amino was also the predominant reaction for the diphenyl ether herbicides. Aromatic de-chlorination and de-alkylation were minor reactions. These amine products were more stable than the parent compounds and 60% or more of the amines were detected after two weeks. Humic acid decreased the reduction rates of pendimethalin, and dichlone (a known quinone redox mediator) counteracted the effect of humic acid on the reactivity. Storage of iron powder under air decreased the reactivity very rapidly due to iron oxidation. Repeated use of iron powder also showed similar results. The reduced activity of air- oxidized iron was recovered by purging with hydrogen, but not nitrogen.