*183Ur &Rpslohu 7Rrov

Total Page:16

File Type:pdf, Size:1020Kb

*183Ur &Rpslohu 7Rrov *183UR &RPSLOHU 7RROV coX `H H|r6Hr YHUVLRQU Frontispiece Copyright © 1991-1999 Free Software Foundation Copyright © 1991-1999 Cygnus®. All rights reserved. GNUPro®, the GNUPro logo, the Cygnus logo, Cygnus Insight™, Cygwin™, eCos™ and Source-Navigator™ are all trademarks of Cygnus. All other brand and product names, trademarks and copyrights are the property of their respective owners. Permission is granted to make and distribute verbatim copies of this documentation, provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions for modified versions. This documentation has been prepared by Cygnus Technical Publications; contact the Cygnus Technical Publications staff: [email protected]. While every precaution has been taken in the preparation of this documentation, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information within the documentation. For licenses and use information, see “GNU General Public License” on page 16, “Source-Navigator source code comprehension tool license” on page 21, “Tcl/Tk tool command language and windowing toolkit license” on page 24 and “General licenses and terms for using GNUPro Toolkit” on page 13 in GETTING STARTED. Part #: 300-400-10100042-99r1 ii ■ GNUPro Compiler Tools CYGNUS Frontispiece r©##o« The GNUPro Toolkit is free software, covered by the GNU General Public License, and you are welcome to change it and/or distribute copies of it under certain conditions. This version of GNUPro Toolkit is supported for customers of Cygnus. For non-customers, GNUPro Toolkit software has NO WARRANTY. Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law. Except when otherwise stated in writing, the copyright holders and/or other parties provide the software “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the software is with you. Should the software prove defective, you assume the cost of all necessary servicing, repair or correction. In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who may modify and/or redistribute the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages. CYGNUS GNUPro Compiler Tools ■ iii Frontispiece !H#¤®®®6rj|fc#o6H This and all subsequent releases of the GNUPro Toolkit products are Year 2000 Compliant. For more information regarding Cygnus development and Y2K issues, see: http://www.cygnus.com/y2k.html Cygnus Solutions defines a product to be Year 2000 Compliant (Y2K) if it does not produce errors in recording, storing, processing and presenting calendar dates as a result of the transition from December 31, 1999 to January 1, 2000. A Y2K product will recognize the Year 2000 as a leap year. This compliance is contingent upon third party products that exchange date data with the Cygnus product doing so properly and accurately, in a form and format compatible with the Cygnus product. GNUPro Toolkit processes dates only to the extent of using the date data provided by the host or target operating system for date representation used in internal processes, such as file modifications. Any Y2K issues resulting from the operation of the Cygnus products, therefore, are necessarily dependent upon the Y2K compliance of relevant host and/or target operating systems. Cygnus has not tested all operating systems and, as such, cannot assure that every system and/or environment will manage and manipulate data involving dates before and after December 31, 1999, without any time or date related system defects or abnormalities, and without any decreases in functionality or performance. Cygnus cannot assure that applications which you modify using Cygnus products will be Year 2000 compliant. iv ■ GNUPro Compiler Tools CYGNUS Frontispiece r©r6ro#6«Xo¦ Use the following means to contact Cygnus. Cygnus Headquarters 1325 Chesapeake Terrace Sunnyvale, CA 94089 USA Telephone (toll free): +1 800 CYGNUS-1 Telephone (main line): +1 408 542 9600 FAX: +1-408 542 9699 (Faxes are answered 8 a.m.–5 p.m., Monday through Friday.) email: [email protected] Website: www.cygnus.com/ Cygnus United Kingdom 36 Cambridge Place Cambridge CB2 1NS United Kingdom Telephone: +44 1223 728728 FAX: +44 1223 728728 email: [email protected]/ Website: http://sourceware.cygnus.com/ecos/ Cygnus Japan Nihon Cygnus Solutions Madre Matsuda Building 4-13 Kioi-cho Chiyoda-ku Tokyo 102-0094 Telephone: +81 3 3234 3896 FAX: +81 3 3239 3300 email: [email protected] Website: http://www.cygnus.co.jp/ The most reliable and most expedient means to resolve problems with GNUPro Toolkit is by using the Cygnus Web Support site: http://support.cygnus.com CYGNUS GNUPro Compiler Tools ■ v Frontispiece vi ■ GNUPro Compiler Tools CYGNUS GNUPro Compiler Tools roHo GNUPro warranty ........................................................................................................iii Year 2000 compliance ..............................................................................................iv How to contact Cygnus .................................................................................................v coX GNU General Public License.....................................................................................................3 Preamble........................................................................................................................3 Terms and conditions for copying, distribution and modification................................4 How to apply these terms to your new programs..........................................................9 Contributors to GNU CC..........................................................................................................11 Funding free software...............................................................................................................15 Protect your freedom; fight “Look and Feel”...........................................................................17 Introduction to the compiler for C, C++, or Objective C .............................................21 Installing GCC...............................................................................................................23 Installing GCC on UNIX systems...............................................................................24 Configurations supported by GCC..............................................................................34 Compilation in a separate directory ............................................................................48 Building and installing a cross-compiler.....................................................................49 Steps of cross-compilation..........................................................................................49 CYGNUS GNUPro Compiler Tools ■ vii Configuring a cross-compiler......................................................................................50 Tools and libraries for a cross-compiler......................................................................50 libgcc.a and cross-compilers....................................................................................51 Cross-compilers and header files ................................................................................53 Standard header file directories...................................................................................54 Actually building the cross-compiler..........................................................................54 collect2 and cross-compiling ...................................................................................55 Installing GCC on the Sun ..........................................................................................56 Installing GCC on VMS..............................................................................................57 Using GCC on VMS.................................................................................................60 GNU CC command options...........................................................................................67 Option summary for GCC...........................................................................................69 Overall options ........................................................................................................69 C language options ..................................................................................................69 C++ language options.............................................................................................69
Recommended publications
  • Validated Products List, 1995 No. 3: Programming Languages, Database
    NISTIR 5693 (Supersedes NISTIR 5629) VALIDATED PRODUCTS LIST Volume 1 1995 No. 3 Programming Languages Database Language SQL Graphics POSIX Computer Security Judy B. Kailey Product Data - IGES Editor U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 July 1995 QC 100 NIST .056 NO. 5693 1995 NISTIR 5693 (Supersedes NISTIR 5629) VALIDATED PRODUCTS LIST Volume 1 1995 No. 3 Programming Languages Database Language SQL Graphics POSIX Computer Security Judy B. Kailey Product Data - IGES Editor U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Software Standards Validation Group Gaithersburg, MD 20899 July 1995 (Supersedes April 1995 issue) U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director FOREWORD The Validated Products List (VPL) identifies information technology products that have been tested for conformance to Federal Information Processing Standards (FIPS) in accordance with Computer Systems Laboratory (CSL) conformance testing procedures, and have a current validation certificate or registered test report. The VPL also contains information about the organizations, test methods and procedures that support the validation programs for the FIPS identified in this document. The VPL includes computer language processors for programming languages COBOL, Fortran, Ada, Pascal, C, M[UMPS], and database language SQL; computer graphic implementations for GKS, COM, PHIGS, and Raster Graphics; operating system implementations for POSIX; Open Systems Interconnection implementations; and computer security implementations for DES, MAC and Key Management.
    [Show full text]
  • A Look Back at the Personal Computer's First Decade—1975 To
    PROFE MS SSI E ON ST A Y L S S D A N S A S O K C R I A O thth T I W O T N E N 20 A Look Back at the Personal Computer’s First Decade—1975 to 1985 By Elizabeth M. Ferrarini IN JANUARY 1975, A POPULAR ELECTRONICS MAGAZINE COVER STORY about the $300 Altair 8800 kit by Micro Instrumentation and Telemetry PC TRIVIA officially gave birth to the personal computer (PC) industry. It came ▼ Bill Gates and Paul Allen wrote the first Microsoft BASIC with two boards and slots for 16 more in the open chassis. One board for the Altair 8800. held the Intel 8080 processor chip and the other held 256 bytes. Other ▼ Steve Wozniak hand-built the first Apple from $20 worth PC kit companies included IMSAI, Cromemco, Heathkit, and of parts. In 1985, 200 Apple II's sold every five minutes. Southwest Technical Products. ▼ Initial press photo for the IBM PC showed two kids During that same year, Steve Jobs and Steve Wozniak created the sprawled on the living room carpet playing games. The ad 4K Apple I based on the 6502 processor chips. The two Steves added was quickly changed to one appropriate for corporate color and redesign to come up with the venerable Apple II. Equipped America. with VisiCalc, the first PC spreadsheet program, the Apple II got a lot ▼ In 1982, Time magazine's annual Man of the Year cover of people thinking about PCs as business tools. This model had a didn't go to a political figure or a celebrity, but a faceless built-in keyboard, a graphics display, and eight expansion slots.
    [Show full text]
  • Pwny Documentation Release 0.9.0
    pwny Documentation Release 0.9.0 Author Nov 19, 2017 Contents 1 pwny package 3 2 pwnypack package 5 2.1 asm – (Dis)assembler..........................................5 2.2 bytecode – Python bytecode manipulation..............................7 2.3 codec – Data transformation...................................... 11 2.4 elf – ELF file parsing.......................................... 16 2.5 flow – Communication......................................... 36 2.6 fmtstring – Format strings...................................... 41 2.7 marshal – Python marshal loader................................... 42 2.8 oracle – Padding oracle attacks.................................... 43 2.9 packing – Data (un)packing...................................... 44 2.10 php – PHP related functions....................................... 46 2.11 pickle – Pickle tools.......................................... 47 2.12 py_internals – Python internals.................................. 49 2.13 rop – ROP gadgets........................................... 50 2.14 shellcode – Shellcode generator................................... 50 2.15 target – Target definition....................................... 79 2.16 util – Utility functions......................................... 80 3 Indices and tables 83 Python Module Index 85 i ii pwny Documentation, Release 0.9.0 pwnypack is the official CTF toolkit of Certified Edible Dinosaurs. It aims to provide a set of command line utilities and a python library that are useful when playing hacking CTFs. The core functionality of pwnypack
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • UNICOS® Installation Guide for CRAY J90lm Series SG-5271 9.0.2
    UNICOS® Installation Guide for CRAY J90lM Series SG-5271 9.0.2 / ' Cray Research, Inc. Copyright © 1996 Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Cray Research, Inc. Portions of this product may still be in development. The existence of those portions still in development is not a commitment of actual release or support by Cray Research, Inc. Cray Research, Inc. assumes no liability for any damages resulting from attempts to use any functionality or documentation not officially released and supported. If it is released, the final form and the time of official release and start of support is at the discretion of Cray Research, Inc. Autotasking, CF77, CRAY, Cray Ada, CRAYY-MP, CRAY-1, HSX, SSD, UniChem, UNICOS, and X-MP EA are federally registered trademarks and CCI, CF90, CFr, CFr2, CFT77, COS, Cray Animation Theater, CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, Cray NQS, CraylREELlibrarian, CraySoft, CRAY T90, CRAY T3D, CrayTutor, CRAY X-MP, CRAY XMS, CRAY-2, CRInform, CRIlThrboKiva, CSIM, CVT, Delivering the power ..., DGauss, Docview, EMDS, HEXAR, lOS, LibSci, MPP Apprentice, ND Series Network Disk Array, Network Queuing Environment, Network Queuing '!boIs, OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER, SUPERLINK, Trusted UNICOS, and UNICOS MAX are trademarks of Cray Research, Inc. Anaconda is a trademark of Archive Technology, Inc. EMASS and ER90 are trademarks of EMASS, Inc. EXABYTE is a trademark of EXABYTE Corporation. GL and OpenGL are trademarks of Silicon Graphics, Inc.
    [Show full text]
  • A Manual for the Assemblerߤ Rob Pike Lucent Technologies, Bell Labs
    A Manual for the Assembler Rob Pike Lucent Technologies, Bell Labs Machines There is an assembler for each of the MIPS, SPARC, Intel 386, ARM, PowerPC, Motorola 68010, and Motorola 68020. The 68020 assembler, 2a, is the oldest and in many ways the prototype. The assemblers are really just variations of a single program: they share many properties such as left-to-right assignment order for instruction operands and the synthesis of macro instructions such as MOVE to hide the peculiarities of the load and store structure of the machines. To keep things concrete, the first part of this manual is specifically about the 68020. At the end is a description of the differences among the other assemblers. Registers All pre-defined symbols in the assembler are upper-case. Data registers are R0 through R7; address registers are A0 through A7; floating-point registers are F0 through F7. A pointer in A6 is used by the C compiler to point to data, enabling short addresses to be used more often. The value of A6 is constant and must be set during C program initialization to the address of the externally-defined symbol a6base. The following hardware registers are defined in the assembler; their meaning should be obvious given a 68020 manual: CAAR, CACR, CCR, DFC, ISP, MSP, SFC, SR, USP, and VBR. The assembler also defines several pseudo-registers that manipulate the stack: FP, SP, and TOS. FP is the frame pointer, so 0(FP) is the first argument, 4(FP) is the second, and so on. SP is the local stack pointer, where automatic variables are held (SP is a pseudo-register only on the 68020); 0(SP) is the first automatic, and so on as with FP.
    [Show full text]
  • Operating RISC: UNIX Standards in the 1990S
    Operating RISC: UNIX Standards in the 1990s This case was written by Will Mitchell and Paul Kritikos at the University of Michigan. The case is based on public sources. Some figures are based on case-writers' estimates. We appreciate comments from David Girouard, Robert E. Thomas and Michael Wolff. The note "Product Standards and Competitive Advantage" (Mitchell 1992) supplements this case. The latest International Computerquest Corporation analysis of the market for UNIX- based computers landed on three desks on the same morning. Noel Sharp, founder, chief executive officer, chief engineer and chief bottle washer for the Superbly Quick Architecture Workstation Company (SQAWC) in Mountain View, California hoped to see strong growth predicted for the market for systems designed to help architects improve their designs. In New York, Bo Thomas, senior strategist for the UNIX systems division of A Big Computer Company (ABCC), hoped that general commercial markets for UNIX-based computer systems would show strong growth, but feared that the company's traditional mainframe and mini-computer sales would suffer as a result. Airborne in the middle of the Atlantic, Jean-Helmut Morini-Stokes, senior engineer for the UNIX division of European Electronic National Industry (EENI), immediately looked to see if European companies would finally have an impact on the American market for UNIX-based systems. After looking for analysis concerning their own companies, all three managers checked the outlook for the alliances competing to establish a UNIX operating system standard. Although their companies were alike only in being fictional, the three managers faced the same product standards issues. How could they hasten the adoption of a UNIX standard? The market simply would not grow until computer buyers and application software developers could count on operating system stability.
    [Show full text]
  • Rlsc & DSP Advanced Microprocessor System Design
    Purdue University Purdue e-Pubs ECE Technical Reports Electrical and Computer Engineering 3-1-1992 RlSC & DSP Advanced Microprocessor System Design; Sample Projects, Fall 1991 John E. Fredine Purdue University, School of Electrical Engineering Dennis L. Goeckel Purdue University, School of Electrical Engineering David G. Meyer Purdue University, School of Electrical Engineering Stuart E. Sailer Purdue University, School of Electrical Engineering Glenn E. Schmottlach Purdue University, School of Electrical Engineering Follow this and additional works at: http://docs.lib.purdue.edu/ecetr Fredine, John E.; Goeckel, Dennis L.; Meyer, David G.; Sailer, Stuart E.; and Schmottlach, Glenn E., "RlSC & DSP Advanced Microprocessor System Design; Sample Projects, Fall 1991" (1992). ECE Technical Reports. Paper 302. http://docs.lib.purdue.edu/ecetr/302 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. RISC & DSP Advanced Microprocessor System Design Sample Projects, Fall 1991 John E. Fredine Dennis L. Goeckel David G. Meyer Stuart E. Sailer Glenn E. Schmottlach TR-EE 92- 11 March 1992 School of Electrical Engineering Purdue University West Lafayette, Indiana 47907 RlSC & DSP Advanced Microprocessor System Design Sample Projects, Fall 1991 John E. Fredine Dennis L. Goeckel David G. Meyer Stuart E. Sailer Glenn E. Schrnottlach School of Electrical Engineering Purdue University West Lafayette, Indiana 47907 Table of Contents Abstract ...................................................................................................................
    [Show full text]
  • I.T.S.O. Powerpc an Inside View
    SG24-4299-00 PowerPC An Inside View IBM SG24-4299-00 PowerPC An Inside View Take Note! Before using this information and the product it supports, be sure to read the general information under “Special Notices” on page xiii. First Edition (September 1995) This edition applies to the IBM PC PowerPC hardware and software products currently announced at the date of publication. Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below. An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been removed, comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. JLPC Building 014 Internal Zip 5220 1000 NW 51st Street Boca Raton, Florida 33431-1328 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. Copyright International Business Machines Corporation 1995. All rights reserved. Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Abstract This document provides technical details on the PowerPC technology. It focuses on the features and advantages of the PowerPC Architecture and includes an historical overview of the development of the reduced instruction set computer (RISC) technology. It also describes in detail the IBM Power Series product family based on PowerPC technology, including IBM Personal Computer Power Series 830 and 850 and IBM ThinkPad Power Series 820 and 850.
    [Show full text]
  • Datasheet-AMD-Am29202.Pdf
    Advance Information Advanced Am29202 Micro Low-Cost RISC Microcontroller with Devices IEEE-1284-Compliant Parallel Interface DISTINCTIVE CHARACTERISTICS Completely integrated system for IEEE Std 1284-1994-compliant parallel port cost-sensitive embedded applications interface (peripheral-side only) supports fast requiring high performance bidirectional data transfers. Full 32-bit RISC architecture offers faster — Compatibility, Nibble, Byte, and ECP modes instruction execution and higher performance. — Supports Microsoft Windows Printing System — 32-bit instruction/data bus Bidirectional bit serializer/deserializer for direct — 22-bit address bus connection to raster input and output devices — 192 general-purpose registers 12-line programmable I/O port — Fully pipelined, three-address instruction (8 lines interruptible) architecture DRAM page-mode support improves memory — 104-Mbyte address space access time. — 12-, 16-, and 20-MHz operating frequencies On-chip DRAM mapping reduces memory — 16 VAX MIPS sustained at 20 MHz requirements. Glueless system interfaces with on-chip wait Advanced debugging support state control lower total system cost. — IEEE Std 1149.1-1990-compliant Standard — ROM controller supports four banks of ROM, Test Access Port and Boundary Scan Architec- each separately programmable for 8-, 16-, or ture (JTAG) for testing system hardware 32-bit-wide interface. — Instruction tracing — DRAM controller supports four banks of — UART serial port DRAM, each separately programmable for Software and hardware development tools
    [Show full text]
  • Research J Inc
    c: RESEARCH J INC. CRAY® COMPUTER SYSTEMS eFT77 REFERENCE MANUAL S,R-0018 r<-w ~ Gopyright© 1986, 1988 by Gray Research, Inc. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Gray Research, Inc. RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0018 Eadchhtime this manu~1 is r~vised and reprinted. all changes issued against the previous version are incorporated into the new version an t e new verSion IS assigned an alphabetic level. ~very page chan~ed by a reprint. with revisio~ has the revision level in the lower right hand corner. Changes to part of a page are noted y ~ changl!. bar In the margin directly o~poslte the c~a~ge. A change bar in the margin opposite the page number indicates that the entire page IS new. If the manual IS rewritten. the revIsion level changes but the manual does not contain change bars. Reql:'est.s for copies of C~ay Research. Inc. publications should be directed to the Distribution Center and comments about these publications should be directed to: CRAY RESEARCH. INC. 1345 Northland Drive Mendota Heights. Minnesota 55120 Revision Description April 1986 - Original printing. A September 1986 - Changes are the SUPPRESS directive and the TARGET command. Sections on input/output have been reorganized, with a new introduction in section 7. Other editorial changes have been made. Trademarks are now documented in the record of revision. The previous version is obsolete. B February 1988 - This reprint with revision adds the INCLUDE statement, Loopmark feature, BL and NOBL directives, ALLOC directive, INTEGER directive, I/INDEF option, -v option (UNICOS only), EDN keyword (COS only), and P and w options (CRAY-2 systems only).
    [Show full text]
  • AMD's Early Processor Lines, up to the Hammer Family (Families K8
    AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) Dezső Sima October 2018 (Ver. 1.1) Sima Dezső, 2018 AMD’s early processor lines, up to the Hammer Family (Families K8 - K10.5h) • 1. Introduction to AMD’s processor families • 2. AMD’s 32-bit x86 families • 3. Migration of 32-bit ISAs and microarchitectures to 64-bit • 4. Overview of AMD’s K8 – K10.5 (Hammer-based) families • 5. The K8 (Hammer) family • 6. The K10 Barcelona family • 7. The K10.5 Shanghai family • 8. The K10.5 Istambul family • 9. The K10.5-based Magny-Course/Lisbon family • 10. References 1. Introduction to AMD’s processor families 1. Introduction to AMD’s processor families (1) 1. Introduction to AMD’s processor families AMD’s early x86 processor history [1] AMD’s own processors Second sourced processors 1. Introduction to AMD’s processor families (2) Evolution of AMD’s early processors [2] 1. Introduction to AMD’s processor families (3) Historical remarks 1) Beyond x86 processors AMD also designed and marketed two embedded processor families; • the 2900 family of bipolar, 4-bit slice microprocessors (1975-?) used in a number of processors, such as particular DEC 11 family models, and • the 29000 family (29K family) of CMOS, 32-bit embedded microcontrollers (1987-95). In late 1995 AMD cancelled their 29K family development and transferred the related design team to the firm’s K5 effort, in order to focus on x86 processors [3]. 2) Initially, AMD designed the Am386/486 processors that were clones of Intel’s processors.
    [Show full text]