Physiological and Molecular Consequences of Large Y Chromosome Long Arm Deletions in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Physiological and Molecular Consequences of Large Y Chromosome Long Arm Deletions in Mice Physiological and Molecular Consequences of Large Y Chromosome Long Arm Deletions in Mice Emma Elizabeth Philippa Johnson MRes Emmanuel College Department of Pathology University of Cambridge September 2017 This dissertation is submitted for the degree of Doctor of Philosophy. This dissertation is submitted to the University of Cambridge in accordance with requirements of the degree of Doctor of Philosophy in the School of the Biological Sciences. Page 1 of 331 Page 2 of 331 Physiological and Molecular Consequences of Large Y Chromosome Long Arm Deletions in Mice Emma Elizabeth Philippa Johnson Summary The mammalian Y chromosome contains genes important for male sexual maturity and reproduction. The mouse Y chromosome long arm harbours a number of multi-copy genes whose absence or reduced representation has been linked to sperm defects and offspring sex ratio distortion in favour of females. Understanding the biological mechanisms of sex ratio distortion and related sperm aberrations could not only result in benefits for fertility research, but also in the development of methods for large scale animal breeding pre-implantation sex selection. The distortion has been linked to an intragenomic conflict between the X and Y chromosomes that impacts spermiogenesis. Since the proportion of X- and Y-bearing sperm does not differ in affected animals, and there is no selective destruction of male embryos post-fertilisation, a functional difference must exist between the X- and Y-bearing sperm. This thesis describes the investigation into the physiological and molecular mechanisms of a large Y-chromosome long arm deletion in the mouse model MF1XYRIIIqdel. The examination of physiological characteristics revealed a distinct sperm morphology within the deletion model. Detailed characterisation of sperm shape demonstrated that aberrations consistently occur within specific regions of the sperm head, linking the distorted morphology to particular maturation stages in the sperm cycle. Using sperm fluorescence in situ hybridisation, a novel and detailed comparison of X- and Y- bearing sperm has shown that a subtle distinction in shape also exists between the X- and Y- bearing sperm in the deletion model. Breeding data were examined and showed a skew towards female offspring and a slightly reduced litter size. Sperm enzyme activity assays did not reveal altered hyaluronidase activity in MF1XYRIIIqdel sperm. Physiological differences between X- and Y- bearing sperm must result from differential gene expression, complicated by the syncitial nature of sperm development. To explore this, a detailed molecular characterisation of the MF1XYRIIIqdel phenotype in developing haploid spermatids was performed. Cellular elutriation and fractionation techniques were employed to separate spermatids at different stages of maturation and isolate different subcellular compartments. Differences in the transcriptional profile between these populations were analysed by microarray and RNA sequencing analysis of total and micro RNA. This work yielded a collection of coding and non-coding transcripts which show distinctive expression and compartmentalisation differences between the deletion model and its wild-type counterpart across several sperm maturation stages. Combining these strategies has led to the identification of several gene products potentially implicated in observed physiological differences and the offspring sex ratio skew, providing candidate genes for further research. Page 3 of 331 Page 4 of 331 Author’s Declaration This dissertation is the result of my own work conducted between 2013 and 2017, and includes nothing which is the outcome of work done in collaboration except as specified in the text. I further state that no substantial part of my dissertation has been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution. This thesis does not exceed the prescribed word limit of 60,000 words set by the School of Biological Sciences, University of Cambridge. Emma Elizabeth Philippa Johnson MRes Page 5 of 331 Page 6 of 331 This thesis is dedicated to my family and friends. Thank you for everything. Page 7 of 331 Page 8 of 331 Acknowledgements This thesis, and the experience I have had conducting the work summarised in it, have only come about because of the involvement of several people. I want to start by thanking my supervisor, Professor Nabeel Affara; a man whom, like a great work of art, excels at comforting the disturbed and disturbing the comfortable. Nabeel has made me feel welcome in the lab from the moment I arrived and has made it harder for me to say goodbye. The best of what I have learnt from Nabeel has been all that we’ve spoken about away from the bench. I only hope to find another mentor from whom I can gain as much. Thank you to my second supervisor, Dr Peter Ellis, who is now based at the University of Kent. Peter is an exceptionally pleasant man to know, whose detailed knowledge of this (and nearly every) subject has entertained me from the beginning. I am pleased to say that he only appears to use his powers for good. Thank you, Peter, for always being on the other end of an email. My third supervisor, Dr Alan Mileham, has supported me in things I’ve undertaken and made sure that opportunities I have had have been the best they can be. He has provided excellent conversation on the occasions that we have had the pleasure of meeting and has been a great source of advice. My final lab mentor is Dr Benjamin Skinner. Although not an official supervisor, Ben is the person I have worked most closely with over the past three years. Ben is unflagging in his enthusiasm for science. Thank you for the constant stream of insults and for taking mine well in return. You have been a great source of help and guidance over the past few years and I am grateful for it. I will not miss your puns. I would like to thank Jo Bacon and Kim Lachani for their kind tuition, especially at the beginning of my time in the lab, and for their efforts and assistance with several experiments that did not quite make it into the thesis. Thank you also to Jo, and to Kerry Harvey for the kind words they provided when I needed them most. Thank you Dr Carole Sargeant for sharing some of the fascinating things she knows over the last few years and for thoroughly enriching my time in the lab. Thank you to fellow PhD student Courtney Landers for being a provider of much needed lunch time walks and musings. Thank you to Claire for always a cheery ‘hello’ and to all members of the lab for making the last four years what they have been. A final thank you to our wonderful part II students Myrto Vlazaki and Becki Nunn, who are both inspiring and lovely people. From the Cambridge Genomics Services team, I’d first like to thank Dr Ed Farnell for answering all (or most of) my long list of questions with enthusiasm and for his questionable sense of humour. Thank you especially to Julien Bauer and Maria Gomez for being the foundation of my understanding of bioinformatics. I am very grateful for all the time they spent with me answering my many questions and helping me when I needed it. Thank you also to Dr Alex Covney, Dr Emily Clemente, Phil Howden, Chris Reitter and Marta Andrada for all their help and delightful conversation; and to Phil and Chris for answering my early morning phone calls to the lab! Thanks to Carl Wignall for Page 9 of 331 responding humorously to my IT woes and providing thoughtful “constructive” criticism of my handling of technical issues. My sincerest thanks go to the kind members of the Griffin lab, and in particular to Dr Claudia Rathje for not only allowing me to use their lab space, but setting me up and booking time slots for me on their excellent microscope. Thank you for being my second lab-home. Additional thanks must go to Claudia and Bill (and the parrots) for housing me and entertaining me during a number of my visits to Canterbury. Colleges can be a big part of student life at Cambridge, and Emmanuel College has been an important part of mine. I would like to thank the Emmanuel porters in particular. Their help and kindness has been indispensible, and they have always made me feel welcome whenever I visit the college, no matter how long I’ve been away. From further afield, I must mention Jessie Martin and Laramie Pence. During my time at the University of Maryland in the summer of 2016, both Jessie and Laramie did everything they could to share their skills and knowledge with me and, most importantly, they made my time there thoroughly memorable. My gratitude extends to all members of the Telugu lab, who were hugely accommodating, facilitated my first experience of microinjection and CRISPR based experiments, and helped expand my understanding of the field. There are many more people I would like to thank, and without taking up several more pages, I will not be able to do so in full. So, I’d instead like to briefly thank my mentor Dr Paolo D’Avino, Dr Debbie Drage, Dr Nigel Slater, the Pathology graduates, and my friends at Emmanuel College and beyond. I’d also like to thank my sponsors and funders, the BBSRC, Genus Plc, and KTN for all the experiences and opportunities they have enabled and supported. It would not have been possible without them. I have been extremely lucky to have enjoyed so much of what I have done over the years and this all begins with having remarkable parents. Thank you for everything you have done and still do for me.
Recommended publications
  • Hyaluronidase PH20 (SPAM1) Rabbit Polyclonal Antibody – TA337855
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA337855 Hyaluronidase PH20 (SPAM1) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-SPAM1 antibody is: synthetic peptide directed towards the C- terminal region of Human SPAM1. Synthetic peptide located within the following region: CYSTLSCKEKADVKDTDAVDVCIADGVCIDAFLKPPMETEEPQIFYNASP Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Purification: Affinity Purified Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 58 kDa Gene Name: sperm adhesion molecule 1 Database Link: NP_694859 Entrez Gene 6677 Human P38567 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 Hyaluronidase PH20 (SPAM1) Rabbit Polyclonal Antibody – TA337855 Background: Hyaluronidase degrades hyaluronic acid, a major structural proteoglycan found in extracellular matrices and basement membranes. Six members of the hyaluronidase family are clustered into two tightly linked groups on chromosome 3p21.3 and 7q31.3. This gene was previously referred to as HYAL1 and HYA1 and has since been assigned the official symbol SPAM1; another family member on chromosome 3p21.3 has been assigned HYAL1.
    [Show full text]
  • An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ......................................................................................
    [Show full text]
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
    Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Mammalian Male Germ Cells Are Fertile Ground for Expression Profiling Of
    REPRODUCTIONREVIEW Mammalian male germ cells are fertile ground for expression profiling of sexual reproduction Gunnar Wrobel and Michael Primig Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056 Basel, Switzerland Correspondence should be addressed to Michael Primig; Email: [email protected] Abstract Recent large-scale transcriptional profiling experiments of mammalian spermatogenesis using rodent model systems and different types of microarrays have yielded insight into the expression program of male germ cells. These studies revealed that an astonishingly large number of loci are differentially expressed during spermatogenesis. Among them are several hundred transcripts that appear to be specific for meiotic and post-meiotic germ cells. This group includes many genes that were pre- viously implicated in spermatogenesis and/or fertility and others that are as yet poorly characterized. Profiling experiments thus reveal candidates for regulation of spermatogenesis and fertility as well as targets for innovative contraceptives that act on gene products absent in somatic tissues. In this review, consolidated high density oligonucleotide microarray data from rodent total testis and purified germ cell samples are analyzed and their impact on our understanding of the transcriptional program governing male germ cell differentiation is discussed. Reproduction (2005) 129 1–7 Introduction 2002, Sadate-Ngatchou et al. 2003) and the absence of cAMP responsive-element modulator (Crem) and deleted During mammalian male
    [Show full text]
  • H2A.B Facilitates Transcription Elongation at Methylated Cpg Loci
    Downloaded from genome.cshlp.org on October 27, 2017 - Published by Cold Spring Harbor Laboratory Press Research H2A.B facilitates transcription elongation at methylated CpG loci Yibin Chen,1 Qiang Chen,1 Richard C. McEachin,2 James D. Cavalcoli,2 and Xiaochun Yu1,3 1Division of Molecular Medicine and Genetics, Department of Internal Medicine, 2Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the tran- scribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions. [Supplemental material is available for this article.] Histones are nuclear proteins in eukaryotes that package genomic 2004; Eirin-Lopez et al. 2008; Ishibashi et al. 2010; Soboleva et al. DNA into structural units called nucleosomes (Andrews and Luger 2012; Tolstorukov et al. 2012). 2011). A nucleosome consists of a histone octamer with two copies Although H2A.B has been well characterized in vitro, the each of four core histones that are wrapped with ;146 bp of function and localization of H2A.B in the genome are still unclear.
    [Show full text]
  • Identification of Reproduction-Related Gene Polymorphisms Using Whole
    INVESTIGATION Identification of Reproduction-Related Gene Polymorphisms Using Whole Transcriptome Sequencing in the Large White Pig Population Daniel Fischer,* Asta Laiho,† Attila Gyenesei,‡ and Anu Sironen*,1 *Natural Resources Institute Finland (Luke), Green Technology, Animal and Plant Genomics and Breeding, FI-31600 Jokioinen, Finland, †The Finnish Microarray and Sequencing Centre, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland, and ‡Campus Science Support Facilities, Vienna Biocenter, A-1030 Vienna, Austria ORCID ID: 0000-0003-2064-6960 (D.F.) ABSTRACT Recent developments in high-throughput sequencing techniques have enabled large-scale KEYWORDS analysis of genetic variations and gene expression in different tissues and species, but gene expression oviduct patterns and genetic variations in livestock are not well-characterized. In this study, we have used high- testis throughput transcriptomic sequencing of the Finnish Large White to identify gene expression patterns and gene expression coding polymorphisms within the breed in the testis and oviduct. The main objective of this study was to polymorphism identify polymorphisms within genes that are highly and specifically expressed in male and/or female SNP reproductive organs. The differential expression (DE) analysis underlined 1234 genes highly expressed in pig the testis and 1501 in the oviduct. Furthermore, we used a novel in-house R-package hoardeR for the transcriptome identification of novel genes and their orthologs, which underlined 55 additional DE genes based on RNAseq orthologs in the human, cow, and sheep. Identification of polymorphisms in the dataset resulted in a total of reproduction 29,973 variants, of which 10,704 were known coding variants.
    [Show full text]
  • A Genomic Atlas of Human Adrenal and Gonad Development [Version 2; Referees: 4 Approved] Ignacio Del Valle1, Federica Buonocore1, Andrew J
    Wellcome Open Research 2017, 2:25 Last updated: 08 NOV 2017 RESEARCH ARTICLE A genomic atlas of human adrenal and gonad development [version 2; referees: 4 approved] Ignacio del Valle1, Federica Buonocore1, Andrew J. Duncan1, Lin Lin1, Martino Barenco2, Rahul Parnaik1, Sonia Shah3,4, Mike Hubank5, Dianne Gerrelli2, John C. Achermann 1 1Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK 2Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK 3Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia 4Institute of Cardiovascular Science, University College London, London, UK 5The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK v2 First published: 07 Apr 2017, 2:25 (doi: 10.12688/wellcomeopenres.11253.1) Open Peer Review Latest published: 23 Oct 2017, 2:25 (doi: 10.12688/wellcomeopenres.11253.2) Referee Status: Abstract Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis Invited Referees determination, the onset of steroidogenesis and primordial germ cell 1 2 3 4 development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical version 2 report report stages of human embryonic and fetal development. published Methods: RNA was extracted from 53 tissue samples between 6-10 wpc 23 Oct 2017 (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A version 1 mathematical model was constructed to investigate time-series changes across published report report report report 07 Apr 2017 the dataset.
    [Show full text]
  • Gene Section Mini Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Mini Review SPAM1 (sperm adhesion molecule 1 (PH -20 hyaluronidase, zona pellucida binding)) Asli Sade, Sreeparna Banerjee Department of Biology, Middle East Technical University, Ankara 06531, Turkey (AS, SB) Published in Atlas Database: March 2010 Online updated version : http://AtlasGeneticsOncology.org/Genes/SPAM1ID42361ch7q31.html DOI: 10.4267/2042/44921 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology are clustered on chromosome 3p21.3 and the other Identity three (HYAL4, SPAM1 and HYALP1) are clustered on Other names: EC 3.2.1.35, HYA1, HYAL1, HYAL3, chromosome 7q31.3. Of the three genes on HYAL5, Hyal-PH20, MGC26532, PH-20, PH20, chromosome 7q31.3, HYALP1 is an expressed SPAG15 pseudogene. The extensive homology between the six HGNC (Hugo): SPAM1 hyaluronidase genes suggests an ancient gene duplication event before the emergence of modern Location: 7q31.32 mammals. Local order: According to NCBI Map Viewer, genes flanking SPAM1 in centromere to telomere direction Description on 7q31.3 are: According to Entrez Gene, SPAM1 gene maps to locus - HYALP1 7q31.3 hyaluronoglucosaminidase NC_000007 and spans a region of 46136 bp. According pseudogene 1 to Spidey (mRNA to genomic sequence alignment - HYAL4 7q31.3 hyaluronoglucosaminidase 4 tool), SPAM1 has 7 exons, the sizes being 78, 112, - SPAM1 7q31.3 sperm adhesion molecule 1 1160, 90, 441, 99 and 404. - TMEM229A 7q31.32 transmembrane protein 229A - hCG_1651160 7q31.33 SSU72 RNA polymerase II Transcription CTD phosphatase homolog pseudogene The SPAM1 mRNA has two isoforms; transcript Note: SPAM1 is a glycosyl-phosphatidyl inositol variant 1 (NM_003117) a 2395 bp mRNA and (GPI)-anchored enzyme found in all mammalian transcript variant 2 (NM_153189) a 2009 bp mRNA.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]