Topological Interactions in Broken Gauge Theories

Total Page:16

File Type:pdf, Size:1020Kb

Topological Interactions in Broken Gauge Theories Topological Interactions in Broken Gauge Theories ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus Prof. dr. P.W.M. de Meijer arXiv:hep-th/9511195v1 27 Nov 1995 ten overstaan van een door het college van dekanen ingestelde commissie in het openbaar te verdedigen in de Aula der Universiteit op dinsdag 19 september 1995 te 13.30 uur door Mark Dirk Frederik de Wild Propitius geboren te Amsterdam Promotor: Prof. dr. ir. F.A. Bais Promotiecommisie: Prof. dr. P.J. van Baal Prof. dr. R.H. Dijkgraaf Prof. dr. G. ’t Hooft Prof. dr. A.M.M. Pruisken Prof. dr. J. Smit Prof. dr. H.L. Verlinde Faculteit der Wiskunde, Informatica, Natuur- en Sterrenkunde Instituut voor Theoretische Fysica This thesis is based on the following papers: F.A. Bais, P. van Driel and M. de Wild Propitius, Phys. Lett. B280 (1992) 63. • F.A. Bais, P. van Driel and M. de Wild Propitius, Nucl. Phys. B393 (1993) 547. • F.A. Bais, A. Morozov and M. de Wild Propitius, Phys. Rev. Lett. 71 (1993) • 2383. F.A. Bais and M. de Wild Propitius, in The III International Conference on • Mathematical Physics, String Theory and Quantum Gravity, Proceedings of the Conference, Alushta, 1993, Theor. Math. Phys. 98 (1994) 509. M. de Wild Propitius and F.A. Bais, Discrete gauge theories, to appear in the • proceedings of the CRM-CAP Summer School ‘Particles and Fields 94’, Bannf, Alberta, Canada, August 16-24, 1994. Voor mijn moeder Who needs physics when we’ve got chemistry? -Peggy Sue Got Married, Francis Coppola Contents Preface 1 1 Discrete gauge theories 9 1.1 Introduction................................... 9 1.2 Braidgroups................................... 10 1.3 ZN gaugetheory ................................ 14 1.3.1 Coulombscreening . .. .. 15 1.3.2 Survival of the Aharonov-Bohm effect . .. 18 1.3.3 Braid and fusion properties of the spectrum . .... 24 1.4 Nonabeliandiscretegaugetheories . ..... 29 1.4.1 Classification of stable magnetic vortices . ...... 30 1.4.2 Fluxmetamorphosis . .. .. 34 1.4.3 Includingmatter ............................ 39 1.5 Quantumdoubles................................ 42 1.5.1 D(H) .................................. 43 1.5.2 Truncatedbraidgroups. 48 1.5.3 Fusion, spin, braid statistics and all that . ............. 50 1.6 D¯ 2 gaugetheory................................. 55 1.6.1 Aliceinphysics ............................. 57 1.6.2 Scattering doublet charges off Alice fluxes . .... 61 1.6.3 Nonabelianbraidstatistics . .. 64 1.A Aharonov-Bohmscattering. .. 68 1.B B(3, 4) and P (3, 4) ............................... 71 2 Abelian Chern-Simons theories 75 2.1 Introduction................................... 75 2.2 Group cohomology and symmetry breaking . .... 78 2.3 Cohomologyoffiniteabeliangroups. .... 79 2.3.1 Hn(H, U(1))............................... 79 2.3.2 Chern-Simons actions for finite abelian groups . ...... 82 2.4 Chern-Simons actions for U(1)k gaugetheories. 84 2.5 Quasi-quantumdoubles. 86 i ii CONTENTS 2.6 U(1)Chern-Simonstheory . 92 2.6.1 Dirac monopoles and topological mass quantization . ....... 94 2.6.2 Dynamics of the Chern-Simons Higgs medium . .. 96 2.6.3 ZN Chern-Simonstheory . .102 2.7 U(1) U(1)Chern-Simonstheory. .107 2.7.1× Unbroken phase with Dirac monopoles . 108 2.7.2 Higgsphase ...............................110 2.7.3 Z (1) Z (2) Chern-SimonstheoryoftypeII. 112 N × N 2.8 Z2 Z2 Z2 Chern-Simonstheory . .114 2.8.1× Spectrum× ................................115 2.8.2 Nonabelian topologicalinteractions . .118 2.8.3 Electric/magnetic duality . 121 2.9 Dijkgraaf-Witteninvariants . .124 2.A Cohomologicalderivations. 126 3 Nonabelian discrete Chern-Simons theories 131 3.1 Dω(H) for nonabelian H ............................131 3.2 Discrete Chern-Simons Alice electrodynamics . ........134 3.3 D¯ N Chern-Simonstheory. .140 3.A Conjugatedcohomology . 146 Bibliography 151 Samenvatting 159 Dankwoord 161 Preface Symmetry has become one of the main guiding principles in physics during the twentieth century. Over the last ten decades, we have progressed from external to internal, from global to local, from finite to infinite, from ordinary to supersymmetry and recently arrived at the notion of quantum groups. In general, a physical system consists of a finite or infinite number of degrees of free- dom which may or may not interact. The dynamics is prescribed by a set of evolution equations which follow from varying the action with respect to the different degrees of freedom. A symmetry then corresponds to a group of transformations on the space time coordinates and/or the degrees of freedom that leave the action and therefore also the evo- lution equations invariant. External symmetries have to do with invariances (e.g. Lorentz invariance) under transformations on the space time coordinates. Symmetries not related with transformations of space time coordinates are called internal symmetries. We also discriminate between global symmetries and local symmetries. A global or rigid symme- try transformation is the same throughout space time and usually leads to a conserved quantity. Turning a global symmetry into a local symmetry, i.e. allowing the symmetry transformations to vary continuously from one point in space time to another, requires the introduction of additional gauge degrees of freedom mediating a force. This so-called gauge principle has eventually led to the extremely successful standard model of the strong and electro-weak interactions between the elementary particles based on the local gauge group SU(3) SU(2) U(1). × × A symmetry of the action is not automatically a symmetry of the groundstate of a physical system. If the action is invariant under some symmetry group G and the ground- state only under a subgroup H of G, the symmetry group G is said to be spontaneously broken down. The symmetry is not completely lost though, for the broken generators of G transform one groundstate into another. The physics of a broken global symmetry is quite different from a broken local gauge symmetry. The signature of a broken continuous global symmetry group G in a physical system is the occurrence of massless scalar degrees of freedom, the so-called Goldstone bosons. Specifically, each broken generator of G gives rise to a massless Goldstone boson field. Well-known realizations of Goldstone bosons are the long range spin waves in a ferromagnet, in which the rotational symmetry is broken below the Curie temperature through the appearance of spontaneous magnetization. A beautiful example in particle physics is the low energy physics of the strong interactions, where the spontaneous break- 1 2 PREFACE down of (approximate) chiral symmetry leads to (approximately) massless pseudoscalar particles such as the pions. In the case of a broken local gauge symmetry, on the other hand, the would be massless Goldstone bosons conspire with the massless gauge fields to form a massive vector field. This celebrated phenomenon is known as the Higgs mechanism. The canonical example in condensed matter physics is the ordinary superconductor. In the phase transition from the normal to the superconducting phase, the U(1) gauge symmetry is spontaneously broken by a condensate of Cooper pairs. This leads to a mass MA for the photon field in the superconducting medium as witnessed by the Meissner effect: magnetic fields are expelled from a superconducting region and have a characteristic penetration depth which in proper units is just the inverse of the photon mass MA. The Higgs mechanism also plays a key role in the unified theory of weak and electromagnetic interactions, that is, the Glashow-Weinberg-Salam model where the product gauge group SU(2) U(1) is broken to the U(1) subgroup of electromagnetism. Here, the massive vector particles× correspond to the W and Z bosons mediating the short range weak interactions. More speculative applications of the Higgs mechanism are those where the standard model of the strong, weak and electromagnetic interactions is embedded in a grand unified model with a large simple gauge group. The most ambitious attempts invoke supersymmetry as well. In addition to the characteristics in the spectrum of fundamental excitations described above, there are in general other fingerprints of a broken symmetry in a physical system. These are usually called topological excitations or just defects, see for example the ref- erences [44, 93, 108, 110] for reviews. Defects are collective degrees of freedom carrying ‘charges’ or quantum numbers which are conserved for topological reasons, not related to a manifest symmetry of the action. It is exactly the appearance of these topological charges which renders the corresponding collective excitations stable. Topological excitations may manifest themselves as particle-like, string-like or planar-like objects (solitons), or have to be interpreted as quantum mechanical tunneling processes (instantons). Depending on the model in which they occur, these excitations carry evocative names like kinks, domain walls, vortices, cosmic strings, Alice strings, monopoles, skyrmions, texture, sphalerons and so on. Defects are crucial for a full understanding of the physics of systems with a broken symmetry and lead to a host of rather unexpected and exotic phenomena, which are in general of a nonperturbative nature. The prototypical example of a topological defect is the Abrikosov-Nielsen-Olesen flux tube in the type II superconductor with broken U(1) gauge symmetry [1, 99]. The topolog- ical quantum number characterizing these defects is the magnetic flux, which indeed can only take discrete values. A beautiful example in particle physics is the ’t Hooft-Polyakov monopole [67, 105] occurring in any grand unified model in which a simple gauge group G is broken to a subgroup H which contains the electromagnetic U(1) factor. Here, it is the quantized magnetic charge which is conserved for topological reasons. In fact, the presence of magnetic monopoles in these models reconciles the two well-known arguments for the quantization of electric charge, namely Dirac’s argument based on the existence of a magnetic monopole [49] and the obvious fact that the U(1) generator should be compact PREFACE 3 as it belongs to a larger compact gauge group.
Recommended publications
  • Majorana Fermions in Mesoscopic Topological Superconductors: from Quantum Transport to Topological Quantum Computation
    Majorana Fermions in Mesoscopic Topological Superconductors: From Quantum Transport to Topological Quantum Computation Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Stephan Plugge D¨usseldorf, April 2018 Aus dem Institut f¨ur Theoretische Physik, Lehrstuhl IV der Heinrich-Heine-Universit¨at D¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨at D¨usseldorf Berichterstatter: 1. Prof. Dr. Reinhold Egger 2. PD Dr. Hermann Kampermann 3. Prof. Felix von Oppen, PhD Tag der m¨undlichen Pr¨ufung: 15. Juni 2018 List of included publications S. Plugge, A. Zazunov, P. Sodano, and R. Egger, Majorana entanglement bridge,Phys. Rev. B 91, 214507 (2015). [Selected as Editors’ Suggestion] L.A. Landau, S. Plugge, E. Sela, A. Altland, S.M. Albrecht, and R. Egger, Towards real- istic implementations of a Majorana surface code, Phys. Rev. Lett. 116, 050501 (2016). S. Plugge, A. Zazunov, E. Eriksson, A.M. Tsvelik, and R. Egger, Kondo physics from quasiparticle poisoning in Majorana devices,Phys.Rev.B93, 104524 (2016). S. Plugge, L.A. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger, Roadmap to Majorana surface codes,Phys.Rev.B94, 174514 (2016). [Selected as Editors’ Suggestion] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, Majorana box qubits, New J. Phys. 19 012001 (2017). [Fast-Track Communication; selected for Highlights of 2017 collection] T. Karzig, C. Knapp, R. Lutchyn, P. Bonderson, M. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. Marcus, and M. H. Freedman, Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes,Phys.Rev.B95, 235305 (2017).
    [Show full text]
  • LIST of PUBLICATIONS Jürg Fröhlich 1. on the Infrared Problem in A
    LIST OF PUBLICATIONS J¨urgFr¨ohlich 1. On the Infrared Problem in a Model of Scalar Electrons and Massless Scalar Bosons, Ph.D. Thesis, ETH 1972, published in Annales de l'Inst. Henri Poincar´e, 19, 1-103 (1974) 2. Existence of Dressed One-Electron States in a Class of Persistent Models, ETH 1972, published in Fortschritte der Physik, 22, 159-198 (1974) 3. with J.-P. Eckmann : Unitary Equivalence of Local Algebras in the Quasi-Free Represen- tation, Annales de l'Inst. Henri Poincar´e 20, 201-209 (1974) 4. Schwinger Functions and Their Generating Functionals, I, Helv. Phys. Acta, 47, 265-306 (1974) 5. Schwinger Functions and Their Generating Functionals, II, Adv. of Math. 23, 119-180 (1977) 6. Verification of Axioms for Euclidean and Relativistic Fields and Haag's Theorem in a Class of P (φ)2 Models, Ann. Inst. H. Poincar´e 21, 271-317 (1974) 7. with K. Osterwalder : Is there a Euclidean field theory for Fermions? Helv. Phys. Acta 47, 781 (1974) 8. The Reconstruction of Quantum Fields from Euclidean Green's Functions at Arbitrary Temperatures, Helv. Phys. Acta 48, 355-369 (1975); (more details are contained in an unpublished paper, Princeton, Dec. 1974) 9. The Pure Phases, the Irreducible Quantum Fields and Dynamical Symmetry Breaking in Symanzik-Nelson Positive Quantum Field Theories, Annals of Physics 97, 1-54 (1975) 10. Quantized "Sine-Gordon" Equation with a Non-Vanishing Mass Term in Two Space-Time Dimensions, Phys. Rev. Letters 34, 833-836 (1975) 11. Classical and Quantum Statistical Mechanics in One and Two Dimensions: Two-Compo- nent Yukawa and Coulomb Systems, Commun.
    [Show full text]
  • Attempts to Go Beyond Bose and Fermi Statistics
    Beyond Bose and Fermi Statistics O.W. Greenberg University of Maryland Spin-Statistics 2008 October 21, 2008 Trieste, Italy Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W.
    [Show full text]
  • An Introduction to Anyons
    An Introduction to Anyons Avinash Deshmukh University of British Columbia In this paper, we introduce anyons, particles that pick up a non-trivial phase under exchange. We start by considering the topological conditions that allow anyons to be created and construct the braid group, which defines anyonic exchange statistics. We proceed to discuss abelian and non- abelian exchange representations and review cyons, fibonacci anyons, and Ising anyons as illustrative examples. Finally, we briefly examine solved condensed matter models in which anyons are produced and review the exchange statistics of these systems. I. INTRODUCTION rigorous version of this argument. It is well known that in three-dimensions, there are two One important consequence of θ being any value is that it is iθ iθ types of particles; bosons are symmetric under exchange and not generally true that e “ e´ . We must then distinguish fermions are anti-symmetric under exchange. However, in between \counterclockwise" exchanges and \clockwise" ex- two-dimensions, it is possible to have particles that are nei- changes, which correspond to the accumulated phases θ and ther anti-symmetric nor symmetric under exchange. These ´θ respectively. particles are known as anyons. It has been shown that the exotic statistics of anyons can be used to encode information for topological quantum computation [1], and it is believed B. The Braid Group that they can be used in the construction of superconductors [2]. Earlier this year, abelian anyons were directly observed Consider a system of n particles that follow θ-statistics in a two-dimensional electronic gas collider [3] and in an elec- 2 with the positions r1; :::; rn P R in the center of mass tronic Fabry-Perot intereferometer [4], showing that these frame, described by the wave function pr1; :::; rnq.
    [Show full text]
  • Boson-Lattice Construction for Anyon Models
    Boson-Lattice Construction for Anyon Models Bel´enParedes Ludwig Maximilian University, Munich This work is an attempt to unveil the skeleton constituents. The set of anyon types emerging from a of anyon models. I present a construction to sys- certain topological order satisfies a collection of fusion tematically generate anyon models. The construc- and braiding rules [10{14], which determine the way in tion uses a set of elementary pieces or fundamental which anyons fuse with each other to give rise to other anyon models, which constitute the building blocks anyon types, and the form in which they braid around to construct other, more complex, anyon models. each other. A set of anyon types together with their fu- A principle of assembly is established that dictates sion and braiding rules define an anyon model, which per- how to articulate the building blocks, setting out the fectly mirrors its corresponding underlying physical state. global blueprint for the whole structure. Remark- What are the possible anyon models that can exist? ably, the construction generates essentially all tabu- From a purely mathematical perspective, it is known that lated anyon models. Moreover, novel anyon models the language underlying anyon models is modular ten- (non-tabulated, to my knowledge) arise. To embody sor category [15{22]. Within this beautiful (and com- the construction I develop a very physical, visual and plex) mathematical formalism the answer to this ques- intuitive lexicon. An anyon model corresponds to a tion can be simply phrased: any possible anyon model system of bosons in a lattice. By varying the num- corresponds to a unitary braided modular tensor cate- ber of bosons and the number of lattice sites, towers gory.
    [Show full text]
  • Exchange and Exclusion in the Non-Abelian Anyon Gas
    EXCHANGE AND EXCLUSION IN THE NON-ABELIAN ANYON GAS DOUGLAS LUNDHOLM AND VIKTOR QVARFORDT Abstract. We review and develop the many-body spectral theory of ideal anyons, i.e. identical quantum particles in the plane whose exchange rules are governed by unitary representations of the braid group on N strands. Allowing for arbitrary rank (dependent on N) and non-abelian representations, and letting N ! 1, this defines the ideal non-abelian many-anyon gas. We compute exchange operators and phases for a common and wide class of representations defined by fusion algebras, including the Fibonacci and Ising anyon models. Furthermore, we extend methods of statistical repulsion (Poincar´eand Hardy inequalities) and a local exclusion principle (also implying a Lieb{Thirring inequality) developed for abelian anyons to arbitrary geometric anyon models, i.e. arbitrary sequences of unitary representations of the braid group, for which two-anyon exchange is nontrivial. Contents 1. Introduction2 1.1. Anyons | abelian vs. non-abelian3 1.2. Some mathematically rigorous results for abelian anyons5 1.3. Main new results8 2. Algebraic anyon models 11 2.1. Fusion 11 2.2. Braiding 14 2.3. Pentagon and hexagon equations 15 2.4. Vacuum, bosons and fermions 17 2.5. Abelian anyons 18 2.6. Fibonacci anyons 18 2.7. Ising anyons 20 3. Exchange operators and phases 21 3.1. Braid group representations 22 3.2. Exchange operators 25 3.3. Abelian anyons 26 3.4. Fibonacci anyons 27 3.5. Ising anyons 29 arXiv:2009.12709v1 [math-ph] 26 Sep 2020 3.6. Clifford anyons 32 3.7.
    [Show full text]
  • Annual Report 2006
    ANNUAL REPORT 2006 Dutch Research School of Theoretical Physics (DRSTP) Landelijke Onderzoekschool voor Theoretische Natuurkunde (LOTN) Visiting address: Minnaert building Leuvenlaan 4 3584 CE Utrecht Postal address: P.O. Box 80.195 3508 TD Utrecht the Netherlands tel.: +31 (0)30 2535916 fax: +31 (0)30 2535937 e-mail: [email protected] website: http://www1.phys.uu.nl/drstp/ Preface This is the Annual Report 2006 of the Dutch Research School of Theoretical Physics (DRSTP). It provides an overview of the educational and research activities during 2006, intended for a broad spectrum of interested parties. The report also presents two research highlights written by staff members of the Research School. In addition, it offers a wealth of factual information, such as a list of the participating staff, of the PhD students, a comprehensive list of publications, as well as other relevant statistics. The annual report is not the only information that we make available throughout the year. We also publish a monthly newsletter and a yearly guide of our educational activities. Up-to-date information on the DRSTP is also readily available on internet at: http://www1.phys.uu.nl/drstp/. Finally, we should like to thank all of those who contributed to the Research School during this past year. prof. dr. B. de Wit prof. dr. K. Schoutens Scientific director Chair governing board August 2007 Contents 1 The DRSTP in 2006 7 2 Scientific highlights 11 3 PhD programme 19 3.1 Educational programme . 19 3.1.1 DRSTP postgraduate courses (AIO/OIO schools) . 19 3.1.2 Guest lecturers .
    [Show full text]
  • TWO-DIMENSIONAL QUANTUM GAS S
    f .'..~«rf£^.« ;»*«4 I INSTITUTO DE FÍSICA TEÓRICA 1TT/P-17/9O TWO-DIMENSIONAL QUANTUM GAS a* R. Aldr ovandl* Instituto de Física Teóricas State Untversity oi 55o Paulo - UNESP Rúa Parriplcna 145 - 01405 -São.Pauio S? - Brazil s Abstract o ícter,!;cal itnprnstfcile perlicles '.n a 2-diíiieosior4! ccnfíg-jralisn serra fcrotá stetisti», Ihí&rír.a;i3'o beUv=eri bosons end . sy.iMügiric croups fte r.ein properties of ao ij^J jis cl su-;-. ^ are presèTiiâl Itw/ CD iaterpolôte U*e prepertiçs et t5so.is erd If i fr.s but cióssicai pyticles as a special case Restriction to 2 c .; *',ens prscVjfcs l4.T»tcü points but ori-jic-sías fl pecv! - . symmetry,responsible in particular for ths'icsrj , fi - boson ft.il iernt:on specific h£c:!S. o 0 * With perttel «uppyl cí CMr « Idex 11-31 370Uii'-.r 5^ .1fi!ôf«00 55ll36i4«? U£SP <• E?JA?£SP. tíí.MET 1.Introduction Quantum mechanics of a given system is controlled Dy the group of classes of closed loops (the fundamental group) or Us configuration space ill and, of course, statistical mechanics will follow suit. The configuration space of a system of N identical particles will have a non-trivial fundamental group [2], that is, will be multiply connected Let M be the configuration space of each particle and consider the N set M • |x • (xt, x2,.... xN)), the cartesian product of manifold M by itself N tifiics. MN will be the configuration space of a gas of N distinguishable particles contained in fi n is usually a 3- dimensional Euclidean box whose volume V is taken to infinity at the thermodynamica! limit.
    [Show full text]
  • Non-Abelian Anyons: Statistical Repulsion and Topological Quantum Computation
    DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Non-Abelian Anyons: Statistical Repulsion and Topological Quantum Computation VIKTOR QVARFORDT KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Non-Abelian Anyons: Statistical Repulsion and Topological Quantum Computation VIKTOR QVARFORDT Degree Projects in Mathematics (30 ECTS credits) Degree Programme in Mathematics (120 credits) KTH Royal Institute of Technology year 2017 Supervisor at KTH: Douglas Lundholm Examiner at KTH: Kristian Bjerklöv TRITA-MAT-E 2017:17 ISRN-KTH/MAT/E--17/17--SE Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract As opposed to classical mechanics, quantum mechanical particles can be truly identical and lead to new and interesting phenomena. Identical particles can be of different types, determined by their exchange symmetry, which in turn gives rise to statistical repulsion. The exchange symmetry is given by a representation of the exchange group; the fundamental group of the configuration space of identical particles. In three dimensions the exchange group is the permutation group and there are only two types of identical particles; bosons and fermions. While any number of bosons can be at the same place or in the same state, fermions repel each other. In two dimensions the exchange group is the braid group and essentially any exchange symmetry is allowed, such particles are called anyons. Abelian anyons are described by abelian representations of the exchange group and can be seen as giving a continuous interpolation between bosons and fermions. Non-abelian anyons are much more complex and their statistical repulsion is yet largely unexplored.
    [Show full text]
  • Thermodynamics of Non-Abelian Exclusion Statistics
    THERMODYNAMICS OF NON-ABELIAN EXCLUSION STATISTICS Wung-Hong Huang Department of Physics National Cheng Kung University Tainan,70101,Taiwan The thermodynamic potential of ideal gases described by the simplest non-abelian statistics is investigated. I show that the potential is the linear function of the element of the abelian- part statistics matrix. Thus, the factorizable property in the Haldane (abelian) fractional exclusion shown by the author [W. H. Huang, Phys. Rev. Lett. 81, 2392 (1998)] is now extended to the non-abelian case. The complete expansion of the thermodynamic potential is also given. Keywords: fractional exclusion statistics; quantum Hall effect. Classification Number: 05.30.-d, 71.10.+x E-mail: [email protected] arXiv:hep-th/0008153v1 19 Aug 2000 1 I. INTRODUCTION It is know that the quasiparticle appearing in the strong correlation system in the low dimension may obeying the Haldane fractional exclusion statistics [1]. The famous examples are those in the fractional quantized Hall effect and spin 1/2 antiferromagnetic chain [2-4]. The thermodynamics in these system had been investigated by several authors [5-8]. Since the braid group in two space dimensions may be represented by the non-commute matrix, the non-abelian braid statistics could be shown in a real world [9-16]. These include the quasiparticle in the non-abelian fractional quantum Hall state as well as those in the conformal field theory [9-15]. The spinon in the Heisenberg chains could also show the non-abelian exchange statistics [16]. In a recent paper [15], Guruswamy and Schoutens had derived the occupation number distribution functions for the particle obeying the non-abelian statistics.
    [Show full text]
  • The Quantum Geometry of Spin and Statistics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Quantum Geometry of Spin and Statistics Robert Oeckl∗ Centre de Physique Th´eorique, CNRS Luminy, 13288 Marseille, France and Department of Applied Mathematics and Mathematical Physics, University of Cambridge, Cambridge CB3 0WA, UK DAMTP-2000-81 27 January 2001 Abstract Both, spin and statistics of a quantum system can be seen to arise from underlying (quantum) group symmetries. We show that the spin- statistics theorem is equivalent to a unification of these symmetries. Besides covering the Bose-Fermi case we classify the corresponding possibilities for anyonic spin and statistics. We incorporate the un- derlying extended concept of symmetry into quantum field theory in a generalised path integral formulation capable of handling general braid statistics. For bosons and fermions the different path integrals and Feynman rules naturally emerge without introducing Grassmann variables. We also consider the anyonic example of quons and obtain the path integral counterpart to the usual canonical approach. MSC: 81R50, 81S05, 81S40, 81T18 keywords: quantum groups, statistics, spin, quantum field theory, anyons, quons ∗email: [email protected] 1 1 Introduction While spin in quantum physics arises from the geometry of space-time, statistics is connected to the geometry of configuration space. Half-integer spin and Bose-Fermi statistics arise in 3 or higher dimensions, while in 2 dimensions more general fractional spin and anyonic statistics are possible (see [?] and references therein). In fact, both, spin and statistics are related to symmetries. In the case of spin this is plainly understood in terms of the symmetries of space-time.
    [Show full text]
  • Quantum Computing and Quantum Topology
    Topological Quantum Computation Zhenghan Wang Microsoft Station Q & UC Sana Barbara Texas, March 26, 2015 Classical Physics Turing Model Quantum field computing is the same as quantum computing. Quantum Mechanics Quantum Computing Quantum Field Theory ??? True for TQFTs String Theory ?????? (Freedman, Kitaev, Larsen, W.) Quantum Computation • There is a serious prospect for quantum physics to change the face of information science. • Theoretically, the story is quite compelling: – Shor’s factoring algorithm (1994) – Fault tolerance ~1996-1997 independently • P. Shor • A. M. Steane • A. Kitaev • But for the last twenty years the most interesting progress has been to build a quantum computer. Why Quantum More Powerful? • Superposition • Entanglement A (classical) bit is given by a Quantum states need not be physical system that can exist products. For example: in one of two distinct states: 0 or 1 A qubit is given by a physical system that can exist in a linear combination of two distinct quantum states: or This is the property that enables quantum state teleportation and Einstein’s “spooky action at a distance.” |휓 > ∈ 퐶푃1 ● Classical information source is modeled by a random variable X The bit---a random variable X {0,1} with equal probability. Physically, it is a switch I (p)= - n p log p , X i=1 i 2 i 1 ● A state of a quantum system is an information source The qubit---a quantum system whose states given by non-zero vectors in ℂퟐ up to non-zero scalars. Physically, it is a 2-level quantum system. Paradox: A qubit contains both more and less than 1 bit of information.
    [Show full text]