View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Quantum Geometry of Spin and Statistics Robert Oeckl∗ Centre de Physique Th´eorique, CNRS Luminy, 13288 Marseille, France and Department of Applied Mathematics and Mathematical Physics, University of Cambridge, Cambridge CB3 0WA, UK DAMTP-2000-81 27 January 2001 Abstract Both, spin and statistics of a quantum system can be seen to arise from underlying (quantum) group symmetries. We show that the spin- statistics theorem is equivalent to a unification of these symmetries. Besides covering the Bose-Fermi case we classify the corresponding possibilities for anyonic spin and statistics. We incorporate the un- derlying extended concept of symmetry into quantum field theory in a generalised path integral formulation capable of handling general braid statistics. For bosons and fermions the different path integrals and Feynman rules naturally emerge without introducing Grassmann variables. We also consider the anyonic example of quons and obtain the path integral counterpart to the usual canonical approach. MSC: 81R50, 81S05, 81S40, 81T18 keywords: quantum groups, statistics, spin, quantum field theory, anyons, quons ∗email:
[email protected] 1 1 Introduction While spin in quantum physics arises from the geometry of space-time, statistics is connected to the geometry of configuration space. Half-integer spin and Bose-Fermi statistics arise in 3 or higher dimensions, while in 2 dimensions more general fractional spin and anyonic statistics are possible (see [?] and references therein). In fact, both, spin and statistics are related to symmetries. In the case of spin this is plainly understood in terms of the symmetries of space-time.