An Introduction to Anyons

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Anyons An Introduction to Anyons Avinash Deshmukh University of British Columbia In this paper, we introduce anyons, particles that pick up a non-trivial phase under exchange. We start by considering the topological conditions that allow anyons to be created and construct the braid group, which defines anyonic exchange statistics. We proceed to discuss abelian and non- abelian exchange representations and review cyons, fibonacci anyons, and Ising anyons as illustrative examples. Finally, we briefly examine solved condensed matter models in which anyons are produced and review the exchange statistics of these systems. I. INTRODUCTION rigorous version of this argument. It is well known that in three-dimensions, there are two One important consequence of θ being any value is that it is iθ iθ types of particles; bosons are symmetric under exchange and not generally true that e “ e´ . We must then distinguish fermions are anti-symmetric under exchange. However, in between \counterclockwise" exchanges and \clockwise" ex- two-dimensions, it is possible to have particles that are nei- changes, which correspond to the accumulated phases θ and ther anti-symmetric nor symmetric under exchange. These ´θ respectively. particles are known as anyons. It has been shown that the exotic statistics of anyons can be used to encode information for topological quantum computation [1], and it is believed B. The Braid Group that they can be used in the construction of superconductors [2]. Earlier this year, abelian anyons were directly observed Consider a system of n particles that follow θ-statistics in a two-dimensional electronic gas collider [3] and in an elec- 2 with the positions r1; :::; rn P R in the center of mass tronic Fabry-Perot intereferometer [4], showing that these frame, described by the wave function pr1; :::; rnq. Suppose particles actually exist { they are not mere mathematical now that we perform some arbitrary exchange of these oddities. particles such that the particles have the final positions rP p1q; :::; rP pnq, where P is some permutation of n particles. We can perform this exchange through the composition II. ANYON EXCHANGE STATISTICS of exchanges of numerically adjacent particles, each of which may be a clockwise exchange or a counterclockwise ´1 A. Two Particle Exchange exchange. In light of this, we define σi and σi for 1 ¤ i ¤ n ´ 1 to be the counterclockwise and clockwise th th Consider a system of two indistinguishable particles with exchanges respectively of the i and pi ` 1q particle. Notice that a clockwise exchange of two particles undoes hard-core repulsion at the positions r1 and r2 described by the effect of a counterclockwise exchange, so they are indeed the wave function pr1; r2q. We define the exchange of two particles as the arbitrary adiabatic transport of each par- inverses [5]. ticle to the position that was previously occupied by the other particle. Because the particles are indistinguishable, The exchange of two disjoint pairs of particle should not af- the probability density of the system must be unchanged, fect one another, so the order in which those exchanges occur so the wave-function must be unchanged up to accumulat- does not matter. This adds the constraint that σiσj “ σjσi ing some phase eiθ. Suppose we exchange the particles once, for ji ´ jj ¥ 2. We also add the mathematically imposed and then exchange the particles again. Notice that we have Yang Baxter constraint, that σiσi`1σi “ σi`1σiσi`1, which moved the particles in a closed loop about each other back is necessary for a valid commutator structure [6]. to their initial positions. In three dimensions, such an \ex- change loop" is topologically equivalent to the trivial loop Using our construction of the σi, we see that exchange (which is no loop at all), so the wave function must be invari- in a system of n-particles with θ-statistics has the same 2iθ ant under this double exchange. This means the e phase structure as the group generated by σ1; ::; σn. This group accumulated by the exchanges must satisfy the constraint: is known as the Braid group Bn. It is not generally true 2 that σi “ 1 for each of the σi, which means that the braid 2iθ pr1; r2q “ e pr1; r2q (1) group Bn is an infinite group. Notice that if we repeat this construction in three dimensions, we obtain the same result 2 so θ “ nπ for some integer n. When n is an even integer, with the additional topological constraint that σi “ 1. the wave function is invariant under exchange, which gives We recognize this as being the symmetric group Sn, which us boson exchange statistics. When n is an odd integer, agrees with our understanding that particle exchange in the wave function is multiplied by a negative sign under three dimensions is equivalent to permuting the particles exchange, which gives us fermi statistics. [6]. A reader interested in a useful visual representation of the braid group can consult the appendix. In two-dimensions, however, not all exchange loops are topo- logically equivalent to the trivial loop, so double exchanges To understand how the braid statistics impact the quantum do not restore the initial system. Then, we do not have mechanical behavior of an anyonic system, we must deter- any constraint on the phase θ under two exchanges, and θ mine the action of the braid group on the Hilbert space H. could be any value. We say that particles that accumulate This requires us to determine a way to write the elements of a factor of θ obey this exchange rule follow θ-statistics. the braid group as operators on the Hilbert space that leave Bosons obey 0-statistics, fermions obey π-statistics, and we probabilities unchanged, that is we need a unitary represen- refer to particles obeying θ-statistics for θ ‰ 0; π as anyons tation π : Bn ÝÑ UpHq, where UpHq denotes the space of [5]. The interested reader can consult the appendix for a unitary operators acting on the Hilbert space. 2 III. ABELIAN ANYONS B. Physical Realization { Cyons A. The One-Dimensional Representation of the Braid Despite the fact that particles constrained to two dimen- Group sions are able to have anyon statistics, electrons, atoms, and photons constrained to two dimensions retain the Perhaps the simplest non-trivial representation of the braid same fermionic/bosonic statistics that they obey in three group Bn is the one-dimensional representation: dimensions. However, it is possible to construct systems with quasiparticles that obey anyon statistics. iθ πpσkq “ e (2) Consider an infinite and very thin solenoid along the z-axis It is easy to see that this representation is a unitary with magnetic flux Φ along with a spinless particle of charge homomorphism that has all of the properties required of q and mass m orbiting the solenoid at a radius r constrained to some plane perpendicular to the solenoid. The electric the generators. Furthermore, the πpσkq mutually commute, which tells us that the resultant statistics are abelian. field E experienced by the charged particle is: Anyons described by these statistics are called abelion Φ9 anyons. E “ ´ φ^ (8) 2πjrj We can write an arbitrary exchange of particles r ; :::; r p 1 nq ÞÑ Using Coulomb's Law and Newton's Equation of motion, we r ; :::; r as some element b B . Writing this in p P p1q P pnqq P n find that the contribution of the electric field to the angular terms of the generators, we have: momentum of the particle is: n qΦ mk ^ b “ σ (3) JE “ φ (9) k 2πc k“1 ¹ The canonical angular momentum JC “ r ˆ pp ` eAq of for m1; :::; m P . Applying the the representation π, we n Z the particle is some integer multiple of ~. Then, using the find that b operates on the Hilbert space as the following fact that the canonical angular momentum is the sum of the operator: electronic angular momentum JE and the kinetic angular momentum JK “ r ˆ p, we have: πpbq “ eipm1`¨¨¨`mnqθ (4) ^ qΦ ^ JK “ n φ ´ φ (10) The exchanged wave-function is given by applying the oper- ~ 2πc ator πpbq to the wave function, so we have: for n P Z. Now, consider the limit where r Ñ 0 and the ipm1`¨¨¨`mnqθ solenoid become infinitely thin. The resulting quasiparticle prP 1 ; :::; rP n q “ e pr1; :::; r q (5) p q p q n is called a cyon. The spin S is defined to be the kinetic angular momentum at n “ 0 divided by , so the cyon is a Notice that m m is an effective degree of the ~ 1 ` ¨ ¨ ¨ n quasiparticle with mass m, charge q, and fractional spin [7]: exchange; each mk is the number of counter-clockwise exchanges of the k and k ` 1 minus the number of clockwise qΦ exchanges of these particles required to go from the initial S “ (11) 2π~c state to the final state. Consider a system of two cyons at the positions r1 and r2. Next, consider a system of two particles, each of which are In center of mass and relative coordinates R “ pr1 ` r2q{2 composite bound states of n abelian anyons that obey θ- and r “ r1 ´ r2, the wave function describing this system statistics. A counter-clockwise exchange σ of these particles (see the Appendix for a derivation) is: involves n2 counter-clockwise anyon exchanges { each anyon ikR¨R ip`´qΦ{2πqφ in one bound state has a counter-clockwise exchange with ΨpR; rq “ c`;kR e J`pkr rqe (12) `;k each anyon in the other bound state. Then, it follows that: ¸R 2 for the constants c`;kR which are such that the wave-function π σ ein θ (6) th p q “ is normalized, where r “ pr; φq, and where J` is the ` bessel function of the first kind.
Recommended publications
  • Majorana Fermions in Mesoscopic Topological Superconductors: from Quantum Transport to Topological Quantum Computation
    Majorana Fermions in Mesoscopic Topological Superconductors: From Quantum Transport to Topological Quantum Computation Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Stephan Plugge D¨usseldorf, April 2018 Aus dem Institut f¨ur Theoretische Physik, Lehrstuhl IV der Heinrich-Heine-Universit¨at D¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨at D¨usseldorf Berichterstatter: 1. Prof. Dr. Reinhold Egger 2. PD Dr. Hermann Kampermann 3. Prof. Felix von Oppen, PhD Tag der m¨undlichen Pr¨ufung: 15. Juni 2018 List of included publications S. Plugge, A. Zazunov, P. Sodano, and R. Egger, Majorana entanglement bridge,Phys. Rev. B 91, 214507 (2015). [Selected as Editors’ Suggestion] L.A. Landau, S. Plugge, E. Sela, A. Altland, S.M. Albrecht, and R. Egger, Towards real- istic implementations of a Majorana surface code, Phys. Rev. Lett. 116, 050501 (2016). S. Plugge, A. Zazunov, E. Eriksson, A.M. Tsvelik, and R. Egger, Kondo physics from quasiparticle poisoning in Majorana devices,Phys.Rev.B93, 104524 (2016). S. Plugge, L.A. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger, Roadmap to Majorana surface codes,Phys.Rev.B94, 174514 (2016). [Selected as Editors’ Suggestion] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, Majorana box qubits, New J. Phys. 19 012001 (2017). [Fast-Track Communication; selected for Highlights of 2017 collection] T. Karzig, C. Knapp, R. Lutchyn, P. Bonderson, M. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. Marcus, and M. H. Freedman, Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes,Phys.Rev.B95, 235305 (2017).
    [Show full text]
  • LIST of PUBLICATIONS Jürg Fröhlich 1. on the Infrared Problem in A
    LIST OF PUBLICATIONS J¨urgFr¨ohlich 1. On the Infrared Problem in a Model of Scalar Electrons and Massless Scalar Bosons, Ph.D. Thesis, ETH 1972, published in Annales de l'Inst. Henri Poincar´e, 19, 1-103 (1974) 2. Existence of Dressed One-Electron States in a Class of Persistent Models, ETH 1972, published in Fortschritte der Physik, 22, 159-198 (1974) 3. with J.-P. Eckmann : Unitary Equivalence of Local Algebras in the Quasi-Free Represen- tation, Annales de l'Inst. Henri Poincar´e 20, 201-209 (1974) 4. Schwinger Functions and Their Generating Functionals, I, Helv. Phys. Acta, 47, 265-306 (1974) 5. Schwinger Functions and Their Generating Functionals, II, Adv. of Math. 23, 119-180 (1977) 6. Verification of Axioms for Euclidean and Relativistic Fields and Haag's Theorem in a Class of P (φ)2 Models, Ann. Inst. H. Poincar´e 21, 271-317 (1974) 7. with K. Osterwalder : Is there a Euclidean field theory for Fermions? Helv. Phys. Acta 47, 781 (1974) 8. The Reconstruction of Quantum Fields from Euclidean Green's Functions at Arbitrary Temperatures, Helv. Phys. Acta 48, 355-369 (1975); (more details are contained in an unpublished paper, Princeton, Dec. 1974) 9. The Pure Phases, the Irreducible Quantum Fields and Dynamical Symmetry Breaking in Symanzik-Nelson Positive Quantum Field Theories, Annals of Physics 97, 1-54 (1975) 10. Quantized "Sine-Gordon" Equation with a Non-Vanishing Mass Term in Two Space-Time Dimensions, Phys. Rev. Letters 34, 833-836 (1975) 11. Classical and Quantum Statistical Mechanics in One and Two Dimensions: Two-Compo- nent Yukawa and Coulomb Systems, Commun.
    [Show full text]
  • Attempts to Go Beyond Bose and Fermi Statistics
    Beyond Bose and Fermi Statistics O.W. Greenberg University of Maryland Spin-Statistics 2008 October 21, 2008 Trieste, Italy Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W. Greenberg Beyond Bose and Fermi Statistics Outline 1 Introduction 2 Spin-statistics vrs. spin-locality 3 What quantum mechanics allows 4 Doplicher, Haag, Roberts analysis 5 Parastatistics 6 Quons 7 Anyons 8 Experimental tests of statistics O.W.
    [Show full text]
  • Boson-Lattice Construction for Anyon Models
    Boson-Lattice Construction for Anyon Models Bel´enParedes Ludwig Maximilian University, Munich This work is an attempt to unveil the skeleton constituents. The set of anyon types emerging from a of anyon models. I present a construction to sys- certain topological order satisfies a collection of fusion tematically generate anyon models. The construc- and braiding rules [10{14], which determine the way in tion uses a set of elementary pieces or fundamental which anyons fuse with each other to give rise to other anyon models, which constitute the building blocks anyon types, and the form in which they braid around to construct other, more complex, anyon models. each other. A set of anyon types together with their fu- A principle of assembly is established that dictates sion and braiding rules define an anyon model, which per- how to articulate the building blocks, setting out the fectly mirrors its corresponding underlying physical state. global blueprint for the whole structure. Remark- What are the possible anyon models that can exist? ably, the construction generates essentially all tabu- From a purely mathematical perspective, it is known that lated anyon models. Moreover, novel anyon models the language underlying anyon models is modular ten- (non-tabulated, to my knowledge) arise. To embody sor category [15{22]. Within this beautiful (and com- the construction I develop a very physical, visual and plex) mathematical formalism the answer to this ques- intuitive lexicon. An anyon model corresponds to a tion can be simply phrased: any possible anyon model system of bosons in a lattice. By varying the num- corresponds to a unitary braided modular tensor cate- ber of bosons and the number of lattice sites, towers gory.
    [Show full text]
  • Exchange and Exclusion in the Non-Abelian Anyon Gas
    EXCHANGE AND EXCLUSION IN THE NON-ABELIAN ANYON GAS DOUGLAS LUNDHOLM AND VIKTOR QVARFORDT Abstract. We review and develop the many-body spectral theory of ideal anyons, i.e. identical quantum particles in the plane whose exchange rules are governed by unitary representations of the braid group on N strands. Allowing for arbitrary rank (dependent on N) and non-abelian representations, and letting N ! 1, this defines the ideal non-abelian many-anyon gas. We compute exchange operators and phases for a common and wide class of representations defined by fusion algebras, including the Fibonacci and Ising anyon models. Furthermore, we extend methods of statistical repulsion (Poincar´eand Hardy inequalities) and a local exclusion principle (also implying a Lieb{Thirring inequality) developed for abelian anyons to arbitrary geometric anyon models, i.e. arbitrary sequences of unitary representations of the braid group, for which two-anyon exchange is nontrivial. Contents 1. Introduction2 1.1. Anyons | abelian vs. non-abelian3 1.2. Some mathematically rigorous results for abelian anyons5 1.3. Main new results8 2. Algebraic anyon models 11 2.1. Fusion 11 2.2. Braiding 14 2.3. Pentagon and hexagon equations 15 2.4. Vacuum, bosons and fermions 17 2.5. Abelian anyons 18 2.6. Fibonacci anyons 18 2.7. Ising anyons 20 3. Exchange operators and phases 21 3.1. Braid group representations 22 3.2. Exchange operators 25 3.3. Abelian anyons 26 3.4. Fibonacci anyons 27 3.5. Ising anyons 29 arXiv:2009.12709v1 [math-ph] 26 Sep 2020 3.6. Clifford anyons 32 3.7.
    [Show full text]
  • Annual Report 2006
    ANNUAL REPORT 2006 Dutch Research School of Theoretical Physics (DRSTP) Landelijke Onderzoekschool voor Theoretische Natuurkunde (LOTN) Visiting address: Minnaert building Leuvenlaan 4 3584 CE Utrecht Postal address: P.O. Box 80.195 3508 TD Utrecht the Netherlands tel.: +31 (0)30 2535916 fax: +31 (0)30 2535937 e-mail: [email protected] website: http://www1.phys.uu.nl/drstp/ Preface This is the Annual Report 2006 of the Dutch Research School of Theoretical Physics (DRSTP). It provides an overview of the educational and research activities during 2006, intended for a broad spectrum of interested parties. The report also presents two research highlights written by staff members of the Research School. In addition, it offers a wealth of factual information, such as a list of the participating staff, of the PhD students, a comprehensive list of publications, as well as other relevant statistics. The annual report is not the only information that we make available throughout the year. We also publish a monthly newsletter and a yearly guide of our educational activities. Up-to-date information on the DRSTP is also readily available on internet at: http://www1.phys.uu.nl/drstp/. Finally, we should like to thank all of those who contributed to the Research School during this past year. prof. dr. B. de Wit prof. dr. K. Schoutens Scientific director Chair governing board August 2007 Contents 1 The DRSTP in 2006 7 2 Scientific highlights 11 3 PhD programme 19 3.1 Educational programme . 19 3.1.1 DRSTP postgraduate courses (AIO/OIO schools) . 19 3.1.2 Guest lecturers .
    [Show full text]
  • TWO-DIMENSIONAL QUANTUM GAS S
    f .'..~«rf£^.« ;»*«4 I INSTITUTO DE FÍSICA TEÓRICA 1TT/P-17/9O TWO-DIMENSIONAL QUANTUM GAS a* R. Aldr ovandl* Instituto de Física Teóricas State Untversity oi 55o Paulo - UNESP Rúa Parriplcna 145 - 01405 -São.Pauio S? - Brazil s Abstract o ícter,!;cal itnprnstfcile perlicles '.n a 2-diíiieosior4! ccnfíg-jralisn serra fcrotá stetisti», Ihí&rír.a;i3'o beUv=eri bosons end . sy.iMügiric croups fte r.ein properties of ao ij^J jis cl su-;-. ^ are presèTiiâl Itw/ CD iaterpolôte U*e prepertiçs et t5so.is erd If i fr.s but cióssicai pyticles as a special case Restriction to 2 c .; *',ens prscVjfcs l4.T»tcü points but ori-jic-sías fl pecv! - . symmetry,responsible in particular for ths'icsrj , fi - boson ft.il iernt:on specific h£c:!S. o 0 * With perttel «uppyl cí CMr « Idex 11-31 370Uii'-.r 5^ .1fi!ôf«00 55ll36i4«? U£SP <• E?JA?£SP. tíí.MET 1.Introduction Quantum mechanics of a given system is controlled Dy the group of classes of closed loops (the fundamental group) or Us configuration space ill and, of course, statistical mechanics will follow suit. The configuration space of a system of N identical particles will have a non-trivial fundamental group [2], that is, will be multiply connected Let M be the configuration space of each particle and consider the N set M • |x • (xt, x2,.... xN)), the cartesian product of manifold M by itself N tifiics. MN will be the configuration space of a gas of N distinguishable particles contained in fi n is usually a 3- dimensional Euclidean box whose volume V is taken to infinity at the thermodynamica! limit.
    [Show full text]
  • Non-Abelian Anyons: Statistical Repulsion and Topological Quantum Computation
    DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Non-Abelian Anyons: Statistical Repulsion and Topological Quantum Computation VIKTOR QVARFORDT KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Non-Abelian Anyons: Statistical Repulsion and Topological Quantum Computation VIKTOR QVARFORDT Degree Projects in Mathematics (30 ECTS credits) Degree Programme in Mathematics (120 credits) KTH Royal Institute of Technology year 2017 Supervisor at KTH: Douglas Lundholm Examiner at KTH: Kristian Bjerklöv TRITA-MAT-E 2017:17 ISRN-KTH/MAT/E--17/17--SE Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract As opposed to classical mechanics, quantum mechanical particles can be truly identical and lead to new and interesting phenomena. Identical particles can be of different types, determined by their exchange symmetry, which in turn gives rise to statistical repulsion. The exchange symmetry is given by a representation of the exchange group; the fundamental group of the configuration space of identical particles. In three dimensions the exchange group is the permutation group and there are only two types of identical particles; bosons and fermions. While any number of bosons can be at the same place or in the same state, fermions repel each other. In two dimensions the exchange group is the braid group and essentially any exchange symmetry is allowed, such particles are called anyons. Abelian anyons are described by abelian representations of the exchange group and can be seen as giving a continuous interpolation between bosons and fermions. Non-abelian anyons are much more complex and their statistical repulsion is yet largely unexplored.
    [Show full text]
  • Thermodynamics of Non-Abelian Exclusion Statistics
    THERMODYNAMICS OF NON-ABELIAN EXCLUSION STATISTICS Wung-Hong Huang Department of Physics National Cheng Kung University Tainan,70101,Taiwan The thermodynamic potential of ideal gases described by the simplest non-abelian statistics is investigated. I show that the potential is the linear function of the element of the abelian- part statistics matrix. Thus, the factorizable property in the Haldane (abelian) fractional exclusion shown by the author [W. H. Huang, Phys. Rev. Lett. 81, 2392 (1998)] is now extended to the non-abelian case. The complete expansion of the thermodynamic potential is also given. Keywords: fractional exclusion statistics; quantum Hall effect. Classification Number: 05.30.-d, 71.10.+x E-mail: [email protected] arXiv:hep-th/0008153v1 19 Aug 2000 1 I. INTRODUCTION It is know that the quasiparticle appearing in the strong correlation system in the low dimension may obeying the Haldane fractional exclusion statistics [1]. The famous examples are those in the fractional quantized Hall effect and spin 1/2 antiferromagnetic chain [2-4]. The thermodynamics in these system had been investigated by several authors [5-8]. Since the braid group in two space dimensions may be represented by the non-commute matrix, the non-abelian braid statistics could be shown in a real world [9-16]. These include the quasiparticle in the non-abelian fractional quantum Hall state as well as those in the conformal field theory [9-15]. The spinon in the Heisenberg chains could also show the non-abelian exchange statistics [16]. In a recent paper [15], Guruswamy and Schoutens had derived the occupation number distribution functions for the particle obeying the non-abelian statistics.
    [Show full text]
  • The Quantum Geometry of Spin and Statistics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server The Quantum Geometry of Spin and Statistics Robert Oeckl∗ Centre de Physique Th´eorique, CNRS Luminy, 13288 Marseille, France and Department of Applied Mathematics and Mathematical Physics, University of Cambridge, Cambridge CB3 0WA, UK DAMTP-2000-81 27 January 2001 Abstract Both, spin and statistics of a quantum system can be seen to arise from underlying (quantum) group symmetries. We show that the spin- statistics theorem is equivalent to a unification of these symmetries. Besides covering the Bose-Fermi case we classify the corresponding possibilities for anyonic spin and statistics. We incorporate the un- derlying extended concept of symmetry into quantum field theory in a generalised path integral formulation capable of handling general braid statistics. For bosons and fermions the different path integrals and Feynman rules naturally emerge without introducing Grassmann variables. We also consider the anyonic example of quons and obtain the path integral counterpart to the usual canonical approach. MSC: 81R50, 81S05, 81S40, 81T18 keywords: quantum groups, statistics, spin, quantum field theory, anyons, quons ∗email: [email protected] 1 1 Introduction While spin in quantum physics arises from the geometry of space-time, statistics is connected to the geometry of configuration space. Half-integer spin and Bose-Fermi statistics arise in 3 or higher dimensions, while in 2 dimensions more general fractional spin and anyonic statistics are possible (see [?] and references therein). In fact, both, spin and statistics are related to symmetries. In the case of spin this is plainly understood in terms of the symmetries of space-time.
    [Show full text]
  • Quantum Computing and Quantum Topology
    Topological Quantum Computation Zhenghan Wang Microsoft Station Q & UC Sana Barbara Texas, March 26, 2015 Classical Physics Turing Model Quantum field computing is the same as quantum computing. Quantum Mechanics Quantum Computing Quantum Field Theory ??? True for TQFTs String Theory ?????? (Freedman, Kitaev, Larsen, W.) Quantum Computation • There is a serious prospect for quantum physics to change the face of information science. • Theoretically, the story is quite compelling: – Shor’s factoring algorithm (1994) – Fault tolerance ~1996-1997 independently • P. Shor • A. M. Steane • A. Kitaev • But for the last twenty years the most interesting progress has been to build a quantum computer. Why Quantum More Powerful? • Superposition • Entanglement A (classical) bit is given by a Quantum states need not be physical system that can exist products. For example: in one of two distinct states: 0 or 1 A qubit is given by a physical system that can exist in a linear combination of two distinct quantum states: or This is the property that enables quantum state teleportation and Einstein’s “spooky action at a distance.” |휓 > ∈ 퐶푃1 ● Classical information source is modeled by a random variable X The bit---a random variable X {0,1} with equal probability. Physically, it is a switch I (p)= - n p log p , X i=1 i 2 i 1 ● A state of a quantum system is an information source The qubit---a quantum system whose states given by non-zero vectors in ℂퟐ up to non-zero scalars. Physically, it is a 2-level quantum system. Paradox: A qubit contains both more and less than 1 bit of information.
    [Show full text]
  • Arxiv:0808.0627V1 [Cond-Mat.Mes-Hall] 5 Aug 2008 Representations of the Symmetry Group
    Condensate induced transitions between topologically ordered phases F. A. Bais1, 2 and J.K.Slingerland3 1Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands 2Santa Fe Institute, Santa Fe, NM 87501, USA∗ 3Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland.y (Dated: May 28, 2018) We investigate transitions between topologically ordered phases in two spatial dimensions induced by the condensation of a bosonic quasiparticle. To this end, we formulate an extension of the theory of symmetry breaking phase transitions which applies to phases with topological excitations described by quantum groups or modular tensor categories. This enables us to deal with phases whose quasiparticles have non-integer quantum dimensions and obey braid statistics. Many examples of such phases can be constructed from two-dimensional rational conformal field theories and we find that there is a beautiful connection between quantum group sym- metry breaking and certain well-known constructions in conformal field theory, notably the coset construction, the construction of orbifold models and more general conformal extensions. Besides the general framework, many representative examples are worked out in detail. PACS numbers: 05.30.Pr,11.25.Hf. I. INTRODUCTION gously, traditional phases can be distinguished by the expecta- tion values of local order parameters, while different topolog- In both high energy and condensed matter physics, there is ical phases
    [Show full text]