The Platinum Metals in Early Nineteenth Century Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

The Platinum Metals in Early Nineteenth Century Chemistry “A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt 14 The Platinum Metals in Early Nineteenth Century Chemistry “Only one who himself has worked with the chemistry of the platinum metals can fully understand and evaluate the difficulties Berzelius had to overcome. He not only deter­ mined the atomic weights of platinum, palladium, rhodium, iridium and osmium but also investigated a large number of the most important compounds of these metals. ” HENRIK GUSTAVSODERBAUM The first quarter of the nineteenth century saw the transformation of chemistry into an exact science. Following the great contributions of Lavoisier, his appreciation of the role of oxygen, his use of the balance and his introduction of the new nomenclature, a second major advance was made with the establish­ ment of the quantitative basis of chemical combination. It is possible here only to summarise very briefly the development of this numerical approach and to set the scene for the great change brought about in inorganic chemistry and its impact on the study of the platinum metals. This began with the rather obscure and somewhat neglected writings of Jeremias Benjamin Richter (1762—1807), the originator of the term “stoichiometry” and of the concept of equivalent weights of bases and acids. Richter studied under the great German philosopher Immanuel Kant at Königsberg and his choice of subject for his doctoral thesis, “The Use of Mathematics in Chemistry”, was most probably inspired by Kant. His book, published in 1792, was prefaced with a quotation in Greek from the Apocrypha: “Thou hast ordered all things in measure and number and weight.” (1) In 1799 Joseph Louis Proust, whose work on platinum in the Royal Laboratory in Madrid has been described in Chapter 6, put forward his Law of Constant Composition, a concept that he later summarised in the phrase: 253 © 1982 Johnson Matthey “A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt John Dalton 1766-1844 The concept of atomic weight introduced by Dalton together with his laws of constant and multiple proportions in chemical combination gave a great impetus to inorganic and analytical chemistry and prompted Berzelius to embark on his systematic investigations “A compound is a substance to which Nature assigns fixed proportions; it is in a word a being which she never creates even in the hands of man, except with the aid of a balance. ” (2) This brought Proust into a long controversy with Claude Louis Berthollet (1748-1822), who maintained that fixed proportions were exceptional rather than a general rule, but the atomic theory propounded by John Dalton, incorporating his doctrine that the elements were composed of atoms of constant weight and that compounds were formed by their union in simple numerical proportions, put an end to this argument. O n October 21st, 1803 Dalton read a paper to the Manchester Literary and Philosophical Society - published only later in 1805 - in which he concluded: “An enquiry into the relative weights of the ultimate particles of bodies is a subject, as far as I know, entirely new: I have lately been prosecuting this enquiry with remarkable success.” (3) Dalton began his determination of atomic weights with the gases, but by 1804 he had turned to the metals and the calculation of their atomic weights from the published analyses of other workers, selecting the values which disagreed least with the often inconsistent analyses of their oxides and adding new results as further literature appeared. His views on platinum, about whose atomic weight he remained uncertain, may be seen in the reproduction here of a passage from “A New System of Chemical Philosophy” published between 1808 and 1810. Dalton also introduced his “arbitrary marks” or symbols to represent the elements. 254 © 1982 Johnson Matthey “A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt Dalton began publishing his ‘New System of Chemical Philosophy' in 1808. the second part following two years later. This extract The weight of the ultimate particle of pla­ from Part II shows his thoughts on platinum ting cannot be ascertained from the data we at that time. He also devised a number of have at present: from its combination with symbols for the elements, three of them oxygen, it should seem to be about 100; but, illustrated here judging from its great specific gravity, one would be inclined to think it must be more. Indeed the proportion of oxygen in the oxides of platina cannot be considered as ascertained. Platina is chiefly used for chemical pur­ poses ; in consequence of its infusibility, and the difficulty of oxidizing it, crucibles and other utensils are made of it, in preference to every other metal. Platina wires are extremely useful in electric and galvanic researches, for like reasons. At first Dalton’s views made very little impression, but in 1807 Thomas Thomson, Professor of Chemistry in the University of Edinburgh and the founder of the Annals of Philosophy, published the third edition of his book, A System of Chemistry, and included in this an account of the atomic theory based upon a conversation he had had with Dalton in Manchester in 1804. A year after this Thomson read a paper to the Royal Society in which he confirmed the law of multiple proportions by the analysis of some neutral compounds (4). Immediately following this a paper from W. H. Wollaston not only gave further support to Dalton but disclosed that he had himself been turning his mind in the same direction: “I thought it not unlikely that this law might obtain generally . and it was my design to have pursued the subject with the hope of discovering the cause, to which so singular a relation might be ascribed. But since the publication of Mr. Dalton’s theory of chemical combustion the enquiry which I had designed appears to be superfluous as all the facts that I had observed are but particular instances of the more general observations of Mr. Dalton that in all cases the simple elements of bodies are disposed to unite atom to atom singly or if either is in excess, it exceeds by a ratio to be expressed by some simple multiple of the number of its atoms. ” (5) The Massive Researches of Berzelius It was this paper of Wollaston’s, reproduced in Nicholson’s Journal in November 1808, that first gave Berzelius any indication of Dalton’s theory as the Napoleonic blockage had prevented his receiving earlier publications from England. He was in the course of preparing a text book of chemistry in Swedish and had been impressed by his reading of Richter’s work on stoichiometry when Wollaston’s paper reached him and he realised at once the enormous 255 © 1982 Johnson Matthey “A History of Platinum and its Allied Metals”, by Donald McDonald and Leslie B. Hunt significance of Dalton’s generalisation. Immediately Berzerlius set himself the task of determining “the definite and simple proportions in which the consti­ tuent parts of inorganic substances are united with each other”, proposing to establish the atomic weights of all the elements then known and to this end to improve the infant techniques of quantitative analysis. By 1814 he was able to publish in Thomson’s Annals of Philosophy (translated much later into German) a tentative table of atomic weights, based on oxygen taken as 100, including those for rhodium, platinum and palladium, with all the evidence on which he had based his calculations, while at the same time, becom­ ing wearied with the need to refer repeatedly to the elements by their full names, he proposed the use of our now familiar symbols based upon the initial letter of their Latin names (or upon this followed by a second letter from the body of the name) to replace the rather cumbersome circular symbols devised by Dalton. Thus we acquired the symbol Pt for platinum, while his first suggestion for palladium PI, was later revised to Pa to avoid confusion with platinum and finally to Pd. Similarly he proposed I for iridium later revised to Ir, and R, changed to Rh, for rhodium. (6) In 1818 a fuller version of the atomic weights of almost all the elements ap­ peared but still excluding iridium and osmium (7). These were again all based upon the atomic weight of oxygen taken as 100 and were reasonably close to modern values except that several were in error, being twice their real value because of his assumption that most oxides had a simple formula, consisting of one atom of metal and two of oxygen, an error that he later corrected. This amazing achievement was surpassed some ten years later in so far as one of his favourite pursuits, the chemistry of the platinum metals, was concer­ ned. Reference was made on page 240 to Count Kankrin sending to Berzelius two small samples of native platinum from the Urals together with a personal note asking him to analyse them and to be good enough to report his results. He had already noticed that the early results obtained in the Russian mining laboratory and in Paris by Laugier showed marked differences and he realised that there was a great deal still to be established about the means of separating the five metals of the platinum group so far known. Berzelius therefore embarked upon a thorough examination of these specimens. He began with rhodium and quickly found that his earlier work (6) carried out on a sample presented to him by Wollaston, contained errors in his calculation of its atomic weight. This he proceeded to correct, and he then went on to determine the atomic weights of palladium, iridium, platinum and osmium.
Recommended publications
  • Jean-Baptiste Charles Joseph Bélanger (1790-1874), the Backwater Equation and the Bélanger Equation
    THE UNIVERSITY OF QUEENSLAND DIVISION OF CIVIL ENGINEERING REPORT CH69/08 JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION AUTHOR: Hubert CHANSON HYDRAULIC MODEL REPORTS This report is published by the Division of Civil Engineering at the University of Queensland. Lists of recently-published titles of this series and of other publications are provided at the end of this report. Requests for copies of any of these documents should be addressed to the Civil Engineering Secretary. The interpretation and opinions expressed herein are solely those of the author(s). Considerable care has been taken to ensure accuracy of the material presented. Nevertheless, responsibility for the use of this material rests with the user. Division of Civil Engineering The University of Queensland Brisbane QLD 4072 AUSTRALIA Telephone: (61 7) 3365 3619 Fax: (61 7) 3365 4599 URL: http://www.eng.uq.edu.au/civil/ First published in 2008 by Division of Civil Engineering The University of Queensland, Brisbane QLD 4072, Australia © Chanson This book is copyright ISBN No. 9781864999211 The University of Queensland, St Lucia QLD JEAN-BAPTISTE CHARLES JOSEPH BÉLANGER (1790-1874), THE BACKWATER EQUATION AND THE BÉLANGER EQUATION by Hubert CHANSON Professor, Division of Civil Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072, Australia Ph.: (61 7) 3365 3619, Fax: (61 7) 3365 4599, Email: [email protected] Url: http://www.uq.edu.au/~e2hchans/ REPORT No. CH69/08 ISBN 9781864999211 Division of Civil Engineering, The University of Queensland August 2008 Jean-Baptiste BÉLANGER (1790-1874) (Courtesy of the Bibliothèque de l'Ecole Nationale Supérieure des Ponts et Chaussées) Abstract In an open channel, the transition from a high-velocity open channel flow to a fluvial motion is a flow singularity called a hydraulic jump.
    [Show full text]
  • The Early History of Catalysis
    The Early History of Catalysis By Professor A. J. B. Robertson Department of Chemistry, King’s College, London One hundred and forty years ago it was Berzelius proceeded to propose the exist- possible for one man to prepare an annual ence of a new force which he called the report on the progress of the whole of “catalytic force” and he called “catalysis” the chemistry, and for many years this task was decomposition of bodies by this force. This undertaken by the noted Swedish chemist is probably the first recognition of catalysis J. J. Berzelius for the Stockholm Academy of as a wide-ranging natural phenomenon. Sciences. In his report submitted in 1835 and Metallic catalysts had in fact been used in published in 1836 Berzelius reviewed a num- the laboratory before 1800 by Joseph Priestley, ber of earlier findings on chemical change in the discoverer of oxygen, and by the Dutch both homogeneous and heterogeneous sys- chemist Martinus van Marum, both of whom tems, and showed that these findings could be made observations on the dehydrogenation of rationally co-ordinated by the introduction alcohol on metal catalysts. However, it seems of the concept of catalysis. In a short paper likely that these investigators regarded the summarising his ideas on catalysis as a new metal merely as a source of heat. In 1813, force, he wrote (I): Louis Jacques Thenard discovered that ammonia is decomposed into nitrogen and “It is, then, proved that several simple or compound bodies, soluble and insoluble, have hydrogen when passed over various red-hot the property of exercising on other bodies an metals, and ten years later, with Pierre action very different from chemical affinity.
    [Show full text]
  • Charles Fréderic Gerhardt Jaime Wisniak
    PARA QUITARLE EL POLVO La química en la historia, para la enseñanza Charles Fréderic Gerhardt Jaime Wisniak Resumen Charles-Victor Lobstein (1809-1863). Samuel Ger- Charles Fréderic Gerhardt (1816-1856) fue uno de los hardt, born in Switzerland, came from a well-known químicos más importantes del siglo diecinueve, cu - family of brewers. At a young age he moved to yas investigaciones y teorías ejercieron una poderosa Strasbourg where he found employment in the influencia en el desarrollo de la química. Su teoría Turckheim bank and married. His skills led to a fast de los tipos fue significativa en impulsar hacia ade- career and thus to provide his family with a prosper- lante la clasificación orgánica, poniéndola en una ous and cultured home. forma más racional, y en destronar el enfoque dua - Between 1824 and 1831 Charles attended the lista. La teoría de los tipos evolucionó hacia la idea local Gymnase Protestant, an institution controlled by de valencia. Gerhardt generalizó el concepto de the Lutheran Augsburg Confession. According to homología y equivalentes. Fue asimismo responsa- Carneiro (1993) the Gymnasium had been founded ble de la síntesis de un gran número de compuestos in 1538 by Jean Sturm (1507-1589), a German Lu - orgánicos, entre ellos anhidridos y cloruros de ácido, theran reformed who advocated and practiced the derivados del ácido salicílico, anilidas, y fosfamidas. propagation of knowledge through teaching and publication. This institution was highly regarded in Abstract the educational circle; it had resisted several at- Charles Fréderic Gerhardt (1816-1856) was one of tempts by the Ministry of Instruction to integrate it the most important chemists of the nineteenth cen- into the official Lycée program, particularly after the tury and whose researches and theories exerted a anti clerical atmosphere that was prevalent after powerful influence in the development of chemistry.
    [Show full text]
  • Redalyc.Joseph Achille Le Bel. His Life and Works
    Revista CENIC. Ciencias Químicas ISSN: 1015-8553 [email protected] Centro Nacional de Investigaciones Científicas Cuba Wisniak, Jaime Joseph Achille Le Bel. His Life and Works Revista CENIC. Ciencias Químicas, vol. 33, núm. 1, enero-abril, 2002, pp. 35-43 Centro Nacional de Investigaciones Científicas La Habana, Cuba Available in: http://www.redalyc.org/articulo.oa?id=181625999008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista CENIC Ciencias Químicas, Vol. 33, No. 1, 2002. RESEÑA BIOGRAFICA Joseph Achille Le Bel. His Life and Works Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105. [email protected]. Recibido: 26 de abril del 2001. Aceptado: 22 de mayo del 2001. Palabras clave: Le Bel, Química, estereoquímica, actividad óptica, cosmogonia Key words: Le Bel, Chemistry, stereoquímica, optical activity, cosmogony. RESUMEN. Joseph Achille Le Bel es un ejemplo de científicos como Réaumur The same year his father passed que investigaron muchÍsimos temas, pero solo son recordados por uno. Le Bel away and his two sisters, Marie and es un nombre bien conocido por los estudiantes de Química en general, y Emma, took charge of the family in- estereoquímica en particular. El nos dejo los principios básicos que determinan dustry and in this way allowed Le las condiciones geométricas que un compuesto de carbón debe satisfacer para Bel to continue chemical studies.
    [Show full text]
  • Early Russian Organic Chemists and Their Legacy
    SpringerBriefs in Molecular Science Early Russian Organic Chemists and Their Legacy Bearbeitet von David Lewis 1. Auflage 2012. Taschenbuch. xii, 136 S. Paperback ISBN 978 3 642 28218 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 237 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Chemie Allgemein > Geschichte der Chemie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 Beginnings 2.1 Introduction At the start of the twentieth century, organic chemistry was not yet 75 years old as a separate and legitimate sub-discipline of the science. Considerable progress had been made in these first seven decades, and the stage was set for the dramatic advances in the science to come in the following century. Most practicing organic chemists are familiar with many of the great German, French and English organic chemists whose work helped the fledgling discipline grow, but few are familiar with the role that Russian organic chemists of the nineteenth and early twentieth century played in the development of the science. And this is in spite of the fact that many of the named rules and reactions that one studies in the first course in organic chemistry are, in fact, of Russian origin. It is the intent of this book to help rectify that deficiency.
    [Show full text]
  • Supplementary Figure 1: Interconnected Multiplex with Six Nodes in Two Layers (A and D) and Corresponding Aggregated Networks (B and E)
    Supplementary Figure 1: Interconnected multiplex with six nodes in two layers (A and D) and corresponding aggregated networks (B and E). The nodes are ranked by their eigenvector centrality in each layer separately, in the aggregated and in the whole interconnected structure (C and F). Case A, B and C. Nodes 1 and 3 have a key role in the multilayer, being bridges between the two layers. In a collaboration network they would represent scientists working on two different research areas who allow information to flow from one subject to the other. While nodes 1 and 3 gain centrality from their connections to \hubs" on different layers, they also gain centrality from their own counterparts in other layers, making them important in the multilayer network. In the aggregated network their versatility disappears, because the information is washed out by projecting on a single layer, where nodes 2 and 6 are still \hubs" but it is not possible to capture the importance of nodes 1 and 3 in bridging different areas. Case D, E and F. This example shows how aggregating the full information on a single network introduces a spurious symmetry between nodes 2, 3, 4 and 6 that is not present in the multilayer, except for 2 and 4. The resulting score in the aggregate is not able to capture the difference between these nodes (corresponding to a degeneration in the eigenspace) while it is evident that, for instance, node 6 is more central than node 3 because of its direct connection to node 1 { the \hub" { in layer 1.
    [Show full text]
  • Antoine Paul Nicolas Franchimont 1844-1919 (Leiden) and Charles Adolphe Wurtz 1817-1884 (Strasbourg) Barrett Honors College Chemistry 113 Footnote 18 Project Pamela T
    Antoine Paul Nicolas Franchimont 1844-1919 (Leiden) and Charles Adolphe Wurtz 1817-1884 (Strasbourg) Barrett Honors College Chemistry 113 Footnote 18 Project Pamela T. Hoang November 21, 2003 Antoine Paul Nicolas Franchimont (1844-1919) was appointed to the position of professor of chemistry at The Leiden Institute of Chemistry in 1874 along with J.M. van Bemmelen (Driessen). The Leiden University has boasted a proud, venerable reputation of chemistry since it was founded in 1575. Approximately 300 years later, Franchimont became the first chair of organic chemistry in Europe at Leiden. He received his Ph.D. in 1871 at the young age of 27. Three years later, Franchimont was promised a “new laboratory, but he had to wait twenty-seven years before he could move into a new building in the Hugo de Grootstraat” (Driessen). After the new laboratory opened in 1918, Franchimont unfortunately died a year later; however, chemistry flourished in the laboratories in the centre of Leiden for approximately seventy years. The number of students increased from one or two per year to about one hundred in the late 1960’s (Driessen). Franchimont is also credited with co-discovering triphenylmethane and anthraquinone. In addition, he also studied the acylation of sugars and cellulose, nitroamino compounds, and the chemistry of hydrogen azide, urea, urethanes, nitric acid, and oxalic acid (Bachas). Lastly he is attributed to discovering "tetryl," which was a widely, popular explosive in the early 1900s (Bachas). Charles Adolphe Wurtz (1817-1884) 2 It was once said, “Chemistry has perhaps the most intricate, most fascinating, and certainly most romantic history of all the sciences” by Dr.
    [Show full text]
  • 1 Evolution of Catalysts Design and Synthesis
    3 1 Evolution of Catalysts Design and Synthesis: From Bulk Metal Catalysts to Fine Wires and Gauzes, and that to Nanoparticle Deposits, Metal Clusters, and Single Atoms Wey Yang Teoh 1,2 1University of Malaya, Centre for Separation Science and Technology, Department of Chemical Engineering, 50603 Kuala Lumpur, Malaysia 2The University of New South Wales, School of Chemical Engineering, Sydney 2052, Australia 1.1 The Cradle of Modern Heterogeneous Catalysts The modern discovery of heterogeneous catalysts stretches as far back as 1800 when Joseph Priestley and Martinus van Marum reported the dehydrogenation of alcohol over a heated metal catalyst, although not too much was thought about the role of the metal catalyst at that time except as a heating source. Then in 1813, Louis Jacques Thénard of École Polytechnique in Paris discovered the decomposi- tion of ammonia to nitrogen and hydrogen over “red-hot metals” and recognized that the phenomenon was due to some catalytic reaction [1, 2]. The concept was followed up by Humphry Davy and Michael Faraday at the Royal Institution of London who, in 1817, reported the flameless catalytic combustion of coal gas and air over heated platinum wire producing bright white ignition. Their results were reproducible when using palladium, but not on copper, silver, iron, gold, and zinc [1, 3]. These experiments made clear that there was some form of cat- alytic role associated with the different metals. The discovery soon became the basisfortheinventionofthecoalminesafetylamp,alsoknownastheDavy lamp – although mysteriously but rather practically, the use of inefficient steel iron rather than platinum gauze became the standard for Davy lamps.
    [Show full text]
  • Before Radicals Were Free – the Radical Particulier of De Morveau
    Review Before Radicals Were Free – the Radical Particulier of de Morveau Edwin C. Constable * and Catherine E. Housecroft Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-61-207-1001 Received: 31 March 2020; Accepted: 17 April 2020; Published: 20 April 2020 Abstract: Today, we universally understand radicals to be chemical species with an unpaired electron. It was not always so, and this article traces the evolution of the term radical and in this journey, monitors the development of some of the great theories of organic chemistry. Keywords: radicals; history of chemistry; theory of types; valence; free radicals 1. Introduction The understanding of chemistry is characterized by a precision in language such that a single word or phrase can evoke an entire back-story of understanding and comprehension. When we use the term “transition element”, the listener is drawn into an entire world of memes [1] ranging from the periodic table, colour, synthesis, spectroscopy and magnetism to theory and computational chemistry. Key to this subliminal linking of the word or phrase to the broader context is a defined precision of terminology and a commonality of meaning. This is particularly important in science and chemistry, where the precision of meaning is usually prescribed (or, maybe, proscribed) by international bodies such as the International Union of Pure and Applied Chemistry [2]. Nevertheless, words and concepts can change with time and to understand the language of our discipline is to learn more about the discipline itself. The etymology of chemistry is a complex and rewarding subject which is discussed eloquently and in detail elsewhere [3–5].
    [Show full text]
  • Liebig Buys Platinum from Janety the Younger U by W
    Liebig Buys Platinum from Janety the Younger U By W. H. Brock Department of Astronomy and History of Science, University of Leicester In his standard work A History of Platinum, melt as a platinum-arsenic eutectic at an Donald McDonald has described the improve- attainable temperature of 597°C. By skilful ments made to the arsenic process for the control of the temperature, the unwanted purification and conferment of malleability arsenic was volatilised as arsenious oxidc, on platinum by Marc Etienne Janety, or leaving behind a pure button of malleable Jeanety (c.1750--1820) (I). The Swedish metal- platinum. lurgist Heinrich Scheffer had shown in 1751 Janety, a French royal goldsmith, is that heated platinum melts in the presence of probably best known for his preparation of arsenic. By the 1780s the preparation of an the metric standards of weight and length arsenic-platinum mixture had been developed in 1795; however, more important for the into a commercial process for working development of practical and quantitative platinum by French goldsmiths and jewellers. chemistry was the way in which the tech- In their arsenic process, the iron impurities niques he developed enabled his firm to present in South American native platinum supply the growing demand from European were oxidised with “white arsenic” (arsenious chemists for platinum crucibles and other acid), which also induced the platinum to apparatus. The chemist and encyclopaedist Justus von Liebig 1803 - 1873 The centenary of his death recalls the great part played by Liebig when, as Professor at Giessen, he established one of thefLrst laboratories in Europe devoted to experimental instruction in chemistry - a laboratory later to become famous as “a factory for the production of professors”.
    [Show full text]
  • BULLETIN for the HISTORY of CHEMISTRY Division of the History of Chemistry of the American Chemical Society
    BULLETIN FOR THE HISTORY OF CHEMISTRY Division of the History of Chemistry of the American Chemical Society VOLUME 33 Number 1 2008 BULLETIN FOR THE HISTORY OF CHEMISTRY VOLUME 33, CONTENTS NUMBER 1 2007 EDELSTEIN AWARD PAPER WHAT A WONDERFUL EMPIRE IS THE ORGANIC CHEMISTRY Anthony S. Travis, Edelstein Center Hebrew University/Leo Baeck Institute London. 1 LETTERS OF SVANTE ARRHENIUS TO HIS FORMER CROATIAN STUDENT Nenad Raos, Institute for Medical Research and Occupational Health, Zagreb, Croatia 12 ARSENIC, NITRATE, AND PERCHLORATE IN WATER – DANGERS, DISTRIBUTION, AND REMOVAL Dean F. Martin, Barbara B. Martin, and Robert Alldredge, University of South Florida 17 THE JOINT PAPERS OF PAUL KARRER AND ALFRED WERNER Dean F. Martin and Barbara B. Martin, University of South Florida 25 ADVANCES IN 13th CENTURY GLASS MANUFACTURING AND THEIR EFFECT ON CHEMICAL PROGRESS Seth C. Rasmussen, North Dakota State University, Fargo, ND 28 THE LESSER KNOWN CHEMIST-COMPOSERS, PAST AND PRESENT Leopold May, The Catholic University of America 35 LETTER TO EDITOR 44 BOOK REVIEWS 45 INSTRUCTIONS FOR AUTHORS 59 The Cover…Theodor Herzel, 1901. See p 2. Bull. Hist. Chem., VOLUME 33, Number 1 (2008) 1 2007 EDELSTEIN AWARD PAPER WHAT A WONDERFUL EMPIRE IS THE ORGANIC CHEMISTRY* Anthony S. Travis, Edelstein Center Hebrew University/Leo Baeck Institute London. Introduction contrast, and comparisons, they not only tell us what the history of the dye industry was and is all about, but The synthetic dye industry is the exemplar of all re- say much about the shaping of modern life. They also search-based industries. Moreover, it fostered the allow us to reexamine preconceptions that have been great achievements in nineteenth- unconsciously borrowed from century academic and industrial the writings of the contemporary organic chemistry.
    [Show full text]
  • Bruno Antonio Buike Einsteins Dissertation Über Molekülgrössen
    Bruno Antonio Buike Einsteins Dissertation über Molekülgrössen. Verwicklungen um 17 Seiten Physik-Text, dessen Bezüge zu „brown‘scher Bewegung“ und deren heutige Aktualität: „Brownian noise“, Frequenzen und biologischen Rezeptoren; „Brownian motor“, Nano-Maschinen und topologische Materialien. © Neuss / Germany: Bruno Buike 2020, 2. korr. ed. Buike Music and Science [email protected] BBWV E74 Bruno Antonio Buike: Einsteins Dissertation über Molekülgrössen. Verwicklungen um 17 Seiten Physik-Text, dessen Bezüge zu „brown‘scher Bewegung“ und deren heutige Aktualität: „Brownian noise“, Frequenzen und biologischen Rezeptoren; „Brownian motor“, Nano-Maschinen und topologische Materialien. Neuss: Bruno Buike 2020, 2. korr. Aufl. 1. Dies ist ein wissenschaftliches Projekt ohne kommerzielle Interessen, das kostenlos im Internet zur Verfügung steht. 2. Wer finanzielle Forderungen gegen dieses Projekt erhebt, dessen Beitrag und Name werden in der nächsten Auflage gelöscht. 3. Das Projekt wurde gefördert von der Bundesrepublik Deutschland, Sozialamt Neuss. 4. Rechtschreibfehler zu unterlassen, konnte ich meinem Computer trotz jahrelanger Versuche nicht beibringen. Im Gegenteil: Das Biest fügt immer wieder neue Fehler ein, wo vorher keine waren! 1. This is a scientific project without commercial interests, that is not in bookstores, but free in internet. 2. Financial and legal claims against this project, will result in the contribution and the name of contributor in the next edition canceled. 3. This project has been sponsored by the Federal Republic of Germany, Department for Social Benefits, city of Neuss. 4. Correct spelling and orthography is subject of a constant fight between me and my computer – AND THE SOFTWARE in use – and normally the other side is the winning party! E74 Einsteins Dissertation Inhalt 1.
    [Show full text]