Bull. Min. Res. Exp. (2015) 151: 149-168 Bull. Min. Res. Exp. (2016) 152:165-180

BULLETINBULLETIN OF OF THE THE MINERAL RESEARCH AND AND EXPLORATION EXPLORATION

Foreign Edition 2016 152 ISSN : 0026 - 4563 Foreign Edition 2015 151 ISSN : 0026 - 4563

BULLETINBulletin of OF the THE CONTENTS Neogene Stratigraphy of the İzmi̇ r -Outer- Bay IslandsCONTENTS ...... Fikret GÖKTAŞ / Research Article 1 The late Tectono-Stratigraphic evolution of the Lake Van, The...... Ilica Branch of the Southeastern Eskişehir Naci Zone: GÖRÜR, An Active M. Nam›kRight-Lateral ÇA⁄ATAY, Strike-Slip Cengiz Structure ZABCI, in Central Mehmet , SAKINÇ, Turkey ...... Korhan...... Remzi ESAT, Bülent KAYPAK, Veysel IŞIK, Berkan ECEVİTOĞLU AKKÖK, and Gürol Hande SEYİTOĞLU fi‹LE and / Research Sefer ÖRÇEN Article 1 25

OstracodLate Cenozoic Fauna and Extensional Environmental Tectonics Features In ofWestern Tertiary Anatolia: (Paleogene- Exhumation Neogene) Deposits Of The İnMenderes Yedi̇ kule- Core İstanbul Complex Region, Turkey And Formation Of Related Basins ...... Ümit Gürol SEYITO⁄LU ŞAFAK and /Veysel Research IfiIK Article 49 39

OstracodsLate Pleistocene of the Mediterranean Glaciations (The and Gulf Paleoclimate of Antalya of) and Turkey the Aegean Sea (Ayvalik and Kuşadasi) and Their Biogeographical Distributions ...... Derya M. PARLAK Akif SARIKAYA and Atike NAZİK and Attila / Research ÇINER Article 109 63

CricetodontiniLate Permian From Unconformity the Early Around of Anatolia and New Age Data on The Rocks, Ankara, Turkey ...... Mustafa SEV‹N, Mustafa DÖNMEZ, Gökhan ATICI, A. Hande ESATO⁄LU VEKL‹, ...... Nihal Ender SARIFAKIO⁄LU, ÇINAR DURGUT Serap ARIKAN and Engin and ÜNAY Havva / Research SOYCAN Article 131 85

AnDifferentiation Approach to the Processes Origin of In the Late Early Cretaceous Cambrian KaraçatUltrapotassic Iron Deposit Volcanics (Mansurlu Around Basin, Amasya Adana) and Iron Deposits Outcrops at Its MINERALMineral RESEARCH Research and AND Exploration EXPLORATION Eastern...... Parts Fatma GÜLMEZ and fi. Can GENÇ 151 ...... Deniz TIRINGA, Taner ÜNLÜ and Semih GÜRSU / Research Article 121 Geological Features Of Neogene Basins Hosting Borate Deposits: An Overview Of Deposits and Future Forecast, Turkey ...... Cahit HELVACI 171 Deli̇ neati̇ on of the Cr Mi̇ nerali̇ zati̇ on Based on the Stream Sedi̇ ment Data Uti̇ li̇ zi̇ ng Fractal Modeli̇ ng and Factor Analysi̇ s in the KhoyVertical 1:100.000 And Horizontal Sheet, NW Analysisİran Of Crustal Structure In Eastern Anatolia Region ...... Somayeh...... Oya PAMUKÇU, MOMENI, Tolga GÖNENÇ,Seyed Vahid SHAHROKHI,Ayça YURDAKUL Peyman AFZAL,ÇIRMIK, Behnam fievket SADEGHI, DEM‹RBAfi Taher FARHADINEJADand Seyit TOSUN and 210 ...... Mohammad Reza NIKZAD / Research Article 143 Archaeological and Geological Concepts on the Topic of Ancient Mining ...... Prentiss DE JESUS and Gonca DARDEN‹Z 233 Opaque Mineral Content of Dutluca Volcanics (Burhani̇ ye - Balikesi̇ r): The Effect of Hydrothermal Alteration on These Mineral ...... Evaluation Of Asbestos Exposure In...... Dumanli Village (Çanakkale-Turkey)...... Şükrü From A MedicalKOÇ and Geology Nihal ÇEVİK Viewpoint: / Research Article 153 An Inter-Disciplinary Study Physicochemical...... Properties and Uses of Karacaören Area (Nevşehi̇ r) Diatomite Erdinç Y‹⁄‹TBAfi, Arzu M‹R‹C‹, U¤ur GÖNLÜGÜR, ...... Ayşegül Coflkun BAKAR, YILDIZ, Onur Ali GÜRELTUNÇ, and F›rat Yusuf fiENGÜN Gökhan andDURSUN Özgür / IfiIKO⁄LUResearch Article 249 165 Geological Heritage And Framework List Of The Geosites In Turkey Depositional...... Environment and Organic Geochemical Characteristics Nizamettin of Lower KAZANCI, Eocene Bituminous Fuat fiARO⁄LU Rocks in the and Kürnüç/Göynük-Bolu Yaflar SULUDERE Area 261 ...... Ali SARI, Pelin AKKAYA and Ekin ÖZAKAR / Research Article 181 Review of The Occurrence of Two New Minerals in The Emet Borate Deposit, Turkey: Emetite, Ca7Na3K(SO4)9 Productionand Fontarnauite of an Insulation Na2Sr(SO Material5)[B5 fromO8(OH)](H Carpet and2O) 2Boron Wastes http://bulletin.mta.gov.tr ...... Yasin ERDOĞAN Cahit / Research HELVACI Article 271 197 NotesAcknowledgement to the authors ...... 287 203 Notes to the authors...... 289

PHYSICOCHEMICALDIFFERENTIATION PROCESSES PROPERTIES in AND LATE USES CRETACEOUS OF KARACAÖREN ULTRAPOTASSIC AREA (NEVŞEHİR) VOLCANICS DIATOMITE AROUND AMASYA

Ayşegül YILDIZa*, Ali GÜRELb and Yusuf Gökhan DURSUNc Fatma GÜLMEZa* and fi. Can GENÇa a University, Engineering Faculty, Department of Geological Engineering, 68100, Aksaray b aNiğdeIstanbul University, Technical Engineering University Faculty, Geological Department Engineering of Geological Department, Engineering, 34469 Maslak, 51100, ‹stanbul Niğde 3 Aksaray University, Social Sciences Vocational High School, Occupational Health and Safety Program, 68100, Aksaray

ABSTRACT Research Article Keywords: Late Cretaceous lithologies around Amasya region are represented by Pontide fore-arc ba- Late Cretaceous, ABSTRACTsin units which corresponds a volcanoclastic sequence. This sequence has the products of Pontides, Ultrapotassic In this study, physicochemical properties and the area of use of diatomites that occur in association with Keywords: alkaline ultrapotassic magmatism accompanying calcalkaline which are abundant Magmatism, AFC. Central Anatolian volcanism in the Karacaören region (Ürgüp country, Nevşehir) are investigated. In the Diatomite, Uses of along Pontide arc. The ultrapotassic rocks which are classified as leucitite, minette and investigated area two stratigraphic sections were measured, one is in Quaternary lake units (K1) and Diatomite, Physicochemical trachyte based on their mineralogical composition, occur as dikes, stocks and rarely another section is in the lacustrine sediments of Bayramhacılı member within Ürgüp formation of late Properties, Late Miocene- flows as to be comprised by the Late Cretaceous Volcanoclastic Succession (LCVS). Frac- Miocene- age (K2). In order to specify physicochemical properties and the area of use of diato- Pliocene, Karacaören, mites,tional various crytallization analyses were accompanied carried out atby the assimilation Laboratories (AFC) of General is a Directoratelow pressure of Mineral processes Research able Quaternary. andto Exploration differentiate including ultrapotassic loss on ignition parental (at melts 1050 °C),to various XRD, amount compositions of acid and in awater-insoluble continental margin matter, thermaltectonic conductivity setting.The (in the trachytes range of 101;are the 150 youngest °C and ± 10and °C), the XRF, most pH, evolved total porosity, members specific of LCVS. gravity, specificTherefore surface we area, performed pore volume, AFC pore modelling size, whiteness, using theparticle most size primitive and SEM minetteanalysis. sampleThe evaluation as star- of the tinganalyses composition results showed and thatcalculated the studied the diatomites fractionation have trendsa commercial based valueon the and theoretical can be used mineralo- directly in Received: 05.08.2015 percolator,gical compositions. as filler and structuring We also usedagents theand Triassicin silicate metapelitic manufacturing. basement In addition, rocks once of Centralprocessed, Pon- they Accepted: 24.09.2015 cantides also beas used assimilant. as mild abrasive The AFC and modelling cleaner in production results imply of isolation that it material. is possible to produce trach- ytes by adding Central Pontide basement rocks up to 5 %, begining from the most primiti- ve phonolitic sample of Amasya. However the differentiation of leucitite and minette is 1. Introduction able to be explained by neither(1966), fractional Atabey nor assimilation et al. (1987, processes. 1988) and Ayhan et al. (1988), respectively. Schumacher and Schumacher The study area comprising 1/25000-scaled (1996), Dhont et al. (1998), Froger et al. (1998), Kayseri K33-c3 and K33-d3 quadrangles is on the 1. Introduction Koçyiğitthe K›rflehir and Beyhan Blocks (1998), in early Kürkçüoğlu Paleocene et causedal. (1998), by Ürgüp-Karain road in Karacaören area in Ürgüp Temeldevelopment et al. (1998 of theb), Toprak ‹zmir-Ankara-Erzincan (1998) and Dönmez Suture et al. town of Nevşehir city (Figure 1). Previous studies An arc environment is defined, which has (2003)Belt (IAESZ) studied mineralogy,(fiengör and geochemistry Y›lmaz, 1981; and Okay structural and in and around the study area generally focused on developed due to the northward of the andTüysüz, Petrographic 1999). Pontide characteristics arc is represented of Cappadocian by calc- volcanismNeo-Tethys (Beekman, Ocean, during 1963, Late 1966; Cretaceous Sassano, in 1964; the Volcanicalkaline andesitic Province volcanics, (CVP) while associated Göz et pyroclastics al. (2014) Pasquere,geological 1968; evolution Ayranc Anatoliaı, 1970; Innocenti located in et al., the 1975; Alp- investigatedand epiclastic geology, units with mineralogy the I-type granitic and geochemistry intrusions. Batum,Himalaya 1978; orogenic Özkuzey belt and (fiengör Önemli, and 1977;Y›lmaz, Y ıld 1981;ırım ofHowever, Miocene-Pliocene in the southern lacustrine parts the occurrences units of IAESZ within Okay and fiahintürk, 1997; Y›lmaz et al., 1997; Okay and Özgür, 1981; Ekingen, 1982; Güner and Emre, thisand province.alkali-potassic Viereck-Gotte rocks associated and Gürel with (2003), forearc Gürel units and Tüysüz, 1999; Topuz et al., 2013). East-west 1983; Yıldırım, 1984; Ercan et al., 1990; Ercan and etare al. observed.(2008), Kadir The et well-known al. (2006) and locations Gürel and of Kadir these trending island arc units, namely Pontide arc within Yıldırım, 1988; Pasquare et al., 1988; Schumacher et the Pontide form the central segment (2006)alkaline studied potassic paleosol, rocks are caliche Ankara-Kalecik, and clay occurrences Bayburt- al.,of this 1990, belt 1992; that Aydar,extend 1992;along GöncüoğluApuseni-Timok and Toprak, line in withinMaden and Amasya-Gümüflhac›köy in the study area. Yavuz-Iş and the ı Sinopk and 1992;Balkans Temel, at the 1992; west Bigazzi and Sevan-Akeraet al., 1997; Aydar suture et belt al., Toprak(Blumenthal, (2010) 1950; investigated Alp, palinostratigraphy 1972). Additionally, and 1998;along Gevrek the Armenian-Georgian et al., 1994 a, b ; boundaryToprak, 1996; at the Duritt east vegetationrecently discovered characteristics two outcrops of Neogene in the west terrestrial parts of et(Adamia al., 1995; et al., Temel 1981; et Y›lmaz al., 1998 et al., a; 1997; Le Pennec Georgiev et al., et depositsthis belt are alternating at around with Tosya Cappadocian and Osmanc›k ignimbrites. (Genç et 2005;al., 2009; Gürel Mederer et al., 2007). et al., 1/25000-scaled 2013). The Pontide geological arc Thereal., 2013). is limited The Amasya number regionof studies has on critical diatomites importance in the mapsformation of Hasandağ ceased by and the Melendiz collision Dağ of ı Sakarya regions, area.due toKayal theı et three al. (2005) different and type Gürel ultrapotassic and Kadir (2008) rock Niğde-Nevşehir-Kcontinent and the ı Anatolide-Tauriderşehir-Kayseri regions platform and Niğde- or by studiedsuites together spectroscopic with coeval characteristics calc alkaline of clays andare Aksaray-Derinkuyu regions are made by Beekman diatomites in Central Anatolia. Diatom assemblage * Corresponding author: Fatma Gülmez, [email protected] *Corresponding author: Ayşegül Yıldız, [email protected] http://dx.doi.org/10.19111/bmre.26637 149

165 Diatomites in the Karacaören and paleoenvironment properties of diatomites in the To determine physicochemical properties and the Çiftlik Basin (Niğde) region are studied by Yıldız and area of use of diatomites, samples collected from the Gürel (2005) and diatom assemblage and lithofacies field were subjected to several analyses at laboratories characteristics of diatomites in the Ihlara-Selime of General Directorate of Mineral Research and region are investigated by Gürel and Yıldız (2006). Exploration (MTA) including X-ray diffractometry (XRD) analysis (Cu X-ray tube Bruker D8 Advanced XRD device), loss on ignition (at 1050°C), thermal conductivity analysis (using Unitherm Model 2022

Figure 1- Location map of study area with measured stratigraphic section sites.

Physicochemical properties and the area of use Figure 2- Location of K1 measured stratigraphic section and geology of diatomite levels within late Miocene-Quaternary map (complied from Pasquare, 1968; MTA, 1989). volcanogenic units exposing in the study area are first discussed in this study in detail. The Cappadocian Volcanic Province (CVP) is one of diatomite-rich regions in Turkey. In this respect, determining the physicochemical properties and the area of use of diatomites of Karacaören region within CVP is important to contribute to science and industry.

2. Material and Method

In the study area, 2 stratigraphic sections were measured; one is in Quaternary lacustrine deposits (K1) (thickness 9 m) and another is in lacustrine deposits of Bayramhacılı member of Miocene Ürgüp formation (K2) (thickness 50 m). A total of 12 diatomite samples were collected along both sections and were photographed in the field (Figures 2-5). Scanning electron microscope (SEM) (FEI Quanta 400 MK2 model) photographs of diatomite assemblage of a diatome-rich sample (sample K2-5) were taken at laboratories of General Directorate of Mineral Research and Exploration in Ankara (Figure 6). Figure 3- K1 measured stratigraphic section.

166 Bull. Min. Res. Exp. (2016) 152:165-180

Figure 4- Location of K2 measured stratigraphic section and Figure 5- K2 measured stratigraphic section geology map (complied geology map (complied from Pasquare, 1968; MTA, 1989). from Pasquare, 1968; MTA, 1989).

Thermal Conductivity Instrument 101; at 150°C and undergone a complex neotectonic deformation during ±10°C), X-ray fluorescence spectrometer (XRF) late Miocene-Pliocene and consequently several analysis (samples were dried at 105°C and analysis was faults and within plate basins were formed and the made with Thermo ARL brand XRF device equipped region witnessed intense volcanism (Dirik, 2001). with UQ program), pH analysis (pH analysis of 10% The Cappadocian Volcanic Province is bordered by solution of samples was made with wet method), Central Anatolian Fault Zone at east, Tuz Gölü Fault amount of acid and water-insoluble matter (chemical Zone at west and Orta Kızılırmak Fault Zone to the analysis was made drying samples at 105°C), total north. Derinkuyu Fault and Niğde Fault Zone are at the porosity and density (since samples fall apart during south. CVP is grouped into three rock units comprised absorption, porosity tests were not performed by water by volcanic complexes corresponding to main absorption method but their apparent density was eruption centers, volcaniclastic rocks and determined with mercury-method), whiteness analysis areas. A total of 19 volcanic centers were determined. (using Minolta Chroma Meter CR 300 device), The highest ones are Erciyes Mountain (3917 m) specific surface area, pore volume, pore size analysis and Hasandağ (3268 m) (Ekingen, 1982). Based (with Nova Station B device) and grain size analysis on paleontological, palynological and radiometric (with wet method on Malvern Mastersizer 2000 age data, tectonic depression area at north of CVP device) (Tables 1–5). Results obtained were compared was filled during late Miocene-Quaternary time by to those from standardized analysis of diatomites in lacustrine and fluvial sediments that are intercalated Turkey and various parts of the world and the area of with volcanic units. -sedimentary rocks in use of diatomites was assessed. the region unconformably overlie the - Cretaceous basement rocks of Niğde massif at south 3. Regional Geology and Stratigraphy and Kırşehir massif at north (Schumacher et al., 1990; The study area is located in the Cappadocian Toprak, 1996). These deposits in the Ürgüp basin are Volcanic Province (CVP). The CVP is a NE-SW described by Pasquaré (1968) and Viereck-Goette et extending province with length of 250–300 km and al. (2010) as Ürgüp formation. This stratigraphic level width of 60 km lying about 1400-1500 m above corresponds to Messinian salinity crisis that took place the sea level (Aydar et al., 2012). CVP is a calc- in the late Miocene. The deposits of Ürgüp formation alkaline volcanic terrain which was formed as a which are interlayered with lacustrine and fluvial result of collision between and - sediments are widely distributed within CVP and host Arabian plates (Batum, 1978). The study area was several , andesitic and basaltic lava levels.

167 Diatomites in the Karacaören

Figure. 6- Scanning electron microscope (SEM) images of samle K2–5 from K2 measured section, (a) bulk pennate diatome forms.

168 Bull. Min. Res. Exp. (2016) 152:165-180 Table 1- Results of XRD analysis of Table 1- Results of XRD analysis of the studied They are namely Kavak, Zelve, Sarımaden Tepe (or the studiedsamples. samples. Sofular), Cemilköy, Tahar, Gördeles, Kızılkaya and İncesu ignimbrites, Topuzdağ and Çataltepe Sample No. Analysis Results Table Table1- Results 1- Results of XRD of anal XRDandysis Bayramhacanal of ysis of ılı and Kışladağ members. Radiometric 1- Smectite age data indicate that these rocks are of late Miocene- 2- Feldspar the studied the studied samples. samples. K1-1 3- Opal-CT Pliocene age (Besang et al., 1977). The Bayramhacılı 4- Opal ASampleSample No. AnalysisNo. Analysismember Results Results is composed of lacustrine and fluvial 1- Smectite 1- Smectitesediments consisting of conglomerate, sandstone, 2-Feldspar 2- Feldspar1-limestone, Smectite marl and diatomite. The Kışladağ member K1-1 2- Feldspar K2-1 3- Opal- CT. K1-1 3- Opal-CTis composed of lacustrine limestone and diatomite. 4- (trace) 4- Opal3- AOpal-CT 4-Lacustrine Opal A limestone contains ostracode and gastropod 5- Opal A 1- Smectitefossils. Kavak, Zelve and Sarımaden Tepe ignimbrites 1- Smectite 1- Smectite 2-Feldsparare generally white-gray while Cemilköy ignimbrite K2-1 3- Opal-2-Feldspar CT. K2-4 2-Feldspar 3-is Opal- dull CT. gray colored. The pinkish colored Tahar 3- Opal- CT. K2-1 4-Quartz (trace) 5- Opal4-Quartzignimbrite, A (trace) dull gray colored Gördeles ignimbrite 5- Opal A 1- Smectite 1- Smectiteand red-pinkish colored Kızılkaya ignimbrite are K2-7 have a wide distribution and show columnar joint 2- Opal- CT.K2-4 2-Feldspar1- Smectite K2-4 3- Opal-2-Feldsparstructures CT. (Le Pennec et al., 1994). The Ürgüp 3- Opal- CT. formation is overlain by Quaternary alluvium. The age K2-7 1- Smectiteignimbrite series within the formation is found as 1 Table 2 – Results of thermal conductivitiy analysis. 2- Opal-1- SmectiteCT. K2-7 to 9 Ma (40 Ar/39Ar and U-Pb zircon dating 2- Opal- CT. At Temperature of ± 10 °C At Temperature of 101;methods) 150 °C (Aydar et al., 2012).

Average SampleTable 2 Thermal– Results of thermalAverage conductivitiy Sample analysis. Thermal Sample No. Temperature Conductivity Temperature Conductivity (°C) ValueTable 2 2(W/mK)– –Results Results of thermalof thermal conductivitiy(° Cconductivitiy) analysis. analysValue is. (W/mK) At Temperature of ± 10 °C At Temperature of 101; 150 °C - 4,63 0,193 0,891At Temperature101,08 Thermalof ± 10 °C At TemperatureThermal of 101; 150 °C K1-1 2,10 0,785Average Sample126,28 Average0,198 Sample Sample No. Temperature ConductivityThermalTemperature ConductivityThermal 11,81 0,738 Average° 151,53SampleValue (W/mK) 0,221Average° SampleValue (W/mK) Sample No. (TemperatureC) Conductivity ( TemperatC) ure Conductivity - 5,79 0,984 ° 101,04 0,223 ° K2-1 - 4,63( C) 0,891Value (W/mK)101,08( C) 0,193Value (W/mK) 1,71 K1-10,860 126,21 0,220 11,42 0,790 2,10- 4,63151,36 0,7850,891 0,225126,28101,08 0,198 0,193 - 6,20 K1-10,590 11,81 2,10100,90 0,7380,785 0,164151,53126,28 0,221 0,198 K2-4 1,17 0,503 - 5,79 11,81126,08 0,984 0,155101,04 0,223 0,221 K2-1 1,71 0,8600,738 126,21151,53 0,220 11,00 0,452 - 5,79151,09 0,984 0,140 101,04 0,223 - 5,42 K2-10,742 11,42 100,90 0,790 0,136151,36 0,225 - 6,20 1,71 0,860 126,21 0,164 0,220 K2-7 1,31 0,595 125,99 0,590 0,137100,90 K2-4 1,17 11,42 0,790 151,36 0,155 0,225 10,98 151,05 0,503 0,134126,08 0,484 11,00- 6,20 0,4520,590 151,09100,90 0,140 0,164 K2-4 1,17 0,503 126,08 0,155 - 5,42 0,742 100,90 0,136 K2-7 1,31 11,00 0,5950,452 125,99151,09 0,137 0,140 - 5,42 0,742 100,90 0,136 Table 3- Total porosity, whiteness, acid and water-insoluble 10,98 matter contents0,484 of diatomite151,05 samples from studied0,134 K2-7 1,31 0,595 125,99 0,137 area. 10,98 0,484 151,05 0,134 Total ResultsTable 3- of Total Whiteness porosity, whiteness,Analysis acidAcid-Insoluble and water-insoluble matterWater-Insoluble contents of diatomite samples from studied Sample No. Porosity Tablearea. 3- Total porosity, whiteness, acid andMatter water-insoluble Content matter contentsMatter of diatomite Content samples from studied area. (%) L Table a3- Total porosity, b whiteness,Y acid (%)and water-insoluble matter(%) contents of diatomite samples from studied K1-1 69,40 84,29area.+0,94 Total+6,66 64,63Results of Whiteness Analysis Acid-Insoluble Water-Insoluble 64,89 Sample+0,62 No. Porosity+4,29 82,29 Matter Content Matter Content K2-1 92,62 L a b Y K2-4 76,90 87,14 +0,22 +15,04(%)Total70,30Results of Whiteness Analysis (%)Acid-Insoluble (%)Water-Insoluble 76,56 83,93Sample+1,60 No.+11,97Porosity63,94 Matter Content Matter Content K2-7 K1-1 69,40 84,29 L+0,94 +6,66a 64,63 b Y K2-5 K2-1 64,89(%) 92,62 +0,6290,20+4,29 82,29 98,85 (%) (%) K2-4K1-1 76,9069,4087,1484,29+0,22+0,94+15,04+6,6670,3064,63 K2-7K2-1 76,5664,8983,9392,62+1,60+0,62+11,97+4,2963,9482,29 K2-5 K2-4 1 76,90 87,14 +0,22 +15,04 70,30 90,20 98,85 K2-7 76,56 83,93 +1,60 +11,97 63,94 K2-5 90,20 98,85 1 169 1

Diatomites in the Karacaören

Table 4 4– Results– Results of specific of specific surface surface area, pore area, volume pore and volume pore size andanalysis. pore size analysis. Methods Sample No. Specific Surface Area K1-1 K2-1 K2-4 K2-7 +01 2 Multiple Point BET 2,027 e+02 m2/g 4,315 e+01 m2/g 1,678 e+01 m2/g 1,558 e m /g +01 2 Cumulative Absorption Specific Surface BJH 1,200 e+02 m2/g 3,337 e+01 m2/g 1,938 e+01 m2/g 1,956 e m /g +01 2 +01 2 +01 2 Cumulative Desorption Specific Surface BJH 1,985 e m /g 4, 485 e m /g 2,574 e+01 m2/g 2,600 e m /g +01 2 +01 2 +01 2 Cumulative Absorption Specific Surface DH 1,217 e m /g 3,387 e m /g 1,967 e+01 m2/g 1,985 e m /g +01 2 +01 2 +01 2 Cumulative Desorption Specific Surface DH 2,011 e m /g 4,550 e m /g 2,610 e+01 m2/g 2,638 e m /g Pore Volume - 02 Cumulative Absorbtion Pore Volume BJH 8,124 e- 02 cc/g 4,626 e- 02 cc/g 4,334 e cc/g - 02 Cumulative Desorbtion Pore Volume BJH 3,190 e- 01 cc/g 7,245 e- 02 cc/g 4,133 e- 02 cc/g 3,747 e cc/g - 01 - 02 - 02 Cumulative Absorbsion Pore Volume DH 2,865 e cc/g 7,916 e cc/g 4,508 e- 02 cc/g 4,225 e cc/g - 01 - 02 - 02 Cumulative Desorption Pore Volume DH 3,109 e cc/g 7,064 e cc/g 2,029 e- 01 cc/g 3,654 e cc/g Pore Diameter + Absorbtion Pore Diameter BJH 3,125 e+01 A 3,141 e+01 A 3,141 e+01 A 4,038 e 01 A + Desorption Pore Diameter BJH 3,703 e+01 A 3,671 e+01 A 3,716 e+01 A 3,687 e 01 A + Absorbsion Pore Diameter DH 3,125 e+01 A 3,141 e+01 A 3,141 e+01 A 4,038 e 01 A + + + + Desorption Pore Diameter DH 3,703 e 01 A 3,671 e 01 A 3,716 e 01 A 3,687 e 01 A Table 5- Standardized compositions of various diatomites used in different areas and comparison of XRF, loss on ignition, grain size, density and pH analyses on samples 1) Spain, raw, 2) France, calcined, beer filtration, 3) Italy, raw, light construction material, 4) W. Germany, fertilizer carrier, 5) W. Germany, calcined, Table 5- Standardized compositions of various diatomites used in different areas and comparison of XRF, loss on beer filtrationignition,, 6) W.grain Germany, size, density calcined and pH and analyses fill material on samples, 7) W. 1) Spain,Germany, raw, fitler2) France, matter calcined,, 8) Brazil, beer insulation filtration, 3) Italy, raw, light construction material, 4) W. Germany, fertilizer carrier, 5) W. Germany, calcined, beer matter, 9) USA, calcined filtration diatomite, 10) -Nevada (modified from Uygun, 2001). filtration, 6) W. Germany, calcined and fill material, 7) W. Germany, fitler matter, 8) Brazil, insulation matter, 9) USA, calcined filtration diatomite, 10) Basalt-Nevada (modified from Uygun, 2001). KARACAÖREN 1 2 3 4 5 6 7 8 9 10 K1-1 K2-1 K2-4 K2-7 87,1 %SiO2 86,6 89,9 88,6 69,7 82,9 92,1 94,4 86 88,4 83,13 68,3 84,2 88,9 % TiO2 0,1 0,6 0,2 0,4 0,1 0,2 0,1 0,7 0,2 0,4 0,1 < 0,1 < 0,1 3,3 % Fe2O3 0,4 2,2 8,3 3,1 10,1 0,6 4 1,4 1,5 2,00 4,6 1,1 1,8 % Al2O3 0,9 3,9 1,7 4,9 1,8 2,6 2,3 9,4 4,1 4,60 11,5 3,8 0,7 0,9 % CaO 5,2 0,8 0,6 0,4 2,5 0,1 0,2 0,1 0,6 2,50 2,4 1,6 1,1 1,1 % MgO 0,6 0,2 0,1 0,1 0,4 0,1 0,2 0,4 0,8 0,64 2,7 0,8 0,3 0,3 0,3 % Na2O 0,2 1,1 0,9 3,2 2,9 1,60 1 0,6 0,1 % K2O 0,1 0,2 0,3 1,2 0,3 0,3 0,6 0,2 0,7 0,44 0,7 0.3 < 0,1 < 0,1 0,4 % P2O5 0,2 0,3 0,1 0,1 0,1 0,1 0,2 4,92 0,1 0,6 0,5 % V2O5 + TiO2 0,23

% SiO3 0,20 0,35 0,10 0,08 % SrO 0,03 0,02 < 0,01 < 0,01 % BaO 0,03 < 0,01 < 0,01 < 0,01

% ZrO2 0,02 < 0,01 < 0,01 < 0,01

% V2O5 0,02 0,03 0,01 0,03 % ZnO 0,01 < 0,01 < 0,01 < 0,04 % CuO 0,01 < 0,01 < 0,01 < 0,01 % MnO 0,2 < 0,1 0,1 < 0,1 ° Loss on Ignition 5,5 0,7 0,5 19,1 0,5 3 5,9 2 0,3 5,30 7,65(1050 °C) 6,20(1050 °C) 6,20(1050 °C) 6,10(1050 C) % (at 850°C) Average Grain Size (µ) 3,4 2,7 2,4 4,7 4,5 1,2 6,8 2,7 14,7 550 15 15 20 Grain Smaller than 20 µ (%) 3,7 0,8 1,6 23,4 6,8 2,7 20 4,6 31,8 <1 < 5,5 < 7,5 <7 Wet Density (g/cm3) 4,17 2,44 2,44 3,00 2,17 2,50 2,50 2,08 2,44 2,43 2,26 2,29 2,30 Filtration Rate (ml/min) 12 52 30 18 70 10 190 50 740 pH 8,3 8,5 8,8 8,65 9 8,7 9,85 Quartz (%) 18

170 2

3

Table 6- Comparison of analyses values of various commercially used diatomites in Turkey with those of Bull. Min. Res. Exp. (2016) 152:165-180 studied diatomites 1) Turkey – Kayseri, 2) Kayseri-Kırka, 3) Aydın-Dedeler, 4) Ürgüp, 5) Denizli-Sarayköy,

6)Table Kütahya 6- Comparison-Alayu ofnt analyses, 7) Balıkesir values of- Balyavarious, commercially 8) Niğde-Belisırma used diatomites, 9) inAfyon Turkey-İncehisar with those, of1 0)studied Afyon diatomites-Tınaztepe 1) Turkey, 11) – Kayseri, 2) Kayseri-Kırka, 3) Aydın-Dedeler, 4) Ürgüp, 5) Denizli-Sarayköy, 6) Kütahya-Alayunt, 7) Balıkesir-Balya, 8) Niğde- Ankara-BelisKızılcahamamırma, 9) Afyon-İncehisar,, 12) Çankırı 10) -Afyon-TÇerkeşınaztepe, (modified 11) Ankara-K from Sanıızılcahamam,iz and Nuhoğlu12) Çankı.r ı-Çerkeş 1992; (modified Aruntaş etfrom al., Sar 199ıiz and8; Nuhoğlu. 1992; Aruntaş et al., 1998; Bozkurt, 1999; Nuhoğlu thand Elmas, 1999; Bentli, 2001; 8 th Five-Year Development Plan, Bozkurt,2001; 1999; Uygun.2001). Nuhoğlu and Elmas, 1999; Bentli, 2001; 8 Five-Year Development Plan, 2001; Uygun.2001).

1 2 3 4 5 6 7 8 9 10 11 12 KARACAÖREN K1-1 K2-1 K2-4 K2-7

%SiO2 90,2 90,0 89,6 88,7 85,0 84,42 79,5 72,1 81,86 84,15 88,62 83,25 68,3 84,2 88,9 87,1

% TiO2 0,1 0,2 0,01 0,06 0,01 0,05 0,2 0,4 0,1 < 0,1 < 0,1

% Fe2O3 0,8 1,1 14 3,38 2,8 1,55 3,24 4,4 1,87 3,36 0,57 1,20 4,6 1,1 1,8 3,3

% Al2O3 3,3 2,9 21 1,11 5,0 5,02 6,14 13,1 3,91 4,50 3,30 5,50 11,5 3,8 0,7 0,9 % CaO 0,6 0,7 0,01 1,35 0,01 0,96 12 0,9 0,86 1,07 0,74 1,30 2,4 1,6 1,1 1,1 % MgO 0,3 0,5 12 0,38 1,6 0,74 1,19 3,7 0,15 1,03 0,80 1,90 2,7 0,8 0,3 0,3

% Na2O 0,6 0,06 0,28 0,13 0,62 17 0,47 0,77 0,95 1 0,6 0,1 0,3

% K2O 0,1 0,2 0,15 0,32 0,4 0,60 0,1 0,44 0,71 1,30 0,7 0.3 < 0,1 < 0,1

% P2O5 0,01 0,42 0,01 1,7 0,1 0,6 0,5 0,4

% V2O5 + TiO2 1,9

% SiO3 0,20 0,35 0,10 0,08 % SrO 0,03 0,02 < 0,01 < 0,01 % BaO 0,03 < 0,01 < 0,01 < 0,01

% ZrO2 0,02 < 0,01 < 0,01 < 0,01

% V2O5 0,02 0,03 0,01 0,03 % ZnO 0,01 < 0,01 < 0,01 < 0,04 % CuO 0,01 < 0,01 < 0,01 < 0,01 % MnO 0,2 < 0,1 0,1 < 0,1 ° Loss on Ignition 4,2 4,6 5,5 2,7 5,25 6,09 8,35 4,2 11,31 4,92 4,24 5,54 7,65(1050 °C) 6,20(1050 °C) 6,20(1050 °C) 6,10(1050 C) % (at 850 °C) Average Grain Size (µ) 3,3 10 145 90 550 15 15 20 Grain Smaller than 20 µ (%) 2,7 <1 < 5,5 < 7,5 <7 Wet Density 1,9 (g/cm3) 2,94 2,4 1,95 1,90 2,43 2,26 2,29 2,30 Filtration Rate (ml/min) 48 pH 8,0 7,87 7,28 8,65 9 8,7 9,85 Color White White White White White White White

Stratigraphic units in the study area, from bottom (Ranbohr) fossils in marl samples and stratigraphic to the top, are composed of late Miocene Tuzköy relations, the age of Tuzköy formation is late Miocene. formation (Tt), Yüksekli formation (Ty) and Kavak Yüksekli Formation (Ty): It was named by member (Tük), Cemilköy member (Tüc), Topuzdağ Aydın (1984). It consists of whitish-gray colored, basalt (Tüt1), Quaternary Alacaşar (Qa), Kumtepe medium-fine grained, trough cross bedded sandstone, Ash (Qk) and recent alluvium deposits (Qal) within pebbly sand, tuffite, siltstone, claystone and coarse the Ürgüp formation (Bayramhacılı member) (Figure 7). sandstone and conglomerate. Pebbles show sorting Tuzköy Formation (Tt): It was named by Atabey and orientation. The unit that represents a lacustrine et al. (1988). It consists of yellow colored, thin environment has thickness of 200 m and is concordant with underlying Tuzköy formation. bedded, bioturbated siltstone, laminated silicified claystone, thin bedded and laminated sandstone Bayramhacılı Member of Ürgüp Formation (Tü): and tuff alternation. Limestone and claystone host It was named by Pasquare (1968). This member is gypsum crystals. The unit has thickness of 100 m It found at the base of Ürgüp formation. It consists of is unconformable with underlying Kızılöz formation. lacustrine and fluvial sediments that are made up by Based on Cyprideis sp., Chara, Ilyocyris cf. gibba conglomerate, limestone, clay, marl, volcanic ash,

4 171 Diatomites in the Karacaören

Table 7- Comparison of physicochemical properties of diatomites in the study area with standardized compositionsTable 7- Comparison of diatomites of physicochemical commercially properties usedof diatomites in various in the industrialstudy area with sectors standardized (modified compositions from Özbey of diatomites and commercially used in various industrial sectors (modified from Özbey and Atamer,1987; Açıkalın, 1991; Aruntaş et al., Atamer,1987;1998; Bentli,Açıkalın, 2001). 1991; Aruntaş et al., 1998; Bentli, 2001).

FILTER FILL DIATOMITES USED ABRASIVE REGULATORY COMMERCIAL IN SUGAR AUTOMOBILE FERTILIZER KARACAÖREN PLANTS IN TURKEY WINE SUGAR PAPER PAINT PLASTIC POLISH K1-1 K2-1 K2-4 K2-7

%SiO2 >85,0 87,3 68,3 84,2 88,9 87,1

% TiO2 0,4 0,1 < 0,1 < 0,1

% Fe2O3 <1,5 1,95 4,6 1,1 1,8 3,3

% Al2O3 <5,0 3,23 11,5 3,8 0,7 0,9 % CaO <1,0 1,09 2,4 1,6 1,1 1,1 % MgO <0,5 0,45 2,7 0,8 0,3 0,3

% Na2O <1,0 0,47 1 0,6 0,1 0,3

% K2O <1,0 0,44 0,7 0.3 < 0,1 < 0,1

% P2O5 0,1 0,6 0,5 0,4

% SiO3 0,20 0,35 0,10 0,08 % SrO 0,03 0,02 < 0,01 < 0,01 % BaO 0,03 < 0,01 < 0,01 < 0,01

% ZrO2 0,02 < 0,01 < 0,01 < 0,01

% V2O5 0,02 0,03 0,01 0,03 % ZnO 0,01 < 0,01 < 0,01 < 0,04 % CuO 0,01 < 0,01 < 0,01 < 0,01 % MnO 0,2 < 0,1 0,1 < 0,1

Loss on Ignition ° ° ° ° % (at 850°C) < 6,0 4,43 7,65(1050 C) 6,20(1050 C) 6,20(1050 C) 6,10(1050 C)

Average Grain Size (µ) 2,5 22 6,8 5,1 5,5 550 15 15 20

Grain Smaller than 20 µ (%) <1 < 5,5 < 7,5 <7

Wed Density 2,3 2,0 2,4 2,2 2,8 2,4 1,7 (g/cm3) 2,43 2,26 2,29 2,30 >280 Water Absorption(%) >180

pH 4,49 7,0 10 7,0 10 7,0 9,4 7,0 8,65 9 8,7 9,85

Moinsture (%) <15 White Dirty White Pink White Grey White Pink White Yellowish White White White White siltstone and diatomite and volcanic material-bearing Hipparion gracile de Christol, Samotherium majori sandy and fine grained deposits interbedded with Bohlin, antilope sp., gazella sp. and Hipparion epiclastic, lateritic and sandy soils (Pasquare, 1968; meditarreneum Hansel, Rhinoceras sp. (Şenyürek, Le Pennec et al., 1994). 1953, İzbırak and Yalçınlar, 1951).

Kavak Member (Tük): It was named by Pasquare Topuzdağ Basalt (Tüt1): Volcanites of basic (1968). The member has ignimbritic character and composition exposing at west of Tekkedağ are named contains light brown, whitish homogeneous ignimbrite by Dönmez et al. (2003) as Topuzdağ Volcanite. The and . In the Kavak member, white-dirty white same rock unit is called as Topuzdağ basalt by Atabey colored, glassy tuff-bearing angular pumice ash levels (1989). The main eruption center is at northeast of are also observed. The member with thickness of 100 Ürgüp. It is composed of dark black-gray colored, m represents the first ignimbrite occurrence in the banded, platy altered lava and pyroclastics of basic Ürgüp region. It is transitional to Tuzköy formation. composition having little or no phenocrystal (Dönmez et al., 2003). It is described as . Cemilköy Member (Tüc): It was named by Pasquare (1968). According to Pasquare (1968), the member Alacaşar Tuff (Qa): It is exposed in the area is pure white colored, pumice-bearing a volcano- between Nevşehir, Alacaşar, Gülşehir and Çat. It is sedimentary unit with a lithic character. It locally widely distributed in Alacaşar village, Baçlın, Çat contains ophiolitic rock and basaltic lava pebbles. and Sulusaray counties and at south of Gülşehir. It The unit with thickness of 80 m is conformable with is composed of pink colored, -rich, glassy underlying Kavak and Sarımaden Hill members. and pumice-bearing tuffs interbedded with gray ash In the member following fossils were determined: deposits (Atabey, 1989). Brecciated tuff and sand

172 5 Bull. Min. Res. Exp. (2016) 152:165-180

Figure 7- Generalized stratigraphic section of the study area (complied from Pasquare, 1968; MTA, 1989; Lepetit et al., 2014), No scale. interlayers are locally observed. Boğazköy obsidian, K1 measured stratigraphic section: In 1/25.000

Taşkesik hill, Villa hill and Tepeköy are scaled Kayseri K33-d3 quadrangle, K1 section has covered by the Alaşar tuff (Dönmez et al., 2003). start coordinates of longitude: 0651683, latitude: 4269138, elevation: 1311 m and end coordinates of Kumtepe Ash (Qk): It is composed of pumice- longitude: 0651645, latitude: 426917, elevation: 1320 rich glassy ashes. Fragmented pumice, obsidian, m. The thickness of section is 9 m and 5 samples were vitrophyre, plagioclase crystals and (oligoclase and collected (Figures 2 and 3). The section starts at the andesine) and are observed within the bottom with a light brown paleosol level. Towards the vitrified cement. Based on vertebrate fossils such as upper part of section, following units are observed: Sus sp., Antilope sp., Cervus sp., Equus sp. within clays at Hanyerininbaşı hill, the age of Kumtepe ash 50 cm-thickened white colored diatomite level, 4.5 is accepted as (Ozansoy, 1964). m-thickened light gray tuffites and 30 cm-thickened white diatomite level. The second diatomite level Recent Alluvium (Qal): Recent alluviums in the is overlain by a gray colored tuffite level of 3.7 m study area are composed of pebble, sand and soils thickness and a slope wash comprises the uppermost distributed along the Kızılırmak River. part of section (Figure 3).

4. Results K2 measured stratigraphic section: In 1/25.000 scaled Kayseri K33-d3 quadrangle, K2 section has 4.1. Stratigraphic Sections Measured in the Study Area start coordinates of longitude: 0670278, latitude: In the study area two stratigraphic sections were 4278081, elevation: 1175 m and end coordinates of measured; one is in Quaternary lacustrine sediments longitude: 0670351, latitude: 4278360, elevation: (K1) and another is in lacustrine sediments of 1233 m. The thickness of section is 58 m and 7 Bayramhacılı member of Miocene aged Ürgüp samples were collected (Figures 4 and 5). The K2 formation (K2) (Figures 2–5). section starts at the bottom with a white diatomite

173 Diatomites in the Karacaören level of 23 m thickness. It is overlain by light brown volume values are between 2.029 e–01 cc/g and 7.245 chert level of 4 m thickness and slope wash of 10 m e–02 cc/g, absorption pore diameter value is between thickness. It is covered with another light brown chert 3.125 e+ 01 Å and 4.038 e+ 01 Å and desorption pore level of 4 m thickness and 4 different white diatomite diameter value ranges from 3.671 e+ 01 Å to 3.716 e+ levels of about 1 m alternating with cherts (Figure 01 Å. These findings indicate that samples have high 5). Diatomites at both locations are light and soft and porosity (Table 4). easily fall apart within hand. As a result of XRF, loss on ignition, grain size, 4.2. Results of Analysis for Samples Collected From density and pH analyses, diatomite samples are the Study Area determined to have following range of chemical compositions: SiO : 68.3-88.9%, TiO : < 0.1-0.4%, In order to determine physicochemical properties 2 2 Fe2O3: 1.1- 4.6%, Al2O3: 0.7-11.5%, CaO: 1.1-2.4%, and the area of use of diatomites in the study area, MgO: 0.3-2.7%, Na O: 0.1-1%, K O: < 0.1-0.7%, XRD analysis was carried out on samples collected 2 2 P2O5: 0.1-0.6%, SiO3: 0.03-0.35%, SrO: < 0.01-0.03%, from the field. Results indicate that smectite is the BaO: < 0.01-0.03%, ZrO : < 0.01-0.02%, V O : 0.01- main clay mineral in both sections (K1 and K2) and 2 2 5 0.03%, ZrO2: 0.3-2.7%, ZnO: < 0.01-0.01%, CuO: feldspar and opal are the secondary phases. A sample <0.01-0.01% and MnO: < 0.1-0.2%. Loss on ignition from K2 section (sample K2-1) contains little quartz values of samples are between 6.10 and 7.65% at 1050 °C, (Table 1). It is known that smectite is an authigenic grain size values of samples from K1 section are 0.4- mineral occurring in alkali environments (Gürel and 3000 μ with an average of 550 μ and those of samples Kadir, 2006). This might show that diatomites in the from K2 section are 0.4-100 μ with an average of 15-20 area were formed in an alkali environment. μ. Regarding average grain size, grain size of samples As a result of thermal conductivity analysis, from K2 section are under sand size while samples samples from both sections (K1 and K2) are found to from K1 section contain sand-size material. Density of have thermal conductivity values in the range from samples from both sections is between 2.26 and 2.43 g/ 3 0.452 to 0.984 W/mK at ±10°C and from 0.134 to 0.225 cm and pH values are between 8.65 and 9.85 showing that W/mK at 150°C. It is noticeable that conductivity samples reflect a basic environment (Table 5). values of samples are decreased as temperature is Assessment of scanning electron microscope increased (Table 2). images of diatomite assemblage in a sample from It was determined that samples have extremely K1 section (sample no K2-5) reveals that diatomite high porosity values between 64.89 and 76.90%, samples in the study area are generally composed of whiteness between 63.93 and 82.29%, acid-insoluble coarse, elongate and pennate diatom forms (mostly matter of 94.20% and water-insoluble matter of species of Epithemia) (Figure 6). 98.85% showing that they behave as inert chemical 5. Results and Discussion reactions. Diatomites may be white, light yellow, beige and gray in color while organic matter-rich ones The diatomite which is used in various sectors such are green, brown and black in color (Cummins, 1960; as toothpaste, newspaper, automobile tire, coffee cup, Uygun, 1976; Brady and Clauser, 1991). Studied headache tablet and wall paint, is one of important diatomites are white colored and therefore it can be raw materials required by modern technology. The said that they do not contain any organic matter and areas of use of diatomites are 1) filtration material, 2) may be nearly pure (Table 3). fill material, 3) construction material, 4) absorbent, 5) carrier, 6) catalyst and catalyst carrier, 7) silicate As a result of specific surface area, pore volume production, 8) mild abrasive and cleaner and 9) and pore size analyses, cumulative absorption isolation material. In industry diatomite is mostly specific surface area of studied diatomites is found used for filtration material (58%), fill material (19%), +2 2 +2 2 to change from 1200 e m /g to 3,387 e m /g, isolation material (4%) and various purposes (19%) cumulative desorption specific surface area value is (Uygun, 2001). between 1.985 e+1 m2/g and 4.485 e+1 m2/g, cumulative absorption pore volume values change from 2.865 e+1 Regarding their physicochemical properties, cc/g to 8.124 e–02 cc/g, cumulative desorption pore commercialized diatomites should meet the following

174 Bull. Min. Res. Exp. (2016) 152:165-180 composition spectrum (Özbey and Atamer, 1987; are similar to those of other commercial diatomites

Aruntaş et al., 1998): SiO2: > 85%, Fe2O3: < 1.5%, in the world. Diatomites in the K2 location can be

Al2O3: < 5.0%, CaO: < 1,0%, MgO: < 0.5%, Na2O: used commercially if their grain size is minimized. It

< 1.0%, K2O: < 1.0%, loss on ignition value (at was found that analysis values of diatomites at both 850°C): < 6.0%, water absorption: > 180 to > 280%, locations (K1 and K2) are consistent with those of moisture content: < 15% and their color is to be various commercial diatomites in Turkey and that white (Table 7). In the study area diatomites at K2 diatomites only in the K2 location could be used location have following compositions: SiO2: 84.2- commercially if their grain size is minimized (Tables

88.9%, Fe2O3: 0.1-1.6%, Al2O3: 1.1-1.8%, MgO: 0.3- 5 and 6).

0.8%, Na2O: 0.1-1.6%, K2O: < 0.1-0.3% and loss on ignition value (at 1050°C): 6.1-6.2% and they have Based on results of analysis conducted on studied white color. These characteristics are conformable diatomites, their areas of use can be categorized as with standardized physicochemical properties of follows: commercial raw diatomites. Only CaO value is slightly As filtration material: Due to its high porosity, higher (0.1-2.4%) which can be reduced by processing resistance to chemical effects and purity, filtration is (Tables 5-7). Standardized analysis values of studied the most common area of use of diatomite (Köktürk, diatomites and diatomites that are used commercially 1997). Diatomite increases rate and efficiency of in various fields are given in table 5 for comparison. filtration because of its porous structure and providing Commercially used diatomites are represented by the wide filtration surface and absorbing oil and some following compositions: SiO : 83.13-94.0%, TiO : 2 2 microorganisms. Diatomite is utilized for purification 0.1-0.7%, Fe O : 0.4-10.1%, Al O : 0.9-9.4%, CaO: 2 3 2 3 of liquids that contain suspended undesirable materials 0.1-5.2%, MgO: 0.1-0.8%, Na O: 0.2-1.60%, K O: 2 2 such as raw sugar syrup (glucose), beer, whisky, wine, 0.1-0.7%, P O : 0.1-4.92%, loss on ignition value (at 2 5 fruit juice, metallic and vegetable oil, pharmacy 850°C) between 0.3-19.1%, the average grain size of products, polluted waters, dry cleaning solvents, 3 1.2-14.7 µ, wet density value of 2.08-4.17 g/cm , rate industrial wastes, chemical materials and varnish. of filtration of 10-740 ml/min and pH value of 8.3- In order for diatomite to be used in filtration, it has 8.8. In table 6 commercially used diatomites in Turkey to contain minimum 84% SiO2 (Bozkurt, 1999). In are compared to those from study area. Commercially percolators pure, elongate and coarse diatom species used diatomites have the following compositions: are desired (Uygun, 2001). SiO2: 72.1-90.2%, TiO2: 0.01-0.2%, Fe2O3: 0.20-14%,

Al2O3: 1.1-13.1%, CaO: 0.01-12%, MgO: 0.15-12%, Diatomites in the study area are characteristic

Na2O: 0.06-17%, K2O: 0.1-0.71%, P2O5: 0.01-1.7%, with their high porosity (porosity: 64.89–76.90%, loss on ignition value (at 850°C) between 2.7-11.31%, pore volume: 2.865e-01cc/g – 8.124e-01cc/g; pore size: the average grain size of 3.3-145 µ, wet density value 3.125e-01–4.038e-01 Å), resistance to chemical effects of 1.9-2.94 g/cm3, rate of filtration of 48 ml/min and (amount of acid-insoluble matter: 94.20%, amount of pH value of 7.28-8.0. Diatomites in the study area are water-insoluble matter: 98.85%), purity (with their represented by SiO2 contents of 68.3% (at location of white color and whiteness values of 63.94-82.29%),

K1 section) and 84.2-88.9% (at location of K2), TiO2 SiO2 values up to 88.9% (particularly samples from contents of < 0.1-0.4%, Fe2O3 contents of 1.1-4.6%, K2 section) and pure, elongate and coarse diatom

Al2O3 contents of 0.7-3.8% (at location of K2 section) species (especially Epithemia species) and therefore, and 11.5% (at location of K1 section), CaO contents they are suitable to be used in percolators (Tables 3, 4, of 0.1-2.4%, MgO contents of 0.3-0.8% (at location 5, 7) (Figure 6). For wine filtering process, diatomites of K2 section) and 2.7% (at location of K1 section), with pink color, grain size of 2.5 µ, wet density of 2.3 3 Na2O contents of 0.1-1.0%, K2O contents of < 0.1- g/cm and pH value of 7.0 are used while for sugar

0.7%, P2O5 contents of 0.1-0.6%, loss on ignition filtering process, diatomites with white color, grain values of 6.10-7.65%, average grain sizes of 15-20 µ size of 22 µ, wet density of 2.0 g/cm3 and pH value of (at location of K2 section) and 550 µ (at location of 10 are utilized (Açıkalın, 1991) (Table 7). In addition, K1 section), wet density values of 2.26-2.43 g/cm3, pH sugars that are processed at sugar plants in Turkey are values of 8.65-9.85. These values indicate that, except in white color and have the following compositions: for grain size, diatomites particularly at K2 section 87.3% SiO2, 1.95% Fe2O3, 3.23% Al2O3, 1.09% CaO,

175 Diatomites in the Karacaören

0.45% MgO, 0.47% Na2O and 0.44% K2O with loss character) and high SiO2 contents (84.2-88.9%) and on ignition of 4.43% (at 850 °C) and pH of 4.49-10 therefore, they may be used as fill material (Tables 2, (Bentli, 2001) (Table 7). Diatomite samples from K2 3, 5, 6, 7). Results of analyses of the studied diatomites section with their white color, grain size of 15-20 µ, indicate that particularly those from K2 section may wet density of 2.26–2.30 g/cm3, pH value of 9.85 – be suitable to be used in paint industry if coarse grains

9.0 and composition of 84.2-88.9% SiO2, 1.1-3.3% within them are removed (Table 7). Fe O , 0.7-3.8% Al O , 1.1-1.6% CaO, 0.3-0.8% 2 3 2 3 As construction material: In the construction MgO, 0.1-0.6% and Na2O, <0.1-0.3% K2O are similar to diatomites used in sugar filtering process but differ industry diatomite is used as admixture for cement, from these diatomites with their loss on ignition (at mortar and bentonite-bearing light bricks. It is shown 1050°C) which ranges from to 6.10 to 6.20% (Tables that 3% diatomite addition to concrete increases 3,5,6,7). compressive strength 20% and tensile strength 10%. In this industry low-quality diatomites may also As fill material: Diatomite is used for production be utilized (MTA, 1968; DPT, 2001; Uygun, 2001). of paper, plastic, match, paint, pesticides, polish, Diatomites in the study area can be used as construction toothpaste, cleaning supplies, some chemical material if required. In addition, diatomite is used as materials and improving and increasing the mineral admixture in Portland-cement concretes if performance of products of drug and cosmetic SiO2+Al2O3+Fe2O3 total is at least 70% and loss on industries. For diatomites to be used as fill material ignition is maximum 10% (Aruntaş et al., 1998). purity, fine grained texture, high porosity, lightness, SiO2+Al2O3+Fe2O3 total of studied diatomites 70.1- and resistence to chemicals, ability to insulate sound 105% and loss on ignition (at 1050 °C) is 6.10-7.65% and heat and high absorptance and minimum 80% and therefore diatomites at both locations may be used SiO are required. In paint sector, diatomite with grain 2 as mineral admixture in Portland-cement concretes size of 200–300 μ is added to paint in an amount of (Tables 5-7). 2–3%. Moreover, it is shown in table 7 that diatomites used in paper industry are required to have wet density As carrier: Diatomite may also be utilized to of 2.4 g/cm3, pH value of 7.0 and gray color while carry nitrogen-bearing fertilizers. Under dry climate those used in paint industry are required to have an conditions, diatomite can absorb even little amount 3 average grain size of 6.8 µ, wet density of 2.2 g/cm , of moisture in the air thus providing fertilizer is pH value of 10 and white color and finally diatomites easily blended with the soil. In addition, grinded used in plastic industry are required to have an diatomite may be directly used as fertilizer in silica- 3 average grain size of 5.1 µ, wet density of 2.8 g/cm , deficient soils (MTA 1968; DPT, 2001; Uygun, pH value of 7.0 and pink color (Diatomite Inventory 2001). Diatomites which are preferred as regulator of Turkey, 1968; Bentli, 2001; Açıkalın, 1991; DPT, in fertilizer industry 1.7 g/cm3 wet density and pH of 2001; Uygun, 2001). Diatomites in the study area, 7.0 are required. Because studied diatomites have wet particularly samples from K2 section, are represented densities of 2.26-2.43 g/cm3 and pH values between by high whiteness character (63,94–82,29%), grain size 8.65 and 9.85, they are not suitable to be used as carrier of 15-20 µ, high porosity (porosity: 64.89–76.90%, (Tables 5-7). pore volume: 2.865e-01 cc/g – 8.124e-01 cc/g, pore size: 3.125e-01 – 4. 038e-01 Å) and low density (2.26–2.43 In silicate production: Diatomite is utilized g/cm3), high resistance to chemicals (amount of acid- in production of ceramic, glazer and ultramarine insoluble matter: 94.20%, amount of water-insoluble and various glass materials (MTA 1968; DPT, matter: 98.85%), high ability to insulate heat (thermal 2001; Uygun, 2001). Diatomites in the study area, ° conductivity values at ±10 C are between 0.452 and particularly those in the area of K2 section, have high 0.984 W/mK, 101; thermal conductivity values at SiO2 contents (84.2–88.9%) and therefore can be used 150 °C are 0.134-0.225 W/mK), high absorptance for silicate production (Tables 5-7). character (since samples are easily fall apart in water, their absorptance property could not be determined As mild abrasive and cleaner: Diatomite is used as experimentally. However, their high porosity and low mild abrasive and cleaner in laundry detergent, stain density may be indicative of their high absorptance absorber and automobile polisher (MTA, 1968; DPT,

176 Bull. Min. Res. Exp. (2016) 152:165-180

2001; Uygun, 2001). Diatomites used as abrasive in Atabey, E., Papak, İ., Tahran, N., Aksu, B., Taşkıran, M., automobile polishers are white colored and have an Adil, A. 1987. Ortaköy (Niğde)-Tuzköy (Nevşehir)- 3 average grain size of 5.5 µ, wet density of 2.4 g/cm Kesikköprü (Kırşehir) yöresinin jeolojisi raporu. and pH value of 9.4 (Açıkalın, 1991). Because diatomites Maden Tetkik ve Arama Genel Müdürlüğü Rapor in the study area are white colored and represented by wet density of 2.26-2.43 g/cm3 and pH values of 8.65- No: 8156 Ankara (unpublished). 9.85, they are suitable to be used as mild abrasive Atabey, E., Tarhan, N., Yusufoğlu H., Canpolat, M. and cleaner. However regarding grain size they are not suitable and therefore grain size is required to be 1988. Hacıbektaş, Gülşehir, Kalaba (Nevşehir)- minimized (Tables 3, 5-7). Himmetdede (Kayseri) arasının jeolojisi raporu. Maden Tetkik ve Arama Genel Müdürlüğü Rapor As isolation material: Due to its high porosity, No: 8523 (unpublished). diatomites are good insulators for heat and sound. They are used in walls and flooring by injecting Aydar, E. 1992. Edude volcano-structurale et asbestos-mixed plates into lime or cement. Diatomite magmatologique du strato-volcan Hasandağı coating in vapor and gas pipes and diatomite bricks (Anatolie Centrale-Turquie). These de Doctorat, in outer wall of blast furnace prevent heat loss. In addition, it is also used for production of firebrick Universitute Blaise Pascal, 200 pp. France. as isolation material (Uygun, 2001). In order for diatomite to be used as isolation material it should Aydar, E., Gourgaud, A. 1998. The geology of Mount Hasan , Central Anatolia, Turkey. Journal of contain minimum 94% SiO2 (Bentli, 2001). and Geothermal Research 85, 129– Considering low thermal conductivity values 152. (thermal conductivity values at ±10 °C are 0.452- 0.984 W/mK, 101; thermal conductivity values at Aydar, E., Çubukçu, H.E., Şen, E., Akın, L. 2012. 150ºC are 0.134-0.225 W/mK), high porosity values Central Anatolia’n Plateau, Turkey: incisin and (porosity: 64.89–76.90%, pore volume: 2.865e-01– paleoaltimetry recorded from volcanic rocks. 8.124e-01 cc/g, pore size: 3.125e-01–4.038e-01 Å) and low density values (2.26–2.43 g/cm3), diatomites Turkish Journal of Earth Sciences 22, 739–746. in the study area can be used as isolation material. Aydın, N. 1984. Orta Anadolu Masifi’nin Gümüşkent However, diatomites at both locations with SiO2 contents of 68.3-88.9% are needed to be enriched to (Nevşehir) dolayında jeolojik-petrografik be used for isolation (Tables 2-5). incelemeler. Doktora tezi, Ankara Üniversitesi, Fen Fakültesi, 400 s. Ankara. Acknowledgements Ayhan, A., Papak, İ., Atabey, E. 1988. Göçlük (Misli)- This study was financially supported by Aksaray University Scientific Research Unit under grand no. Derinkuyu-Sulucaova civarının jeolojisi raporu. 2012/16. Also, we thank you to geological engineer Maden Tetkik ve Arama Genel Müdürlüğü Rapor Zafer Ertosun for his assistance in obtaining the No: 8345 Ankara (unpublished). necessary geological maps during our study. Ayrancı, B. 1970. Orta Anadolu’da Kayseri civarında Erciyes References Volkanik Bölgesi’nin kantitatif incelemelerine Açıkalın, N. 1991. Dünya'da ve Türkiye’de Diyatomit. istinaden petrolojisi ve jeolojisi. Maden Tetkik ve Maden Tetkik ve Arama Genel Müdürlüğü, Ankara. Arama Genel Müdürlüğü Dergisi 74, 13–24.

Aruntaş, H.Y., Albayrak, M., Saka, H.A., Tokyay, M. 1998. Batum, I. 1978. Geology and petrography of Acıgöl and Ankara-Kızılcahamam ve Çankırı-Çerkeş yöresi Göllüdağ volcanics at southwest of Nevşehir Central diatomitlerinin özelliklerinin belirlenmesi. Turkey Anatolia (Turkey). Yerbilimleri 4, 1–2, 70–88. Journal of Engineering and Environmental Science 22, 337-343. Beekman, P. H. 1963. İncesu bölgesinin (Kayseri) jeolojik Atabey, E. 1989. 1/100.000 ölçekli açınsama nitelikli ve volkanolojik etüdü raporu. Maden Tetkik ve Türkiye jeoloji haritaları serisi, Kayseri-H19 Arama Genel Müdürlüğü Rapor No: 6880. Ankara paftası. Maden Tetkik ve Genel Müdürlüğü, Ankara. (unpublished).

177 Diatomites in the Karacaören

Beekman, P.H. 1966. The Pliocene and Quarternary Duritt, T. H., Brenchley, P.J., Gökten, Y. E., Francaviglia, volcanism in The Hasandağ-Melendizdağ Region, V. 1995. Late Quaternary rhyolitic eruptions from Maden Tetkik ve Arama Genel Müdürlüğü Bülteni the Acıgöl complex, Central Turkey. Journal of 66, 99–106. Geological Society of London 152, 655–667.

Besang, C., Eckhardt, F.J., Harre, W., Kreuzer, H., Müller, Ekingen, A. 1982. Nevşehir Kalderasında jeofizik P. 1977. Radiometrische altersbestimmungen an prospeksiyon sonuçları. Türkiye Jeolojisi Kurultayı, Neogen Eruptivgesteinen der Türkei. Geol. Jb. 1982, 82. B-25, 3-36. Ercan, T., Yıldırım, T. 1988. volkanizmasının Bentli, İ. 2001. Kütahya-Alayunt diatomit cevherinin özellikleri ve Anadolu’dan örnekler, Akdeniz zenginleştirilebilirliğinin araştırılması. 4.Endüs- Üniversitesi, İsparta Mühendislik Fakültesi triyel Hammaddeler Sempozyumu, 2001, Köse, H., Arslan, V., Tanrıverdi, M. (Ed.), İzmir, 119-126. Dergisi, 4, 36–52.

Bigazzi, G., Yeğingil, Z., Boztuğ, D., Ercan, T., Norelli, Ercan, T., Fujitani T., Matsuda, J., Tokel, S.,Notsu, K, Ul, T., P., Özdoğan, M. 1997. Studi di Proveinenza della Can, B., Selvi, Y., Yıldırım, T., Fişekçi, A., Ölmez, obsidiana con il metodo tracce di fissione: nuovi M., Akbaşlı, A. 1990. The origin and evolution of dati sulle Potenziali fonti Anatoliche. IV. Giornata the Cenezpic volcanism of Hasandağı-Karacadağ “Le Scienze della Terra e 1’ Archeometria”, area (Central Anatolia). Jeomorfoloji Dergisi 18, Neaples, 20–21 February 1997, 33. 39–54. Bozkurt, R. 1999. Diyatomit, Türkiye’de Endüstriyel Froger, J.L., Lenat, J.F., Chorowicz, J., Le Pennec, Mineraller Envanteri. İstanbul Maden İhracatçıları J.L., Bourdier, J.L., Köse, O., Zimitoglu, O., Birliği (İMİB), Yurt Madenciliği Geliştirme Vakfı Gündoğdu, N.M., Gourgaud, A. 1998. Hidden Önal, Y., Özpeker, G., (Ed.), İstanbul, 42-47. evidenced by multisource geophysical Brady, G. S., Clauser, H. R. 1991. Materials Handbook. Mc data; example of Cappadocian Calderas, Central Graw-Hill. Anatolia. Journal of Volcanology and Geothermal Research 85, 99–128. Cummins, A. B., 1960. Diatomite, Industrial Minerals and Rocks (Nonmetallics other than fuels). The Am. Gevrek, A. İ., Kazancı, N. 1994a. Occurrence and evolution Inst. of Mining and Metallurgical Engineers, New of Narköy maar in SE . AVCE, 1994, York. Ankara.

Dhont, D., Chorowicz, J., Yürür, T., Froger, J.L., Köse, O., Gevrek, A.İ., Kazancı, N. 1994b. Material-rich and poor Gündoğdu, N. 1998. Emplacement of volcanic with examples from central Anatolia, Turkey. vents and geodynamics of Central Anatolia, Turkey. AVCE, 1994, Ankara. Journal of Volcanology and Geothermal Research 85, 33–54. Göncüoğlu, M.C., Toprak, V. 1992. Neogene and Quaternary volkanism of Central Anatolia: a volcano structural Dirik, K. Göncüoğlu, M.C., Kozlu, H. 2001. Ecemiş Fay evoluation. Bulletin de la Section de Volcanologie Zonu Orta Kesiminin (Sultansazlığı-Tuzlagölü 26,1–6. arası) stratigrafisi ve tektoniği. Niğde Üniversitesi, Mühendislik Fakültesi Dergisi, 73–90. Güner, Y., Emre, Ö. 1983. Erciyes Dağı’nda Pleyistosen buzullaşması ve volkanizma ile ilişkisi. Dönmez, M., Türkecan, A., Akçay, E.A. 2003. Kayseri- Jeomorfoloji Dergisi 11, 23–34, Ankara. Niğde-Nevşehir yöresi Tersiyer volkanikleri raporu. Maden Tetkik ve Arama Genel Müdürlüğü Gürel, A., Yıldız, A. 2006. Diyatom communities, Rapor No: 10575. Ankara (unpublished). lithofacies characteristics and paleoenvironmental DPT. 2001. Sekizinci beş yıllık kalkınma planı madencilik interpretation of Pliocene diyatomite deposits in özel İhtisas komisyonu raporu, endüstriyel the Ihlara-Selime plain (Aksaray, Central Anatolia, hammaddeler alt komisyonu genel sanayi Turkey). Journal of Asian Earth Science 30, 170– mineralleri IV. çalışma grubu raporu, Ankara. 180.

178 Bull. Min. Res. Exp. (2016) 152:165-180

Gürel, A., Kadir, S. 2006. Geology and mineralogy and Koçyiğit, A., Beyhan, A.A. 1998. New Intracontinental origin of clay minerals of the Pliocene fluvial- transcurrent structure: The Central Anatolian Fault lacustrine deposits in the Cappadocian Volcanic Zone, Turkey. Tectonophysics 284, 317–336. Province, Central Anatolia, Turkey. Clay and Clay Köktürk, U. 1997. Endüstriyel Hammaddeler. Dokuz Eylül Minerals 54, 555–570. Üniversitesi Mühendislik-Mimarlık Fakültesi Gürel, A., Kadir, S., Kerey, E.İ. 2007. Orta Anadolu volkanik Yayınlan 205, İzmir, 64-68. bölgesinin (CAVP) güneydoğu bölümündeki erken Kürkçüoğlu, B., Şen, E., Aydar, E., Gourgaud, A., Miyosen yaşlı killi kayaçların sedimantolojisi ve Gündoğdu, M.N. 1998. Geochemical approach to mineralojisi. Kapadokya Bölgesi’nin Jeolojisi magmatic evolution of Mt. Erciyes stratovolcano Sempozyumu, 2007, Niğde, 133–147. Central Anatolia, Turkey. Journal of Volcanology Gürel, A., Kadir, S. 2008. Geology and mineralogy of Late and Geothermal Research 85, 473–494. Miocene clayey sediments in the southeastern part Le Pennec, J.L., Bourdier, J.L., Froger, J.L., Temel, of the Central Anatolian Volcanic Province, Turkey. A., Camus, G., Gourgaud, A. 1994. Neogene Clay and Clay Minerals 56, 3, 307–321. ignimbrites of the Nevşehir plateau (Central Gürel, A., Kerey, E.İ., Özcan, S. 2008. Sedimentology Turkey): stratigraphy, distribution and source and mineralogy of late Miocene paleotopraks constraints. Journal of Volcanology and Geothermal and calcrete rich sediments in the western part Research 63.59–87. of Central Anatolian Volcanic Province (CAVP), Le Pennec, J.L., Temel, A., Froger, J.L., Şen, Ş., Gourgaud Turkey. SGEM Conference, 2008, Bulgaria, 25. A., Bourdier, J.L. 2005. Stratigraphy and age of the Göz E., Kadir S., Gürel A., Eren M. 2014. Geology, Cappadocia ignimbrites, Turkey: reconciling field minerology, geochemistry, and depositional constraints with paleontologic, radiochronologic, environment of a late Miocene/Pliocene geochemical and paleonmagnetic data. Journal of fluviolacustrine succession, Cappadocian Volcanic Volcanology and Geothermal Research 141, 45–64. Province Central Anatolia, Turkey. Turkish Journal Lepetit, P., Viereck, L., Piper John, D.A., Sudo, M., Gürel, of Earth Sciences 23, 386–411. A., Çopuroğlu, İ., Gruber, M., Mayer, B., Koch, M., Tatar, O., Gürsoy, H. 2014. 40Ar/39Ar dating Innocenti, F., Mazzuoli, G., Pasquare, F., Radicati Di Brozolo, of ignimbrites and plinian air-fall layers from F., Villari, L. 1975. The Neogene calcalkaline Cappadocia, Central Turkey: Implications to volcanism of Central Anatolia geochronological chronostratigraphic and Eastern Mediterranean data on Kayseri-Niğde area. Geological Magazine palaeoenvironmental record. Research Gate 112, 4, 349–360. Elsevier 74, 471–488. İzbırak, R., Yalçınlar, İ. 1951. Kayseri kuzeyinde Üst MTA. 1989. 1/100.000 ölçekli Türkiye Jeoloji Haritası, Miosen’e ait omurgalılar. Türkiye Jeoloji Kurumu Kayseri-H 19 Paftası. Maden Tetkik ve Arama Bülteni III, l, 153–154, Ankara. Genel Müdürlüğü, Ankara. Kadir, K., Gürel, A., Lepetit, P., Davarcıoğlu, B. 2006. MTA. 1968 Türkiye Diyatomit Envanteri, Maden Tetkik ve Preliminary approach to mineralogy and Arama Enstitüsü 138, Ankara. depositional environment of upper Miocene Cappadocian Volcanic Province, Ürgüp-Başköy- Nuhoğlu, İ., Elmas, N. 1999. Alayunt diyatomit yataklarının Güzelöz (Nevşehir, Central Anatolia, Turkey). oluşumu ve ekonomik olarak incelenmesi. l. Batı Fourth Mediterranean Clay Meeting, 2006, Anadolu Hammadde Kaynaklan Sempozyumu, Ankara, 1, 73. 1999, İzmir, 82-95.

Kayalı, R., Gürel A., Davarcıoğlu, B., Çiftçi, E. 2005. Ozansoy, F. 1964. Fauni-zon bilimleri ışığında Çanakkale Orta Anadolu Bölgesi’ndeki endüstriyel ham çevresi Neojen strarigrafisi ve Neojen maddelerinden kil ve diyatomitlerin spektroskopik paleocografyasında bölgede tabii rejimler problemi: yöntemlerle nitelik ve niceliklerinin belirlenmesi karasal-denizel-somatr. Ankara Üniversitesi, Dil ve raporu. TÜBİTAK Rapor No: ÇAYDAG-101Y067, Tarih Coğrafya Fakültesi, Antropoloji Dergisi 1, 2, 157 s. Ankara.

179 Diatomites in the Karacaören

Özbey, G., Atamer, N. 1987. Kizelgur (Diyatomit) Hakkında Toprak, T. 1996. Kapadokya Volkanik Çöküntüsü’nde Bazı Bilgiler. 10. Türkiye Madencilik Bilimsel ve gelişmiş Kuvaterner yaşlı havzaların kökeni, Orta Teknik Kongresi, 1987, Ankara, 493-502. Anadolu. 30. Yıl Sempozyumu, 1996, Trabzon, 327–329. Özkuzey, S., Önemli, Ö., F. 1977. Acıgöl (Nevşehir) perlitlerinin petrografisi ve ekonomik jeolojisi. I. Toprak, V. 1998. Vent distribution and its relation to regional Ulusal Perlit Kongresi, 1977, Ankara, 137–147. tectonics, Cappadocian Volcanics, Turkey. Journal Pasquare, G. 1968. Geologie of the Senozoic volkanic area of Volcanology and Geothermal Research 85, 55– of Central Anatolia. Atti della Acad. No. Delince, 67. Menorie Serie, 1968, Roma, VIII, IX, 55–204. Uygun, A. 1976. Geologie und Diyatomit - Vorkommen des Pasquare, G., Poli, S., Venzolli, L., Zanchi, A. 1988. Neogen - Beckens vorc Emmiler-Hırka (Kayseri- Continental arc volcanism and tectonic setting Türkei). Doktora Tezi, Bonn Üniversitesi, 137 s in Central Anatolia, Turkey. Tectonophysics 146, 217–230. (unpublished).

Sarıiz, K., Nuhoğlu, İ. 1992. Endüstriyel Hammadde Uygun, A. 2001. Diyatomit jeolojisi ve yararlanma Yatakları ve Madenciliği. Anadolu Üniversitesi olanakları. Maden Mühendisleri Odası Dergisi 15, Yayını, No:636, 452 s. 31–39. Sassano, G. 1964. Acıgöl bölgesinde Neojen ve Kuvaterner Viereck-Götte, L., Gürel, A. 2003. Klima-und volkanizması raporu. Maden Tetkik ve Arama Genel Vegetationswechsel dokumentiert in obermiozaenen Müdürlüğü Rapor No: 6841. Ankara (unpublished). Paläoböden Kappadokiens, Zentralanatolien’, Schumacher, R., Keller, J., Bayhan, H. 1990. Depositional Berichte der Deutschen Mineralogischen characteristics of ignimbrites in Cappadocia, Gesellschaft. Beihefte zum European. Journal of Central Anatolia, Turkey. In: M.Y. Savaşçın and Mineralogy 15, 211, 211pp. A.H. Eronat (Eds.), International Earth Science Congress on Aegean Regions, 1990, 2, 435–449. Viereck-Goette, L., Lepetit, P., Gürel, A., Ganskow, Schumacher, R., Mues, U., Kobeski, U. 1992. Petrographical G., Çopuroğlu, İ., Abratis, M. 2010. Revised and geochemical aspects and K/Ar-dating of volcanostratigraphy of the upper Miocene to lower ignimbrites in Cappadocia, Turkey. 6th Congresss Pliocene Ürgüp Formation, Central Anatolian of the Geological Society of Athens, 1992. Volcanic Province, Turkey. Geolological Society of Amsterdam 464, 85–112. Schumacher, R., Schumacher, U.M. 1996. The Kızılkaya İgnimbrite an unusual low-aspect-ratio ignimbrite Yavuz-Işık N., Toprak, V. 2010. Palynostratigraphy and from Cappodocia, Central Turkey. Journal of vegetation characteristics of Neogene continental Volcanology and Geothermal Rescarch 70. 107–121. deposits interbedded with the Cappadocia Şenyürek, M. 1953. A note on a new species of Gazella from ignimbrites (Central Anatolia, Turkey). Internaional the Pontian of Küçük Yozgat. Rev. Fac. Langue, Journal of Earth Science 99, 1887–1897. Hist. Geogr., University of Ankara, pp. 16, 14. Yıldırım, T. 1984. Acıgöl volcanism and hot dry rock, Temel, A. 1992. Kapadokya eksplosif volkanizmasının possibities, Nevşehir, Turkey; Sern.in.ar on. petrolojik ve jeokimyasal özellikleri. Doktora Tezi, Hacettepe Üniversitesi, 209 s. Ankara. Utilization of Geothermal Energy for electric, power production and space Heating, 1981, Temel, A., Gündoğdu, M. N., Gourgaud, A. 1998a. Florence-İtalya. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in , Yıldırım, T., Özgür, R. 1981. Acıgöl Kalderası. Jeomorfoloji Central Anatolia, Turkey. Journal of Volcanology Dergisi 10, 59–70. and Geothermal Research 85, 327–354. Yıldız, A., Gürel, A. 2005. Diyatom community and Temel, A., Gündoğdu, M.N., Gourgaud, A., Le Pennec, palaeoenvironmental interpretation of Pleistocene- J. L. 1998b. Ignimbrites of Cappadocia Central Anatolia, Turkey petrology and geochemistry. Holocene lacustrine diyatomite deposits in the Journal of Volcanology and Geothermal Research Çiftlik Basin (Niğde, Central Anatolia, Turkey). 12 85, 447–471. th RCMNS Congress, 2005, Wienna, 82.

180