University of Cincinnati
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acigöl Rhyolite Field, Central Anatolia (Part 1): High-Resolution Dating of Eruption Episodes and Zircon Growth Rates
Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates Axel K. Schmitt, Martin Danišík, Noreen J. Evans, Wolfgang Siebel, Elena Kiemele, Faruk Aydin & Janet C. Harvey Contributions to Mineralogy and Petrology ISSN 0010-7999 Volume 162 Number 6 Contrib Mineral Petrol (2011) 162:1215-1231 DOI 10.1007/s00410-011-0648-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Contrib Mineral Petrol (2011) 162:1215–1231 DOI 10.1007/s00410-011-0648-x ORIGINAL PAPER Acigo¨l rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates Axel K. Schmitt • Martin Danisˇ´ık • Noreen J. Evans • Wolfgang Siebel • Elena Kiemele • Faruk Aydin • Janet C. Harvey Received: 22 January 2011 / Accepted: 3 May 2011 / Published online: 24 May 2011 Ó Springer-Verlag 2011 Abstract Protracted pre-eruptive zircon residence is fre- crystallized in two brief pulses corresponding to eruptions quently detected in continental rhyolites and can conflict in the eastern and western part of the field during Middle with thermal models, indicating briefer magma cooling and Late Pleistocene times, respectively. -
Appendix A. Supplementary Material to the Manuscript
Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study. -
Yer-18-1-1-0806-2:Mizanpaj 1
Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 18, 2009, pp. 1–27. Copyright ©TÜBİTAK doi:10.3906/yer-0806-2 First published online 07 July 2008 Geochemical Characteristics of Mafic and Intermediate Volcanic Rocks from the Hasandağ and Erciyes Volcanoes (Central Anatolia, Turkey) AYKUT GÜÇTEKİN & NEZİHİ KÖPRÜBAŞI Department of Geological Engineering, Kocaeli University, TR–41040 İzmit, Turkey (E-mail: nezihi@ kocaeli.edu.tr) Received 23 June 2007; revised typescript received 24 November 2007; accepted 07 December 2007 Abstract: Hasandağ and Erciyes stratovolcanoes, which are the two important stratovolcanoes in Central Anatolia, erupted volcanic products with both calc-alkaline and alkaline compositions, although the calc-alkaline activity is more widespread. There are three stages of geochemical evolution in the history of the Hasandağ stratovolcanic complex: (1) Keçikalesi tholeiitic volcanism, (2) Hasandağ calc-alkaline volcanism, and (3) Hasandağ alkaline volcanism. The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline volcanism, (2) Koçdağ calc-alkaline volcanism and (3) Erciyes calc- alkaline volcanism. The volcanic rocks from both suites show enrichments in LREE relative to HREE. The rocks as a whole show enrichments in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) in N-MORB normalized multi- element diagrams, although the thoeliitic and alkaline rocks have less pronounced effects of HFSE/LILE fractionation comparing to the calc-alkaline rocks. Theoretical fractionation models obtained using the whole-rock trace element data indicate two distinct fractionation trends for the Hasandağ volcanism: amphibole and plagioclase fractionation for the tholeiitic and calc-alkaline rocks and plagioclase, pyroxene and amphibole fractionation for the alkaline rocks. -
Volcán Lascar
Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015. -
Actualización Plan Director De Infraestructura Mop
REPÚBLICA DE CHILE MINISTERIO DE OBRAS PÚBLICAS DIRECCIÓN DE PLANEAMIENTO ACTUALIZACIÓN PLAN DIRECTOR DE INFRAESTRUCTURA MOP Informe Final Región de Antofagasta Chile, Noviembre de 2009 INECON, Ingenieros y Economistas Consultores S.A. ÍNDICE 1. CARACTERÍSTICAS DE LA REGIÓN DE ANTOFAGASTA ............................ 1 1.1. Características generales. ............................................................................. 1 1.2. Características económicas. .......................................................................... 1 1.3. Características de la población. ..................................................................... 2 1.4. Gasto histórico en infraestructura por parte del MOP. ...................................... 2 2. IMAGEN OBJETIVO DE LA REGIÓN DE ANTOFAGASTA ............................ 3 2.1. Diagnósticos, objetivos estratégicos y visiones pertinentes. .............................. 3 2.1.1. Estrategia de Desarrollo Regional (EDR) ................................................... 3 2.1.2. Visión 2020- Talleres MOP ..................................................................... 4 2.1.3. Reconocimiento Territorial ...................................................................... 4 2.2. Oportunidades y restricciones de la región. ..................................................... 5 2.2.1. Oportunidades ...................................................................................... 5 2.2.2. Restricciones ....................................................................................... -
English / French
World Heritage 38 COM WHC-14/38.COM/INF.8B4.Rev Doha, 16 June 2014 Original: English / French UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION CONVENTION CONCERNING THE PROTECTION OF THE WORLD CULTURAL AND NATURAL HERITAGE WORLD HERITAGE COMMITTEE Thirty-eighth session Doha, Qatar 15 – 25 June 2014 Item 8 of the Provisional Agenda: Establishment of the World Heritage List and of the List of World Heritage in Danger INF.8B4: Factual error letters SUMMARY This document contains the factual errors notifications received from States Parties by 2 June 2014 in compliance with paragraph 150 of the Operational Guidelines. This document cancels and replaces the previous one. Alphabetical list by State Party of notifications of factual errors in the evaluation reports of the Advisory Bodies relating to nominations to be examined at the 38th session of the World Heritage Committee (15-25 June 2014) State Party World Heritage nomination ID No. Recommendation Pp Argentina, Bolivia, Qhapaq Ñan, Andean Road System 1459 I 2 Chile, Colombia, Ecuador, Peru Belgium Plantin-Moretus House-Workshops-Museum Complex 1185 Bis N 9 (MBM) Botswana Okavango Delta 1432 I 11 China / Kazakhstan / Silk Roads: Initial Section of the Silk Roads, the Routes 1442 I 14 Kyrgyzstan Network of Tian-shan Corridor China / Kazakhstan / Silk Roads: Initial Section of the Silk Roads, the Routes 1442 I 17 Kyrgyzstan Network of Tian-shan Corridor Denmark Stevns Klint 1416 I 19 France Tectono-volcanic Ensemble of the Chaine des Puys and 1434 N 20 Limagne Fault Germany -
The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes. -
Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith. -
Role of Differentiation and Mixing Processes in the Evolution of Central Andean Magma Systems: an Experimental Approach
Geophysical Research Abstracts, Vol. 11, EGU2009-10444, 2009 EGU General Assembly 2009 © Author(s) 2009 Role of differentiation and mixing processes in the evolution of Central Andean magma systems: An experimental approach R.E. Botcharnikov (1), C. Bonecke (1), F. Holtz (1), G. Torresi (1), M. Banaszak (2), and G. Wörner (2) (1) Institut für Mineralogie Universität Hannover, Callinstr. 3, 30167 Hannover, Germany ([email protected]), (2) Geowissenschaftliches Zentrum Göttingen, Abt. Geochemie, Goldschmidtstr.1, 37077 Göttingen, Germany The compositional evolution of magmatic systems is controlled by many factors, numerous processes and prevail- ing conditions at depths of magma generation, storage and ascent. The most important processes responsible for the chemical variations observed in most erupted magmas are magma differentiation during crystallization and magma mixing/hybridization. We present preliminary results of the crystallization experiments on the two magma compositions representative of the least evolved basaltic andesite magmas from Parinacota volcano and of the dacitic magmas from Taapaca volcano (N.Chile). Although both volcanoes are related to the Central Andean magma systems, the geochemical characteristics of erupted materials from these two volcanoes represent distinct magmatic regimes and processes, occurring at depth of magma generation and storage (for details see Banaszak et al., this session). The lavas of Taapaca have relatively uniform dacitic compositions over a long period of volcanic activity (ca. 1270 ka) and low eruptive rates (0.024 km3/ka). In contrast, the rocks from Parinacota are younger (163 ka), and they have been produced in five stages of volcanic activity with eruptive rates that are at least one order of magnitude faster (0.5-1 km3/ka) than those of Taapaca. -
Istanbul Technical University Graduate School of Science
ISTANBUL TECHNICAL UNIVERSITY Æ GRADUATE SCHOOL OF SCIENCE ENGINEERING AND TECHNOLOGY THE GEOLOGY, PETROLOGY AND THERMOCHRONOLOGY OF ILICA- ŞAMLI (SOLARYA) VOLCANO-PLUTONIC COMPLEX AND ITS SIGNIFICANCE ON WESTERN ANATOLIAN GEODYNAMICS PhD THESIS Alp ÜNAL Department of Geological Engineering Geological Engineering Programme NOVEMBER 2019 ISTANBUL TECHNICAL UNIVERSITY Æ GRADUATE SCHOOL OF SCIENCE ENGINEERING AND TECHNOLOGY THE GEOLOGY, PETROLOGY AND THERMOCHRONOLOGY OF ILICA- ŞAMLI (SOLARYA) VOLCANO-PLUTONIC COMPLEX AND ITS SIGNIFICANCE ON WESTERN ANATOLIAN GEODYNAMICS PhD THESIS Alp ÜNAL (505132301) Department of Geological Engineering Geological Engineering Programme Thesis Advisor: Prof. Dr. Şafak ALTUNKAYNAK NOVEMBER 2019 ISTANBUL TEKNİK ÜNİVERSİTESİ Æ FEN BİLİMLERİ ENSTİTÜSÜ ILICA-ŞAMLI (SOLARYA) VOLKANO-PLÜTONİK KOMPLEKSİNİN JEOLOJİSİ, PETROLOJİSİ, TERMOKRONOLOJİSİ VE KB ANADOLU JEODİNAMİGİNDEKİ YERİ DOKTORA TEZİ Alp ÜNAL (505132301) Jeoloji Mühendisliği Anabilim Dalı Jeoloji Mühendisliği Programı Tez Danışmanı: Prof. Dr. Şafak ALTUNKAYNAK KASIM 2019 To my beloved family, vii viii FOREWORD First of all, i would like to thank my advisor, Prof. Dr. Şafak ALTUNKAYNAK; this thesis and all my acedemic background would not be possible without her limitless guidance, support and especially encouragement throughout my not only academic but also entire life. I know, from the bottom of my heart, that this simple “thank you” is not enough. I have been and always will be more than proud to be her student… My special thanks belong to my “family” Işıl Nur GÜRASLAN and Ömer KAMACI, who are not any different from sister and brother which I do not have in my non- academic life. Without their support and patience, this thesis would not be succesful. They will always stay as an important part of my life. -
Volcanoes: Ice and Fire
Journeys@Home Volcanoes: Ice and Fire Parinacota Looking Due North across Lago Chungara—5 Days at 15,400’, 2015 Tony Foster went to Chile on the advice of renowned volcanologist, Sir Stephen Sparks, to paint a beautiful volcano for his Exploring Beauty Journey. Tony told Sir Sparks that he had painted this particular volcano before. To that Sir Sparks replied, “not from the Chilean side.” Tony could not argue. He painted Parinacota from its Bolivian side in 1997 for his Ice and Fire Journey. Volcanoes are known to be subjects of destruction and creation. When one thinks of a volcano, one may recall lava, magma, and eruptions. These giants of the earth loom large above their landscapes. Some are so high that they are Cerro Parinacota SW from a Ridge below Cerro Pomerape, 1997 covered with snow all year round! The Foster | 940 Commercial St., Palo Alto, CA 94303 | www.thefoster.org Activity: Citrus Volcanoes Try your very own citrus volcano. We used a lemon, but you can try different citrus fruits to see the reactions they can make. How do you think limes, oranges, grapefruits, or tangerines would react? The Tools You’ll Need: ◆ Citrus Fruit ◆ Dish to Contain the Citrus Volcano ◆ Baking Soda ◆ Food Coloring ◆ Extra Citrus Fruit Juice ◆ Spoon ◆ Small Cup for Baking Soda (We used a recycled apple sauce cup!) STEP 1: Cut off the base STEP 2: Put the fruit in STEP 3: Drop the food STEP 4: Pour a generous of your fruit to make a flat the dish. Use a craft stick coloring onto the citrus amount of baking soda on spot on the bottom. -
Assoc. Prof. HÜSEYİN EVREN ÇUBUKÇU
Assoc. Prof. HÜSEYİN EVREN ÇUBUKÇU EPmerasilo: necaulb [email protected] Education Information Doctorate, HUnaciveettrespiteé ÜDn''iavuevresirtgensie, FCelenr mBiolinmtl-eFreir Ernanstd., IJ,e Socloiejni Mceüsh Deen dLias lTiğeir, rTeu, rVkoelyc a2n0o0l2o g- i2e,0 F0r8ance 2004 - 2008 UPonsdtegrrgardaudautaet, eH, aHcaectetettpeep Üe nÜinveivresritseitsei,s Fi, eMnü Bhielinmdleisrlii kE Fnastk.,ü Jleteosloi, jJie Molüohjie Mndüihsleiğnid, iTsulirğki,e Tyu 1r9ke9y9 1- 929040 2- 1999 FEnogrliesihg, nC1 L Aadnvagnucaedges Dissertations FDeonc tBoirliamtele, Nrie Emnrsutitt üsstrüa, tJoevoololkjia Mnıünhıne npdeitsrloiğloi j(iDk re)v, r2im00i:8 çarpışma bölgesinde peralkali magmatizma, Hacettepe Üniversitesi, MPoüshtgernaddisulaiğtie (, YBlo)d (rTuemzl iv)o, 2lk0a0n2izmasının petrolojik incelenmesi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji RGeeosloegaircaclh E nAgrineeaesring, Mineralogy-petrography, Petrography and Petrology, Engineering and Technology Ascsaisdtaenmt Pirco Tfeistsloers, H/a cTeattsekpes Üniversitesi, Mühendislik Fakültesi, Jeoloji Mühendisliği Bölümü, 2018 - Continues RAessiesatarcnht PArsosfisetsasnotr, ,H Haacceettteeppee Ü Ünniviveerrssititeessi,i ,M Müühheennddisislilkik F Faakküültlteessi,i ,J Jeeoololojij iM Müühheennddisislilğiği iB Böölülümmüü, ,2 2000122 - - 2 2001128 Advising Theses İÇnUcBelUeKmÇeUs iH, P. oEs. t, gKraapdaudaotek,y Va. EVRoKlkUaTn(ikS tPurdoevnetn),s 2i'0n1d8e Yer Alan Eğrem Tepe Hidrovolkanik Çökellerinin Petrolojik pÇeUtBroUlKoÇjiUk iHn.c Eel. e, mKuesvia, tPeorsntegrr