Optimisation of a Propagation Model for Last Mile Connectivity with Low Altitude Platforms Using Machine Learning

Total Page:16

File Type:pdf, Size:1020Kb

Optimisation of a Propagation Model for Last Mile Connectivity with Low Altitude Platforms Using Machine Learning Optimisation of a Propagation Model for Last Mile Connectivity with Low Altitude Platforms using Machine Learning A thesis submitted for the degree of Doctor of Philosophy By Faris Abdullah Almalki BSc, MSc College of Engineering Design and Physical Sciences Brunel University London December 2017 i Abstract Our related research review on propagation models reveals six factors that are significant in last mile connectivity via LAP: path loss, elevation angle, LAP altitude, coverage area, power consumption, operation frequency, interference, and antenna type. These factors can help with monitoring system performance, network planning, coverage footprint, receivers’ line-of-sight, quality of service requirements, and data rates which may all vary in response to geomorphology characteristics. Several competing propagation models have been proposed over the years but whilst they collectively raise many shortcomings such as limited altitude up to few tens of meters, lack of cover across different environments, low perdition accuracy they also exhibit several advantages. Four propagation models, which are representatives of their types, have been selected since they exhibit advantages in relation to high altitude, wide coverage range, adaption across different terrains. In addition, all four have been extensively deployed in the past and as a result their correction factors have evolved over the years to yield extremely accurate results which makes the development and evaluation aspects of this research very precise. The four models are: ITU-R P.529- 3, Okumura, Hata-Davidson, and ATG. The aim of this doctoral research is to design a new propagation model for last-mile connectivity using LAPs technology as an alternative to aerial base station that includes all six factors but does not exhibit any of the shortcomings of existing models. The new propagation model evolves from existing models using machine learning. The four models are first adapted to include the elevation angle alongside the multiple-input multiple-output diversity gain, our first novelty in propagation modelling. The four adapted models are then used as input in a Neural Network framework and their parameters are clustered in a Self-Organizing- Map using a minimax technique. The framework evolves an optimal propagation model that represents the main research contribution of this research. The optimal propagation model is deployed in two proof-of-concept applications, a wireless sensor network, and a cellular structure. The performance of the optimal model is evaluated and then validated against that of the four adapted models first in relation to predictions reported in the literature and then in the context of the two proof-of-concept applications. The predictions of the optimised model are significantly improved in comparison to those of the four adapted propagation models. Each of the two proof- of-concept applications also represent a research novelty. i Acknowledgements First and foremost, I would like to thank God Almighty for giving me the ability and strength to complete this thesis. It is my pleasure to thank great people who made this thesis possible. Predominantly, I would like to express my sincere gratitude to my principal supervisor Professor Marios Angelides for giving me this great opportunity to pursue my PhD; during which he provided an excellent research atmosphere and immense knowledge. I also would like to thank him for his patience, motivation, guidance, and experience that significantly added to my research skills. In addition to his continuous encouragement to engage with wider research community by attending international conferences, participating in scientific workshops, and submitting research work to respected journals. My thanks extended to my researcher development advisor, and annual panel review members: for their great mentor and valuable comments during the course of my PhD program. I would also like to thank the anonymous reviewers that spent considerable time reading and commenting on my published works. I acknowledge the contribution of full financial support given by the Royal Saudi Embassy and the Saudi Cultural Bureau in London, as well as Taif University back in the Kingdom of Saudi Arabia whom gave me a scholarship to pursue my PhD study, and funding me to present my work in three international conferences. I am in debt to my beloved wife the entrepreneur Bushra for her encouragement, and for being tremendously supportive during my PhD. My endless gratitude to my father Professor Abdullah for opening my eyes to the charm of science and for inculcating the love of research, and to my mother Ms Amani for her immeasurable care, love and prayers she gave me. Extended thanks to my brother Dr Fahad and sisters Aljoharah, Alanoud, Dr Alhanouf, and Almaha for their great support, constant encouragement and love that I have relied on during my studies. Last but certainly not least, thanks to my 4-year old daughter Judy who motivate me to be an awesome dad, and I always want to be successful and a great role model for her. During this work, many ideas, and laughs have been shared with my friend Abdullah Alotaibi, which will be memorable times. I wish the research work in the College of Engineering, Design and Physical Sciences at Brunel university London to continue and flourish many years to come. ii Author’s Declaration I hereby declare that this thesis is my own work and effort and that it has not been submitted anywhere for any award. Where other sources of information have been used, they have been acknowledged. Faris Abdullah Almalki December 2017 iii List of Publications and Participations in Students Conferences Journal • F. A. Almalki, M. C. Angelides, “Optimization of a Propagation Model for Last-Mile Connectivity using a Low Altitude Platform”, under consideration • S. Alsamhi, F. A. Almalki, M. C. Angelides, S. Gapta, O. Ma, "Tethered Balloon Technology for Emergency Communication and Disaster Relief Deployment", Springer Telecommunication Systems, forthcoming. Conferences Proceedings • J. Cole, F. A. Almalki, and P. R. Young, "Chipless RF Liquid Sensor," 2015 IEEE International Microwave and RF Conference (IMaRC), Hyderabad, India, December 2015 • F. A. Almalki, M. C. Angelides, “Considering Near Space Platforms to Close the Coverage Gap in Wireless Communications; the Case of the Kingdom of Saudi Arabia”, IEEE 2016 - Future Technologies Conference (FTC), San Francisco, US, December 2016 • F. A. Almalki, M. C. Angelides, “Empirical Evolution of a Propagation Model for Low Altitude Platforms”, IEEE Computing Conference 2017, London, UK, July 2017 • F. A. Almalki, M. C. Angelides, “Propagation Modelling and Performance Assessment of Aerial Platforms Deployed During Emergencies”, 12th IEEE International Conference for Internet Technology and Secured Transactions (ICITST-2017), Cambridge, UK, December 2017 Participation in conferences • "Chipless RF Sensors for wireless Gas and Liquids Monitoring", 8th Saudi Students Conference in the UK, Imperial College London, February 2015. • “Three Minute Thesis Competition” organized by the Saudi Cultural Bureau in London and the Saudi Scientific Society in the UK, Imperial College London, June 2015, Second prize. • "Provision of Wireless Services in KSA using High Altitude Platforms", 9th Saudi Students Conference in the UK, Birmingham University, February 2016. • “Three Minute Thesis Competition Finals” organized by the Brunel Graduate School, March 2017, People’s choice third prize. iv Table of Contents Abstract …………………………………………………………………………………………………………………………………………………………….…..i Acknowledgement ………………………………………………………………………………………………………………………………………..........ii Author’s Declaration ………………………………………………………………………………………………………………………………….…………iii List of Publications and Participations in Students Conferences …………………………………………………………....……………..iv Table of Contents …………………………………………………………………………………………………………………………………………….......v Table of Figures …………………………………………………………………………………………………………………………………………….…….vii Table of Tables…………………………………………………………………………………………………………………………………………….….…….ix List of Acronyms…………………………………………………………………………………………………………………………………………………….x Chapter 1 : Last Mile Connectivity ................................................................................................................................... 1 1.1 Channel Modelling for Last Mile Connectivity using LAP ........................................................................................ 1 1.1.1 Propagation Path Loss Models .............................................................................................................................. 2 1.1.2 Elevation Angle ....................................................................................................................................................... 8 1.1.3 LAP Altitude and Coverage Area ............................................................................................................................ 9 1.1.4 Power Consumption ............................................................................................................................................. 16 1.1.5 Operational Frequency and Interference ........................................................................................................... 19 1.1.6 Antenna Specifications......................................................................................................................................... 23 1.2 LAP Evolution Worldwide .......................................................................................................................................
Recommended publications
  • Comparative Analysis of Path Loss Prediction Models for Urban Macrocellular Environments
    COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obota, O. Simeonb, J. Afolayanc Department of Electrical/Electronics & Computer Engineering, University of Uyo, Akwa Ibom State, Nigeria. aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] Abstract A comparative analysis of path loss prediction models for urban macrocellular environments is presented in this paper. Specifically, three path loss prediction models namely free space, Hata and Egli were used to predict path losses. The calculated path loss values were compared with practical measured data obtained from a Visafone base station located in Uyo, Nigeria. The comparative analysis reveals that the mean square error (MSE) for free space, Hata and Egli were 16.24dB, 2.37dB and 8.40dB respectively. The results showed that Hata's model is the most accurate and reliable path loss prediction model for macrocellular urban propagation environments, since its MSE value of 2.37dB is smaller than the acceptable minimum MSE value of 6dB for good signal propagation. Keywords: macrocellular areas, path loss prediction models, Hata model, mean square error 1. Introduction nals generally propagate by means of any or a combination of these three basic propaga- Nowadays, wireless communication technol- tion mechanisms; reflection, diffraction, and ogy is influencing every area of modern life, scattering [2, 3]. One of the most impor- and has encouraged useful researches in nearly tant features of the propagation environment all fields of human endeavour. Cellular ser- is path (propagation) loss. Path loss is de- vices are today being used by millions of peo- fined as the difference (in dB) between the ple worldwide.
    [Show full text]
  • Simulation and Performance Evaluation of Different Propagation Model Under Urban, Suburban and Rural Environments for Mobile Communication 1Vishal D
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ISSN: 22722788-0181 Vol. 1 Issue 6, August - 2012 Vol. 1 Issue 6, August - 2012 Simulation and Performance Evaluation of Different Propagation model under Urban, Suburban and Rural Environments for mobile communication 1Vishal D. Nimavat, 2Dr. G. R. Kulkarni 1 Research Scholar, Singhania University, Rajasthan, India And Asst. Prof., V.V.P. Engg. College, Rajkot, Gujarat- India 2 Principal, R.W.M.T's Dnyanshree Institute Of Engineering And Technology, ( Vit Pune's Satara Campus), A/P : Sonawadi-Gajawadi, Sajjangad Road, Tal & Dist : Satara, 415013 (Maharashtra) Abstract anywhere, with anyone‟, device portability: devices can be connected anytime, anywhere to the network and Nowadays the Global System for Mobile insure quality of service. Communication (originally from Groupe Special During the initial phase of network planning, Mobile) –GSM technology becomes popular. GSM has propagation models are extensively used for conducting potential success in its line-of-sight (LOS) and non feasibility studies. There are numerous propagation line-of-sight (NLOS) conditions which operating in the models available to predict the path loss e.g. Okumura 900 MHz or 1800/1900 MHz bands. There are going to Model, Hata Model. be a surge all over the world for the deployment of GSM networks. Estimation of path loss is very important in initial deployment of wireless network and 2. Considered PATH LOSS cell planning. Numerous path loss (PL) models (e.g. Okumura Model, Hata Model) are available to predict In this paper we compare and analyze three the propagation loss. If Path loss increases, then signal path loss models (e.g.
    [Show full text]
  • Path Loss Study of Lee Propagation Model S.Karthika 1(Department of Electronics, Madras Institute of Technology, Anna University, and Chennai)
    International Journal of Engineering and Techniques - Volume 3 Issue 5, Sep - Oct 2017 RESEARCH ARTICLE OPEN ACCESS Path Loss Study of Lee Propagation Model S.Karthika 1(Department of Electronics, Madras Institute of Technology, Anna University, and Chennai) Abstract: Channel properties has high impact on the development of wireless communication systems. Unlike wired channels are stationary and predictable, radio channels are extremely random and don’t offer easy analysis. A Radio Propagation Model (RPM), is an empirical mathematical formulation for the characterization of radio wave propagation as a function of frequency. In wireless communication, path loss propagation models are mandatory for proper planning, interference estimations, frequency assignments and cell parameters which are the basic for network planning process. Propagation models that predict the mean signal strength for an arbitrary transmitter-receiver (T-R) separation distance which is useful in estimating the radio coverage area of a transmitter are called large-scale propagation models, since they characterize signal strength over large T-R separation distances. In this paper, the large-scale propagation performance of Urban, Suburban and Open Area has been compared using Lee Model by varying Mobile Station (MS) antenna height, Transmitt er-Receiver distance and Base Station (BS) antenna height, considering the system to operate at 900 MHz. Through the MATLAB simulation it is turned out that the Open Area shows the better performan ce than that of the other areas. Keywords — Propagation Model, Antenna Height, Distance, Lee Model, Path Loss. I. INTRODUCTION Propagation models have traditionally describe path loss: Reflection occurs when a radio concentrated on predicting the received signal wave collides with an object which has very large strength from the transmitter at a given distance, as dimensions compared to the wavelength of the well as the changeability of the signal strength in a propagating wave.
    [Show full text]
  • Analysis of Large-Scale Propagation Models for Mobile Communications in Urban Area
    (IJCSIS) International Journal of Computer Science and Information Security, Vol. 7, No. 1, 2010 Analysis of Large-Scale Propagation Models for Mobile Communications in Urban Area M. A. Alim*, M. M. Rahman, M. M. Hossain, A. Al-Nahid Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh. *Corresponding author. Abstract— Channel properties influence the development of Propagation models that predict the mean signal strength wireless communication systems. Unlike wired channels that are for an arbitrary transmitter-receiver seperation distance are stationary and predictable, radio channels are extremely random useful in estimating the radio coverage area of a transmitter and and don’t offer easy analysis. A Radio Propagation Model are called large-scale propagation model. On the other hand, (RPM), also known as the Radio Wave Propagation Model propagation models that characterize the rapid fluctuations of (RWPM), is an empirical mathematical formulation for the the received signal strength over very short travel distances or characterization of radio wave propagation as a function of short time durations are called small scale or fading models [1]. frequency. In mobile radio systems, path loss models are necessary for proper planning, interference estimations, In this paper, the wideband propagation performance of frequency assignments and cell parameters which are the basic Okumura, Hata, and Lee models has been compared varying for network planning process as well as Location Based Services Mobile Station (MS) antenna height, propagation distance, and (LBS) techniques. Propagation models that predict the mean Base Station (BS) antenna height considering the system to signal strength for an arbitrary transmitter-receiver (T-R) operate at 900 MHz.
    [Show full text]
  • Performance Evaluation of Different Path Loss Models for Broadcasting Applications
    American Journal of Engineering Research (AJER) 2014 American Journal of Engineering Research (AJER) e-ISSN : 2320-0847 p-ISSN : 2320-0936 Volume-03, Issue-04, pp-335-342 www.ajer.org Research Paper Open Access Performance Evaluation of different Path Loss Models for Broadcasting applications Pardeep Pathania, Parveen Kumar, Shashi B. Rana* Dept. of Electronics and Communication Enginerring, Beant College of Engineering and Technology, Gurdaspur (Punjab) India (*Corresponding author)Dept. of Electronics Technology, Guru Nanak Dev University Regional Campus, Gurdaspur (Punjab) India Abstract: - In this paper we highlighted the performance evaluation of different path loss model and envisage the most suitable model for plane area in northern region of India i.e. border district of Punjab and Jammu. In this paper we compared the different path loss propagation models with measured field data and investigated the appropriateness of the model which gave us results closer to measured (field) data. In the present work we used many path loss models for comparative analysis. This research paper presents a comparative analysis of six empirical path loss models with respect to measured data for plane area in state of Punjab and Jammu (India). The preferred six models under investigation are COST- 231, Hata, Okumara, Free space model, Extention of Hata model and Hata Davidson model. For investigations and analysis purpose, firstly the measured field data has been taken in the Gurdaspur (State: Punjab) by using the 100w FM radio transmitter and transmitting antenna height of 45m, and in second case we used 10 kw FM transmitter at Kathua (State: Jammu) i.e. situated in bordering area of Punjab and Jammu at transmitting antenna height of 100m with fixed receiving antenna height of 4 meters.
    [Show full text]
  • A Survey on Various Propagation Model for Wireless Communication
    A Survey on Various Propagation Model for Wireless Communication 1Pooja Prajesh and 2R.K. Singh 1Asst. Professor, GRDIMT, Dehradun, India 2Professor, KEC, Dhawarahat, India Abstract The expression of the model Signal Propagation is used for wired or wireless PL(dB)=LF+Amn(f, d)−G(hte)−G(hre)−GAERA (1) communication. It is depend upon terrain, frequency of operation, height of mobile, base station and other dynamic Where factor. Propagation models predict the mean signal strength PL is path loss [dB], LF is Free space path loss [dB] Amn for an arbitrary transmitter-receiver (T-R) separation (f, d) is Median attenuation relative to free space [dB], G(hte) distance[5]. In this paper, Empirical propagation models such is Base station antenna height gain factor [dB], G(hre) is as Okumura, Hata, and Lee model has been surveyed Mobile station antenna height gain factor [dB], GAREA is Gain exhaustively. due to the type of environment [dB], hte: transmitter antenna height [m] hre: Receiver antenna height [m], d is Distance Keywords: Path Loss, Okumura model, Hata model and Lee between transmitter and receiver antenna [km] model G(hre) = 10 log10 (hre/200) hre < 3m G(hre) = 20 log10 (hre/200) 10m> hre >3m G(hte) =20 log10 (hte /3) Introduction In Wireless communication signal is transmitted by Okumura Model is considered to be among the simplest transmitting antenna and received by receiving antenna, any and best in terms of accuracy in predicting the path loss for distortion in signal strength at receiver is known as path loss. early cellular system. The major disadvantages of this model Propagation model are useful for predicting the signal are its slow response to rapid changes in terrain profile.
    [Show full text]
  • Channel Measurement and Modeling in Complex Environments Lei Zhang
    Channel Measurement and Modeling in Complex Environments “Engineering the future” Lei Zhang School of Telecommunications Systems and Engineering Technical University of Madrid ETSIST-UPM Athesissubmittedforthedegreeof Doctor of Philosophy Madrid, September 2016 Doctorado en Ingenier´ıa de Sistemas y Servicios para la Sociedad de la Informaci´on Tesis Doctoral T´ıtulo Channel Measurement and Modeling in Complex Environments Autor Lei Zhang Director Dr. C´esar Briso Rodr´ıguez V ◦B◦. Tribunal Presidente Dr. Jos´eIgnacio Alonso Montes Vocal Dr. Luis Castedo Ribas Vocal Dr. Ke Guan Vocal Dr. Miguel Angel´ G´omez Laso Secretario Dr. Juan Moreno Garc´ıa-Loygorri Suplente Suplente Lugar y E.T.S.I y Sistemas de Telecomunicaci´on fecha de lectura de Septiembre de 2016 Calificaci´on El Presidente La secretaria Los vocales Tesis Doctoral para la obtenci´on del t´ıtulo de Doctor por la Universidad Polit´ecnica de Madrid 2016 To my beloved family. Acknowledgements This dissertation is not only a milestone of my life but also the result of many experiences I have encountered in Madrid from dozens of remarkable individuals who I also wish to acknowledge. First and foremost, I would like to express my deepest gratitude to my supervisor, Prof. C´esar Briso Rodr´ıguez, who offered his continuous advice and encouragement throughout my Ph.D. study. I have no way to repay the systematic guidance and great effort he put into training me in the scientific field. A very special thanks to Prof. David W. Matolak, who gave me lots of valuable suggestions during my research stay at the University of South Carolina.
    [Show full text]
  • Literature Survey on Various Outdoor Propagation Model for Fixed Wireless Network
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Literature Survey on Various Outdoor Propagation Model for Fixed Wireless Network Chandan Kumar Jha,Reshu Jain Abstract: The main focus of this review paper is to encompass the earlier and recent advances in popular propagation model for wireless communication channel. The paper covers the wide area of radio communication in a subtle and elastic manner. The advantages and disadvantages of the existing propagation models have also been discussed. Keywords: Path-loss, Path-Loss Models, Attenuation 1. Introduction 2.3 Stochastic Models For the proper designing of a cellular network, it is very Stochastic models are used in terms of random variables important to determine the parameters such as coverage being deployed for representation of some or the other area, frequency assignment, SNR and C/I ratio. These factors influencing the behavioural nature of radio waves in parameters are determined by conducting a series of action. These models have a concern of correctness and propagation measurements, which are expensive and time accuracy. These are mostly used for prediction at and above consuming. It is therefore important to develop an effective 1.8 GHz. radio propagation model for cellular network. [1] Radio propagation models can be classified into Indoor 3. Models for Path Loss propagation model and Outdoor Propagation model 3.1 Free Space Path Model 2. Review of Propagation Model In this model, the received power is a function of transmitted Different outdoor models deployed in radio propagation [2] power, antenna gain and distance between the transmitter are and the receiver.
    [Show full text]
  • Propagation Models and Their Applications in Digital Television Broadcast Network Design and Implementation 9
    Propagation Models and their Applications in Digital Television Broadcast Network Design and Implementation 165 Propagation Models and their Applications in Digital Television Broadcast X9 Network Design and Implementation Armoogum V., Soyjaudah K.M.S., Mohamudally N. and Fogarty T. Propagation Models and their Applications in Digital Television Broadcast Network Design and Implementation Armoogum V., Member IEEE, University of Technology, Mauritius Soyjaudah K.M.S., University of Mauritius, Mauritius Mohamudally N., University of Technology, Mauritius Fogarty T., London South Bank University 1. Introduction In this work, we will discuss the importance of propagation models when designing new broadcast networks. We will hence consider the Island of Mauritius as a case study. Mauritius is a tropical island, located in the Southern Hemisphere with geographic coordinates 20o 17’ S, 57o 33’ E and has two climates. A humid and subtropical climate dominates and becomes more effective below the 400-meter level on most of the south- eastern side of the island as well as below 450 meters on the leeward side. Above these altitudes, the climate is more temperate (Metz 1994). The island has two seasons. Summer is hot and wet and lasts from November to April. The warmest months are January and February with average temperatures of 35 ºC in the lowlands and 32 ºC on the central plateau. The problem with warm weather is that cyclones are frequent. Cyclones, with strong winds and heavy rain, can occur between November and April. Mauritius will normally experience about three or four cyclones a year during this period, each usually lasting two to three days.
    [Show full text]
  • Lecture-10-Okumura-And-Hata-Models
    A radio system is built according to the following Figure. Sketch a Link Budget diagram that describes the system and determine the maximum range d [m] of the transmission. There are various type of models for wireless channels: • Empirical models • based on measurements • linked to the environment and the parameters of the measurement campaign • Deterministic models • based on a fixed geometry (buildings, streets,…) • used to analyze particular situations • Physical-Statistical models • combination of deterministic models and statistics of various parameters (building heights, street width,…) The Okumura model for Urban Areas is a Radio propagation model that was built using the data collected in the city of Tokyo, Japan. The model is ideal for using in cities with many urban structures but not many tall blocking structures. The model served as a base for the Hata Model. Predicts average (median) path loss. “Accurate” within 10-14 dB in urban and suburban areas. Frequency range: 150-1500 MHz. Distance: 1 km- 100 Km. BS antenna height: 30m– 1000m. MU antenna height: up to 3m. The Okumura model is formally expressed as: where, L = The median path loss. Unit: Decibel (dB) LFSL = The Free Space Loss. Unit: Decibel(dB) AMU = Median attenuation.Unit: Decibel(dB) HMG = Mobile station antenna height gain factor. HBG = Base station antenna height gain factor. Kcorrection = Correction factor gain (such as type of environment, water surfaces, isolated obstacle etc.) Find the median path loss using Okumura’s model for d=50 km, hte=100m, hre=10m in a suburban environment. If the base base station transmitter radiates an EIRP of 1 kW at a carrier frequency of 900 MHz, find the power at the receiver (assume a unity gain receiving anteena).
    [Show full text]
  • Computer Analysis of the COST 231 Hata Model and Least Squares Approximation for Path Loss Estimation at 900Mhz on the Mountain Terrains of the Jos-Plateau, Nigeria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Computer Engineering and Intelligent Systems www.iiste.org ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol.4, No.9, 2013 Computer Analysis of the COST 231 Hata Model and Least Squares Approximation for Path Loss Estimation at 900MHz on the Mountain Terrains of the Jos-Plateau, Nigeria Abraham Deme1,2*, Danjuma Dajab2, Davou Choji Nyap3 1. ICT Directorate, University of Jos, Jos-Nigeria 2. Department of Electrical and Computer Engineering, Ahmadu Bello University, Zaria – Nigeria 3. Department of ComputerScience, University of Jos, Jos-Nigeria * E-mail of corresponding author: [email protected] , [email protected] Abstract The determination of radio propagation characteristics for a given terrain is a key consideration in wireless network planning. For this purpose radio propagation models are quite useful. Some of the most widely used models are the Empirical Propagation Models. The suitability of any propagation model depends on terrain clutter and other constraints. Some extensively used Empirical Models include the COST 231 Hata Model (COST 231 1999, Saunders 2000, COST 231 revision 2, 1991), COST 231-Walfisch-Ikegami Model (COST 231 1999), etc. In this paper, the suitability of the COST 231 Hata Model for network coverage prediction across the mountain terrains of the Jos-Plateau Nigeria is tested. With a RMSE of 10.25dB the model is found unacceptable, the acceptable maximum being 6dB. An optimized propagation model built on the basis of the COST 231 Hata Model and backed up by statistical proof of acceptability is subsequently proposed.
    [Show full text]
  • Statistical Tuning of Hata Model for 3G Communication Networks at 1.857 Ghz in Porth Harcourt, Nigeria
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 12 | Dec 2018 www.irjet.net p-ISSN: 2395-0072 Statistical Tuning of Hata Model for 3G Communication Networks at 1.857 GHz in Porth Harcourt, Nigeria Nkwachukwu Chukwuchekwa1, Chinedu Anyanwu2 and Akujobi Ekeocha3 1Department of Electrical and Electronic Engineering, Federal University of Technology, Owerri, Nigeria 2Department of Electrical and Electronic Engineering, Federal University of Technology, Owerri, Nigeria 3Department of Computer Science, University of Port Harcourt Nigeria ------------------------------------------------------------------------***------------------------------------------------------------------------- Abstract - Erroneous path loss predictions before the siting of high speed access to voice, data and video services to several base stations cause over estimation or under assessment of users concurrently. The technology permits the use of this coverage areas which subsequently lead to incessant call air- interface for free mobility of User Equipment (UE) drops, cross talks and network congestions. The ever though it causes severe challenges as a means for high speed increasing demand to meet the diverse service requirements of communication. various applications by mobile subscribers makes the consequence more pronounced, and this significantly Erroneous path loss predictions before the siting of most influences efficiency of the cellular wireless system spectrum. base stations result to over estimation
    [Show full text]