4 Rf Propagation Models in Lte

Total Page:16

File Type:pdf, Size:1020Kb

4 Rf Propagation Models in Lte Performance Analysis and Comparison of Radio Frequency Propagation Models for Outdoor Environments in 4G LTE Network Asad Saeed Habib Ur Rehman Muhammad Hassan Masood This thesis is presented as part of the Degree of Master of Sciences in Electrical Engineering Blekinge Institute of Technology 2013 School of Engineering Blekinge Institute of Technology, Sweden Supervisor: Muhammad Shahid Examiner: Benny Lövström 1 Page Left Blank Intentionally 2 Abstract The dissertation concerns about the path loss calculation of Radio Frequency (RF) propagation models for 4G Long Term Evolution (LTE) Network to prefer the best Radio Frequency propagation model. The radio propagation models are very significant while planning of any wireless communication system. A comparative analysis between radio propagation models e.g. SUI model, Okumura model, Cost 231 Hata Model, Cost 231-Walfisch Ikegami and Ericsson 9999 model that would be used for outdoor propagation in LTE. The comparison and performance analysis has been made by using different geological environments e.g. urban, sub-urban and rural areas. The simulation scenario is made to calculate the lowest path loss in above defined environments by using selected frequency and height of base station antennas while keeping a constant distant between the transmitter and receiver antennas. i Dedication To our Parents and Teachers who motivated and encouraged us to attain this Hallmark in the best way ii Acknowledgment Our thesis was an endeavour, much greater in magnitude than any of projects we have ever done. To see this endeavor turn into accomplishment was a dream that would have never come true without the support of many individuals. First of all, we would like to thank Allah, the Almighty who did not let our faith die, who answered all of our prayers and granted us only the best ones. Secondly, we are highly grateful to Mr. Muhammad Shahid, our project supervisor who guided, encouraged, stood by us and accepted nothing less than our best efforts. Thirdly, we are indebted to our families and friends who were not with us on this venture of technology but were connected with each and every sentiment affiliated to it. They may not understand a word of our thesis but they know that it is important and so are they to us. Finally we are grateful to Blekinge Tekniska Hogskolan, Karlskrona Sweden and to all our teachers we had, in the course of 2 year degree that nurtured and prepared us. Asad Saeed, Habib Ur Rehman and Hassan Masood August 2013 iii Contents 1 INTRODUCTION ............................................................................................... 1 1.1 WIRELESS TECHNOLOGY: ................................................................................ 1 1.1.1 The First Generation (1G): ................................................................................................ 2 1.1.2 The Second Generation (2G): ............................................................................................ 2 1.1.3 The Third Generation (3G): ............................................................................................... 2 1.1.4 The Fourth Generation (4G): ............................................................................................. 3 1.2 THE OUTLINE OF THE THESIS: ........................................................................... 3 2 LONG TERM EVOLUTION .............................................................................. 4 2.1 INTRODUCTION: ............................................................................................... 4 2.2 LTE STANDARD: ............................................................................................. 5 2.3 SERVICES PROVIDED BY LTE: .......................................................................... 5 2.4 FREQUENCY BANDS ALLOCATION: ................................................................... 5 2.4.1 Frequency Division Duplex (FDD) Bands Allocation: ........................................................ 8 2.4.2 Time Division Duplex (TDD) Bands:.................................................................................. 9 2.5 LTE TECHNICAL INFORMATION: ...................................................................... 9 2.6 MODULATION SCHEMES:.................................................................................. 9 2.6.1 Analog Modulations: ....................................................................................................... 10 2.6.2 Digital Modulations: ....................................................................................................... 10 2.7 MULTIPLE ACCESS TECHNIQUES: ................................................................... 10 2.7.1 Frequency Division Multiple Access (FDMA): ................................................................. 10 2.7.2 Time Division Multiple Access (TDMA): .......................................................................... 11 2.7.3 Code Division Multiple Access (CDMA): ......................................................................... 11 2.8 CHANNEL EQUALIZATION: ............................................................................. 12 2.9 SINGLE CARRIER MODULATION: .................................................................... 13 2.10 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING: .................................... 14 2.10.1 Channel Bandwidths and Characteristics of LTE: ........................................................ 14 2.10.2 LTE OFDM Cyclic Prefix (CP):................................................................................... 15 2.10.3 LTE OFDMA in the Downlink: .................................................................................... 17 2.10.4 Downlink Carriers and Resource Blocks: ..................................................................... 17 iv 2.10.5 LTE SC-FDMA in the Uplink: ...................................................................................... 18 2.11 MULTIPLE INPUT MULTIPLE OUTPUT (MIMO): .............................................. 19 2.12 LTE ARCHITECTURE: ..................................................................................... 19 2.12.1 LTE Network Elements: ............................................................................................... 20 2.12.2 Frame Structure .......................................................................................................... 20 2.12.3 LTE Channels and MAC Layer: ................................................................................... 22 2.12.4 LTE MAC Layer Functionality:.................................................................................... 22 2.12.5 LTE Channel Architecture: .......................................................................................... 23 2.13 LTE DOWNLINK CHANNELS:.......................................................................... 24 2.13.1 Downlink Logical Channels: ........................................................................................ 24 2.13.2 Downlink Transport Channels: .................................................................................... 24 2.13.3 Downlink Physical Channels: ...................................................................................... 24 2.14 LTE UPLINK CHANNELS: ............................................................................... 25 2.14.1 Uplink Logical Channels: ............................................................................................ 25 2.14.2 Uplink Transport Channels: ........................................................................................ 25 2.14.3 Uplink Physical Channels:........................................................................................... 25 2.15 LTE MOBILITY, CELL RANGE & ECONOMIC TARGETS: ................................... 26 3 WIRELESS PROPAGATION MODELS ......................................................... 27 3.1 INTRODUCTION: ............................................................................................. 27 3.2 RADIO WAVE COMPONENTS: ......................................................................... 28 3.3 FREE SPACE MODEL: ..................................................................................... 28 3.4 INDOOR RF PROPAGATION MODELS: .............................................................. 29 3.5 OUTDOOR RF PROPAGATION MODELS:........................................................... 30 3.5.1 Foliage models: ............................................................................................................... 31 3.5.2 Terrain models: ............................................................................................................... 31 3.5.3 City models: .................................................................................................................... 31 3.5.4 Band-specific models: ...................................................................................................... 31 4 RF PROPAGATION MODELS IN LTE .......................................................... 33 4.1 INTRODUCTION: ............................................................................................. 33 4.2 OUTDOOR RF PROPAGATION MODELS FOR LTE: ............................................ 34 4.2.1 SUI Path Loss Model: ..................................................................................................... 34 4.2.2 Ericsson 9999 Model: .....................................................................................................
Recommended publications
  • Comparative Analysis of Path Loss Prediction Models for Urban Macrocellular Environments
    COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obota, O. Simeonb, J. Afolayanc Department of Electrical/Electronics & Computer Engineering, University of Uyo, Akwa Ibom State, Nigeria. aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] Abstract A comparative analysis of path loss prediction models for urban macrocellular environments is presented in this paper. Specifically, three path loss prediction models namely free space, Hata and Egli were used to predict path losses. The calculated path loss values were compared with practical measured data obtained from a Visafone base station located in Uyo, Nigeria. The comparative analysis reveals that the mean square error (MSE) for free space, Hata and Egli were 16.24dB, 2.37dB and 8.40dB respectively. The results showed that Hata's model is the most accurate and reliable path loss prediction model for macrocellular urban propagation environments, since its MSE value of 2.37dB is smaller than the acceptable minimum MSE value of 6dB for good signal propagation. Keywords: macrocellular areas, path loss prediction models, Hata model, mean square error 1. Introduction nals generally propagate by means of any or a combination of these three basic propaga- Nowadays, wireless communication technol- tion mechanisms; reflection, diffraction, and ogy is influencing every area of modern life, scattering [2, 3]. One of the most impor- and has encouraged useful researches in nearly tant features of the propagation environment all fields of human endeavour. Cellular ser- is path (propagation) loss. Path loss is de- vices are today being used by millions of peo- fined as the difference (in dB) between the ple worldwide.
    [Show full text]
  • Comparison of Propagations Models in Mobile Telecommunication Systems
    “1st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)” in Collabaration between EPOKA University and “Aleksandër Moisiu” University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA Comparison of Propagations Models in Mobile Telecommunication Systems Ivana Stefanovic1, Hana Stefanovic1 1College of Electrical Engineering and Computing Applied Science, Belgrade Email: [email protected] Email: [email protected] ABSTRACT Wireless channels are subject to random fluctuations in received signal power arising from multipath propagation and shadowing arising from the multiple scattering conditions. Considerable efforts have been devoted to the statistical modeling and characterization of these different effects, resulting in a range of models for wireless channels which depend on the particular propagation environment and underlying communication scenario. The comparative analysis of different theoretical and empirical propagation models, such as Okumura, Hata, COST-231 Hata, and Longley-Rice, is given in this paper. After a brief introduction and description of these models, we present some numerical results using MATLAB and RadioWORKS. INTRODUCTION Radiowave propagation through wireless channels is a complicated phenomenon characterized by different effects such as reflection, diffraction and scattering phenomenon. An exact mathematical description of this effects is either too complex for tractable communication system analysis, although considerable efforts have been devoted to the statistical modeling and characterization of wireless channels. In this paper we will characterize the variation in received signal power over distance due to path loss and shadowing. Path loss is caused by dissipation of the power radiated by the transmitter as well as effects of the propagation channel. Path loss models generally assume that path loss is the same at the given transmit-receive distance, which means that path loss model does not include shadowing effects.
    [Show full text]
  • Comparison Andfine Tuning Empirical Pathloss Models At
    ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Comparison and Fine Tuning Empirical Pathloss Models at 1800MHZ and 2100MHZ Bands for Addis Ababa, Ethiopia By Esayas Andarge Advisor Dr. -Ing. Dereje Hailemariam A Thesis Submitted to the School of Electrical and Computer Engineering of the Addis Ababa Institute of Technology, Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Telecommunications Engineering October, 2018 Addis Ababa, Ethiopia ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Comparison and Fine Tuning Empirical Pathloss Models at 1800MHZ and 2100MHZ Bands for Addis Ababa, Ethiopia By Esayas Andarge Approval by Board of Examiners _____________________________ ____________ Chairman, School Graduate committee Signature Committee Dr. -Ing. Dereje Hailemariam ____________ Advisor Signature ______________________________ ____________ Internal Examiner Signature _____________________________ ____________ External Examiner Signature Declaration I, the undersigned, declare that this thesis is my original work, has not been presented for a degree in this or any other university, and all sources of materials used for the thesis have been fully acknowledged. Esayas Andarge ______________ Name Signature Place: Addis Ababa Date of Submission: _______________ This thesis has been submitted for examination with my approval as a university advisor. Dr. -Ing. Dereje Hailemariam ______________ Advisor’s Name Signature 3 Abstract Pathloss models play a very important role in wireless communications in coverage planning, interference estimations, frequency assignments, Location Based Services (LBS), etc. They are used to estimate the average pathloss a signal experience at a particular distance from a transmitter. Inaccurate propagation models may result in poor coverage, poor quality of service or high investment cost.
    [Show full text]
  • On Adaptive Neuro-Fuzzy Model for Path Loss Prediction in the Vhf Band
    ITU Journal: ICT Discoveries, Special Issue No. 1, 2 Feb. 2018 ON ADAPTIVE NEURO-FUZZY MODEL FOR PATH LOSS PREDICTION IN THE VHF BAND Nazmat T. Surajudeen-Bakinde1, Nasir Faruk2, Muhammed Salman1, Segun Popoola3, Abdulkarim Oloyede2, Lukman A. Olawoyin2 1Department of Electrical and Electronics Engineering, University of Ilorin, Nigeria 2Department of Telecommunication Science, University of Ilorin, Ilorin, Nigeria 3Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria Email: [email protected]; [email protected]; faruk.n, deenmat, oloyede.aa, olawoyin.la{@unilorin.edu.ng} Abstract – Path loss prediction models are essential in the planning of wireless systems, particularly in built-up environments. However, the efficacies of the empirical models depend on the local ambient characteristics of the propagation environments. This paper introduces artificial intelligence in path loss prediction in the VHF band by proposing an adaptive neuro-fuzzy (NF) model. The model uses five-layer optimized NF network based on back propagation gradient descent algorithm and least square errors estimate. Electromagnetic field strengths from the transmitter of the NTA Ilorin, which operates at a frequency of 203.25 MHz, were measured along four routes. The prediction results of the proposed model were compared to those obtained via the widely used empirical models. The performances of the models were evaluated using the Root Mean Square Error (RMSE), Spread Corrected RMSE (SC-RMSE), Mean Error (ME), and Standard Deviation Error (SDE), relative to the measured data. Across all the routes covered in this study, the proposed NF model produced the lowest RMSE and ME, while the SDE and the SC-RMSE were dependent on the terrain and clutter covers of the routes.
    [Show full text]
  • Development of a Radiowave Propagation Model for Hilly Areas
    International Journal of Electronics Communication and Computer Engineering Volume 4, Issue 2, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209 Development of a Radiowave Propagation Model for Hilly Areas Famoriji J. Oluwole, Olasoji Y. Olajide Abstract – Achieving optimal performance is a paramount III. THE COST-231 HATA MODEL FOR URBAN concern in wireless networks. One of the strategies is to use wireless empirical models to predict wireless link quality ENVIRONMENT factors such as path loss and the received power in any given transmission domain with irregular terrain. Measurement The COST-231 Hata wireless propagation model was results of signal strength in UHF band obtained in Idanre devised as an extension to the Hata-Okumura model and Town of Ondo State Nigeria were validated against the Hata model as reported by Abhayawardhana et al.,[3]. theoretical estimations. Okumura-Hata model, COST231- The COST-231Hata model is designed to be used in the Hata model and Egli model applicable for path loss frequency band from 500 MHz to 2000 MHz. It also prediction in area with high hill were examined. These models predictions were compared with predictions from contains corrections for urban, suburban and rural (flat) measurements taken in Idanre to determine the path loss environments. [3] also noted that ”although this models’ prediction error for each model. Consequently, modified frequency range is outside that of the measurements, its COST231-Hata model was developed for path loss prediction simplicity and the availability of correction factors has in the hilly areas. The model developed has 6.02% error seen it widely used for path loss prediction at this which made it applicable for hilly areas (Idanre).
    [Show full text]
  • Financial Analysis Summary Update 2021
    FINANCIAL ANALYSIS SUMMARY UPDATE 2021 Prepared by Rizzo, Farrugia & Co (Stockbrokers) Ltd, in compliance with the Listing Policies issued by the Malta Financial Services Authority, dated 5 March 2013. 10 May 2021 TABLE OF CONTENTS IMPORTANT INFORMATION LIST OF ABBREVIATIONS PART A BUSINESS & MARKET OVERVIEW UPDATE PART B FINANCIAL ANALYSIS PART C LISTED SECURITIES PART D COMPARATIVES PART E GLOSSARY 1 | P a g e IMPORTANT INFORMATION PURPOSE OF THE DOCUMENT Cablenet Communication Systems plc (the “Company”, “Cablenet”, or “Issuer”) issued €40 million 4% bonds maturing in 2030 pursuant to a prospectus dated 21 July 2020 (the “Bond Issue”). In terms of the Listing Policies of the Listing Authority dated 5 March 2013, bond issues targeting the retail market with a minimum subscription level of less than €50,000 must include a Financial Analysis Summary (the “FAS”) which is to be updated on an annual basis. SOURCES OF INFORMATION The information that is presented has been collated from a number of sources, including the Company’s website (www.cablenet.com.cy), the audited financial statements for the years ended 31 December 2018, 2019 and 2020, and forecasts for financial year ending 31 December 2021. Forecasts that are included in this document have been prepared and approved for publication by the directors of the Company, who undertake full responsibility for the assumptions on which these forecasts are based. Wherever used, FYXXXX refers to financial year covering the period 1st January to 31st December. The financial information is being presented in thousands of Euro, unless otherwise stated, and has been rounded to the nearest thousand.
    [Show full text]
  • Litepoint Iqxstream™
    TECHNICAL SPECIFICATIONS LitePoint IQxstream™ © 2019 LitePoint, A Teradyne Company. All rights reserved. IQxstream is a manufacturing oriented, physical layer communication system tester, tailored to verifying performance in high volume production environments. Non-signaling physical layer testers offer 3x or better test throughput when compared against signaling based methodologies typical of R&D and conformance testing. IQxstream addresses all major mobile technologies and RF bands including: LTE, W-CDMA / HSPA / HSPA+, GSM / EDGE, CDMA2000 / 1xEV-DO and TD-SCDMA in support of the Smartphone, Tablet, Data-Card, Module, IoT, and Small Cell base station markets. IQxstream provides comprehensive non-signaling test coverage for LTE, LTE-Advanced, and LTE-Advanced Pro devices and modules. LTE device test coverage includes UE categories 1 through 12 as well as IoT UE categories 0 (Cat-M1) and Cat-NB1 (NB-IoT). One Instrument – Three Configurations Available in a Single DUT or 4 DUT configuration, the single Cellular Test Module IQxstream is available with 2 RF Ports or 5 RF Ports enabled. 2-Port configuration for Single DUT Useful in a lab environment or on a troubleshooting station where multi-DUT capability is not required, the single DUT version of IQxstream provides all the functionality of a multi-DUT solution at reduced cost. 5-Port configuration for 4 DUT Fully capable of testing today’s and tomorrow’s Smart Devices and Small Cells, the 4 DUT unit provides support for full TX/RX physical layer testing including the ability to test diversity receivers. In addition to diversity testing, the streaming port can be used to send other waveforms to the DUT such as GPS, GLONASS and UHF TV.
    [Show full text]
  • Vulnerabilities of LTE and LTE- Advanced Communication White Paper
    Vulnerabilities of LTE and LTE- Advanced Communication White Paper Long Term Evolution (LTE) technology has become the technology of choice for keeping up with the requirement of higher throughput in mobile communication in bands below 6 GHz. It is expected that within the next decade LTE will become the primary commercial standard. LTE is often used to broadcast emergency information in times of natural disasters and national crises and is under investigation for further end use application in government as well as military application fields. Communication via LTE has some vulnerabilities. This drawback is a matter of concern since it is possible to completely take down the LTE network or at least partially block communication, intentionally with the help of jamming signals, or unintentionally through various forms of interference. An example of unintentional interference issues is the frequently discussed co-existence issues with Air Traffic Control (ATC) S-band radar and Digital TV bands. The in-device co-existence challenge is also a potentially important issue with the rapid evolution of multi-standard radios. This White Paper will focus on the vulnerabilities of LTE communication by explaining LTE jamming and unintentional interference problems, address the co- existence issues with other services, and discuss the mitigation options to build a broad perspective on the possible deployment of the LTE technology for future military and civil governmental applications. Understanding the susceptance of new technologies to known and expected environments is critical to the adoption for defense applications 1MA245_2e White Paper - Naseef Mahmud 9.2014 Table of Contents Table of Contents 1 Abstract……….
    [Show full text]
  • These Phones Will Still Work on Our Network After We Phase out 3G in February 2022
    Devices in this list are tested and approved for the AT&T network Use the exact models in this list to see if your device is supported See next page to determine how to find your device’s model number There are many versions of the same phone, and each version has its own model number even when the marketing name is the same. ➢EXAMPLE: ▪ Galaxy S20 models G981U and G981U1 will work on the AT&T network HOW TO ▪ Galaxy S20 models G981F, G981N and G981O will NOT work USE THIS LIST Software Update: If you have one of the devices needing a software upgrade (noted by a * and listed on the final page) check to make sure you have the latest device software. Update your phone or device software eSupport Article Last updated: Sept 3, 2021 How to determine your phone’s model Some manufacturers make it simple by putting the phone model on the outside of your phone, typically on the back. If your phone is not labeled, you can follow these instructions. For iPhones® For Androids® Other phones 1. Go to Settings. 1. Go to Settings. You may have to go into the System 1. Go to Settings. 2. Tap General. menu next. 2. Tap About Phone to view 3. Tap About to view the model name and number. 2. Tap About Phone or About Device to view the model the model name and name and number. number. OR 1. Remove the back cover. 2. Remove the battery. 3. Look for the model number on the inside of the phone, usually on a white label.
    [Show full text]
  • Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems
    Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access Systems V.S. Abhayawardhana∗, I.J. Wassell†,D.Crosby‡, M.P. Sellars‡,M.G.Brown§ ∗ BT Mobility Research Unit, Rigel House, Adastral Park, Ipswich IP5 3RE, UK. [email protected] †LCE, Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK. [email protected] ‡Cambridge Broadband Ltd., Selwyn House, Cowley Rd., Cambridge CB4 OWZ, UK. {dcrosby,msellars}@cambridgebroadband.com §Cotares Ltd., 67, Narrow Lane, Histon, Cambridge CB4 9YP, UK. [email protected] Abstract— Empirical propagation models have found favour in Stanford University Interim (SUI) channel models developed both research and industrial communities owing to their speed of under the Institute of Electrical and Electronic Engineers execution and their limited reliance on detailed knowledge of the (IEEE) 802.16 working group [2]. Examples of non-time- terrain. Although the study of empirical propagation models for mobile channels has been exhaustive, their applicability for FWA dispersive empirical models are ITU-R [7], Hata [8] and the systems is yet to be properly validated. Among the contenders, COST-231 Hata model [3]. All these models predict mean path the ECC-33 model [1], the Stanford University Interim (SUI) loss as a function of various parameters, for example distance, models [2] and the COST-231 Hata model [3] show the most antenna heights etc. Although empirical propagation models promise. In this paper, a comprehensive set of propagation for mobile systems have been comprehensively validated, measurements taken at 3.5 GHz in Cambridge, UK is used to validate the applicability of the three models mentioned their appropriateness for FWA systems has not been fully previously for rural, suburban and urban environments.
    [Show full text]
  • Next Generation Public Protection and Disaster Relief (PPDR) Communication Networks’
    Consultation Paper No. 15/2017 Telecom Regulatory Authority of India Consultation Paper on ‘Next Generation Public Protection and Disaster Relief (PPDR) communication networks’ 9th October, 2017 Mahanagar Doorsanchar Bhawan Jawahar Lal Nehru Marg New Delhi-110002 Written Comments on the Consultation Paper are invited from the stakeholders by 20th November, 2017 and counter-comments by 4th December, 2017. Comments and counter-comments will be posted on TRAI’s website www.trai.gov.in. The comments and counter-comments may be sent, preferably in electronic form, to Shri S. T. Abbas, Advisor (Networks, Spectrum and Licensing), TRAI on the email ID [email protected] with subject titled as ‘Comments / counter -comments to Consultation Paper on Next Generation Public Protection and Disaster Relief (PPDR) communication networks’ For any clarification/ information, Shri S. T. Abbas, Advisor (Networks, Spectrum and Licensing), TRAI, may be contacted at Telephone No. +91-11-23210481 i CONTENTS CHAPTER I: INTRODUCTION ………………………………………………………. 1 CHAPTER II: TECHNICAL REQUIREMENTS AND EXECUTION MODELS FOR BROADBAND PPDR …………………………………………………………….. 8 CHAPTER III: SPECTRUM AVAILABILITY AND FUTURE REQUIREMENTS FOR BROADBAND PPDR …………………………………….. 28 CHAPTER IV: INTERNATIONAL PRACTICES ………………………………….. 38 CHAPTER V: ISSUES FOR CONSULTATION …………………………………… 50 LIST OF ACRONYMS …………………………………………………………………. 51 ANNEXURE I ……………………………………………………………………………. 53 ANNEXURE II …..………………………………………………………………………. 58 ii CHAPTER I: INTRODUCTION 1.1 India with its geo-climatic conditions, high density of population, socio- economic disparities and other geo-political reasons, has high risk of natural and man-made disasters. In respect to natural disasters, it is vulnerable to forest fires, floods, droughts, earthquakes, tsunamis and cyclones. Other than the natural disasters, the nation is also vulnerable to man-made disasters like: War, terrorist attacks, and riots; Chemical, biological, radiological, and nuclear crisis; Hijacks, train accidents, airplane crashes, shipwrecks, etc.
    [Show full text]
  • 3G UMTS Man in the Middle Attacks and Policy Reform Considerations Jennifer Lynn Adesso Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 3G UMTS man in the middle attacks and policy reform considerations Jennifer Lynn Adesso Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Databases and Information Systems Commons Recommended Citation Adesso, Jennifer Lynn, "3G UMTS man in the middle attacks and policy reform considerations" (2015). Graduate Theses and Dissertations. 15128. https://lib.dr.iastate.edu/etd/15128 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 3G UMTS man in the middle attacks and policy reform considerations by Jennifer Adesso A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Information Assurance Program of Study Committee: Alex Tuckness, Major Professor Doug Jacobson Dirk Deam Thomas Daniels Iowa State University Ames, Iowa 2016 Copyright © Jennifer Adesso, 2016. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES ................................................................................................... iv NOMENCLATURE .................................................................................................
    [Show full text]