ASHRAE STANDARD Weather Data for Building Design Standards

Total Page:16

File Type:pdf, Size:1020Kb

ASHRAE STANDARD Weather Data for Building Design Standards ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2006 ASHRAEASHRAE STANDARDSTANDARD Weather Data for Building Design Standards Approved by the ASHRAE Standards Committee on June 24, 2006; by the ASHRAE Board of Directors on June 29, 2006; and by the American National Standards Institute on June 30, 2006. This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the stan- dard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: [email protected]. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527- 4723 (for orders in US and Canada). © Copyright 2006 ASHRAE, Inc. ISSN 1041-2336 www.ansi.org American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org ASHRAE Standing Standard Project Committee 169 Cognizant TC: TC 4.2, Climatic Information SPLS Liaison: Stephen V. Santoro Drury B. Crawley, Chair* Steve Cornick* Don B. Shirey, III, Vice-Chair* Thomas L. Stoffel* Robert J. Morris* Iain S. Walker* *Denotes members of voting status when the document was approved for publication ASHRAE STANDARDS COMMITTEE 2005–2006 Richard D. Hermans, Chair Jay A. Kohler David E. Knebel, Vice-Chair James D. Lutz Donald L. Brandt Merle F. McBride Steven T. Bushby Mark P. Modera Paul W. Cabot Cyrus H. Nasseri Hugh F. Crowther Stephen V. Santoro Samuel D. Cummings, Jr. Stephen V. Skalko Robert G. Doerr David R. Tree Hakim Elmahdy Jerry W. White, Jr. Roger L. Hedrick James E. Woods John F. Hogan William E. Murphy, BOD ExO Frank E. Jakob Ronald E. Jarnagin, CO Stephen D. Kennedy Claire B. Ramspeck, Assistant Director of Technology for Standards and Special Projects SPECIAL NOTE This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation. ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees. The Manager of Standards of ASHRAE should be contacted for: a. interpretation of the contents of this Standard, b. participation in the next review of the Standard, c. offering constructive criticism for improving the Standard, d. permission to reprint portions of the Standard. DISCLAIMER ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk. ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary. In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE. (This foreword is not part of this standard. It is merely TABLE B3 International Climate Zones informative and does not contain requirements necessary Country for conformance to the standard. It has not been Zone processed according to the ANSI requirements for a City (Province or Region) standard and may contain material that has not been China subject to public review or a consensus process. Anhui Unresolved objectors on informative material are not Anqing 3 A, B offered the right to appeal at ASHRAE or ANSI.) Bengbu 3 A, B Fuyang 3 A, B FOREWORD Hefei/Luogang 3 A, B Addendum ah to ANSI/ASHRAE/IESNA Standard 90.1- Huang Shan (Mtns) 5 2001, Energy Standard for Buildings Except Low-Rise Resi- Huoshan 3 A, B dential Buildings, added climatic data for seven new loca- Beijing tions: Washington DC Reagan Washington National Airport, Beijing/Peking 4 Virginia, and six island locations in the Pacific Ocean. These Fujian data are included in Tables C1 and C3 of this addendum to Changting 3 A, B ANSI/ASHRAE Standard 169-2006. Fuding 3 A, B Since ANSI/ASHRAE Standard 169-2006 was based on Fuzhou 2 ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Stan- Jiuxian Shan 4 dard for Buildings Except Low-Rise Residential Buildings, it Longyan 2 contained only a single location for China in Tables B3 and Nanping 2 C3. (Standard 169-2006 Table A3 contains climatic conditions Pingtan 2 for 385 locations in China and 30 locations in Taiwan.) This Pucheng 3 A, B addendum adds climatic data for China (368 locations) and Shaowu 3 A, B Taiwan (38 locations) in Tables B3 and C3. These changes Xiamen 2 were originally proposed in 2005 as Addendum o to Standard Yong'An 2 90.1-2004 and Addendum h to ANSI/ASHRAE Standard Gansu 90.2-2004, Energy-Efficient Design of Low-Rise Residential Dunhuang 5 Buildings. Errors in the data for locations in Mexico were also Hezuo 7 identified in proposed Addendum o to Standard 90.1-2004 and Huajialing 7 proposed Addendum h to Standard 90.2-2004. This addendum Jiuquan/Suzhou 6 provides corrected values for those locations in Table C3. Lanzhou 5 This addendum also has minor typographical changes Mazong Shan (Mount) 7 from the above addenda to make the locations and countries Minqin 5 more consistent with the data in Standard 169-2006 and the Pingliang 5 2005 ASHRAE Handbook—Fundamentals. All other climatic Ruo'ergai 7 data in Tables B1, B3, C1, and C3 remain unchanged. Tianshui 4 Note: In this addendum, changes to the current standard Wudu 3 C are indicated in the text by underlining (for additions) and Wushaoling (Pass) 7 strikethrough (for deletions). Xifengzhen 5 Yumenzhen 6 Addendum a to 169-2006 Zhangye 6 Guangdong [Change Table B1 as shown below.] Fogang 2 Gaoyao 2 TABLE B1 US Climate Zones Guangzhou/Baiyun 2 Heyuan 2 State Lian Xian 2 County Zone Lianping 2 Pacific Islands (PI) US Minor Outlying Islands Meixian 2 Shangchuan Island 2 Zone 1A Except Shantou 2 Midway Sand Island 2B Shanwei 2 Shaoguan 2 [Change Table B3 as follows: add the climate zones for the Shenzhen 2 new locations in China and revise the zone designation of Xinyi 2 Shanghai/Hongqiao as shown, revise the climate zones for Yangjiang 2 Mexico as shown, and add the climate zones for the new loca- Zhangjiang 1 tions in Taiwan as shown. Note that the climate zones for Tainan and Taipei do not change.] ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2006 1 TABLE B3 International Climate Zones (Continued) TABLE B3 International Climate Zones (Continued) Country Country Zone Zone City (Province or Region) City (Province or Region) Guangxi Huma 8 Beihai 2 Jixi 7 Bose 2 Keshan 7 Guilin 2 Mudanjiang 7 Guiping 2 Qiqihar 7 Hechi/Jnchengjiang 2 Shangzhi 7 Lingling 3 A, B Suifenhe 7 Liuzhou 2 Sunwu 7 Longzhou 2 Tailai 7 Mengshan 2 Tonghe 7 Nanning/Wuxu 2 Yichun 7 Napo 2 Henan Qinzhou 2 Anyang/Zhangde 3 A, B Wuzhou 2 Boxian 3 A, B Guizhou Gushi 3 A, B Bijie 4 Lushi 4 Dushan 3 A, B Nanyang 3 A, B Guiyang 3 A, B Xihua 3 A, B Luodian 2 Xinyang 3 A, B Rongjiang/Guzhou 2 Zhengzhou 3 A, B Sansui 3 A, B Zhumadian 3 A, B Sinan 3 A, B Hong Kong Special Admin. Region Weining 4 Hong Kong Intl Arpt 2 Xingren 3 A, B Hubei Zunyi 3 A, B Fangxian 4 Hainan Guanghua 3 A, B Danxian/Nada 1 Jiangling/Jingzhou 3 A, B Dongfang/Basuo 1 Macheng 3 A, B Haikou 1 Wuhan/Nanhu 3 A, B Qionghai/Jiaji 1 Yichang 3 A, B Sanhu Island 1 Zaoyang 3 A, B Xisha Island 1 Zhongxiang 3 A, B Yaxian/Sanya 1 Hunan Hebei Changde 3 A, B Baoding 4 Chenzhou 3 A, B Cangzhou 3 A, B Nanyue 4 Chengde 5 Sangzhi 3 A, B Fengning/Dagezhen 6 Shaoyang 3 A, B Huailai/Shacheng 5 Tongdao/Shuangjiang 3 A, B Leting 5 Wugang
Recommended publications
  • A Study of Thermal History Since the Paleozoic in the Eastern Qaidam Basin, Northwest China
    A Study of Thermal History Since the Paleozoic in the Eastern Qaidam Basin, Northwest China WANG Li 1,2 , LI Zongxing 1,2*, LIU Chenglin3, PENG Bo1,2, FANG Xinxin 1,2, YUAN Guide4 1 The Key Laboratory of Shale Oil and Gas Geological Survey, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China; 2 Institute of Geomechanics,Chinese academy of geological sciences,Beijing 100081, China 3 State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China; 4 PetroChina Qinghai Oilfield Company, Branch of Petroleum Exploration, Dunhuang, Gansu 736202 Abstract: Qaidam Basin is the one of three major petroliferous basin in Northeastern Tibetan Plateau, which experienced multiphase superimposition and transformation. A study on thermal history not only plays an important role on analysis the tectonic origin of the Qaidam basin, revealing the forming mechanism and uplift history of Tibetan plateau, but also is available to provide scientific evidence on oil & gas resources appraising. Using balanced cross-sections technique, and combination of analysis of apatite fission track ages with modeling of fission track length distribution, it was infered that eastern Qaidam basin experienced significant tectonic movement in the early Jurassic movement (~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in late Cretaceous, characterized by stretch in the early and the northeast-southwest extrusion in late; Himalayan movement in multi-stage development in the eastern Qaidam basin, Mainly divided into the early Himalayan movement (41.1~33.6 Ma) and the late Himalayan movement (9.6~7.1 Ma, 2.9~1.8 Ma), which large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement.
    [Show full text]
  • Xining to Lhasa (Vice Versa)
    TRAIN : Qinghai Tibet Railways JOURNEY : Xining to Lhasa (vice versa) Journey Duration : Upto 2 Days Day to Day Itinerary Unlike trains to Tibet from other gateway cities, the trains from Xining depart several times a day, since all other Tibet trains will stop in Xining before reaching Lhasa. The departure time of Xining Lhasa trains ranges from 12:27 at noon to 21:27 in the evening, offering flexible choices for tourists. Among all the trains to Tibet, there are two trains directly originated from Xining , one numbered as No.Z6801 departing every other day, and the other as No.Z6811 scheduled to run within a seasonal period. Timetable of Direct Xining to Lhasa Train Train No. Z6801 is the only train that starts directly from Xining and ends in Lhasa. It departs every other day at 14:01 from Xining Railway Station and arrives in Lhasa at 11:20 on the next day. Besides, Train No. Z6811 which bounds for Shigatse can also take tourists to Lhasa from Xining. The train from Xining to Shigatse is a seasonal train departing every day. Timetable of Xining to Lhasa Train - No.Z6801 Station Arrival Departure Stop Time Days Distance Xining -- 14:01 -- Day 1 -- Delingha 18:03 18:09 6 min Day 1 521 km Golmud 20:53 21:18 25 min Day 1 830 km Amdo 05:54 05:58 4 min Day 2 1,524 km Nagchu 07:24 07:30 6 min Day 2 1,650 km Damxung 09:06 09:10 4 min Day 2 1,800 km Lhasa 11:20 -- -- Day 2 1,972 km Timetable of Xining to Lhasa Train - No.Z6811 Station Arrival Departure Stop Time Days Distance Xining -- 20:30 -- Day 1 -- Delingha 00:32 00:38 6 min Day 2 521 km Golmud 03:28 03:53 25 min Day 2 830 km Amdo 12:01 12:05 4 min Day 2 1,524 km Nagchu 13:39 13:45 6 min Day 2 1,650 km Damxung 15:39 15:47 8 min Day 2 1,800 km Lhasa 17:45 18:10 25 min Day 2 1,972 km Timetable of Direct Lhasa to Xining Train As the return trip back to mainland China, the train from Lhasa to Xining (No.
    [Show full text]
  • Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
    ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation.
    [Show full text]
  • A 3585-Year Ring-Width Dating Chronology of Qilian Juniper from the Northeastern Qinghai-Tibetan Plateau
    IAWA Journal, Vol. 30 (4), 2009: 379–394 A 3585-YEAR RING-WIDTH DATING CHRONOLOGY OF QILIAN JUNIPER FROM THE NORTHEASTERN QINGHAI-TIBETAN PLATEAU Xuemei Shao1 *, Shuzhi Wang2, Haifeng Zhu1, Yan Xu1, Eryuan Liang3, Zhi-Yong Yin4, Xinguo Xu5 and Yongming Xiao5 SUMMARY This article documents the development of a precisely dated and well- replicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated suc- cessfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research. Key words: Northeastern Qinghai-Tibetan Plateau; Qilian juniper; den- drochronology; cross-dating; 3585-year chronology; archeological wood. INTRODUCTION One of the aims of dendrochronology is to construct long-term chronologies covering hundreds to thousands of years. These chronologies have major applications to climatic interpretations, radiocarbon analysis, and dating of past events (Lara & Villalba 1993; Scuderi 1993; Hughes & Graumlich 1996; Stahle et al. 1998, 2007; Grudd et al. 2002; Helama et al. 2002; Naurzbaev et al. 2002; Friedrich et al. 2004; Bhattacharyya & Shah 2009; Fang et al.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Notes
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Notes on Sedimentary Basins in China Report of the American Sedimentary Basins Delegation to the People's Republic of China A. W. Bally 1 , I-Ming Chou2, R. Clayton3, H. P. Eugster4, S. Kidwell5, L. D. Meckel6, R. T. Ryder7, A. B. Watts8, A. A. Wilson9 1. Rice University, Houston 2. U. S. Geological Survey, Reston 3. California Institute of Technology, Pasadena 4. Johns Hopkins University, Baltimore 5. University of Chicago 6. L. D. Meckel Company, Houston 7. U. S. Geological Survey, Reston 8. Lament Doherty Geological Observatory, Columbia University, New York 9. National Academy of Sciences, Washington Open-File Report 86-327 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editiorial standards. 1986 NOTICE The views expressed in this report are those of the members of the Sedimentary Basins Delegation and are in no way the official views of the Committee on Scholarly Communication with the People's Republic of China or its sponsoring organizations the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council. The visit consisting of a bilateral workshop and field trip was part of the exchange program between the two countries and was supported by the National Academy of Sciences in the United States and the China Association for Science and Technology in China, with the Chinese Petroleum Society bearing special responsibilities as host. U.S. funding was provided by the National Science Foundation. The Committee on Scholarly Communication with the People's Republic of China was founded in 1966 by the American Council of Learned Societies, the National Academy of Sciences, and the Social Science Research Council.
    [Show full text]
  • Loess‐Like Dust Appearance at 40 Ma in Central China
    RESEARCH ARTICLE Loess-Like Dust Appearance at 40 Ma in Central China 10.1029/2020PA003993 Niels Meijer1 , Guillaume Dupont-Nivet1,2,3 , Natasha Barbolini4,5 , 5 6 3 7 Key Points: Amber Woutersen , Alexander Rohrmann , Yang Zhang , Xiang-Jun Liu , 8 9 5 10 • The onset of Asian dust is identified Alexis Licht , Hemmo A. Abels , Carina Hoorn , Rik Tjallingii , 10 10 10 at 40 Ma within a longer continuous Christoff Andermann , Michael Dietze , and Norbert Nowaczyk record 1 2 • Shifts in the dust, cyclostratigraphy Institute for Geosciences, Universität Potsdam, Potsdam, Germany, Univ Rennes, CNRS, Géosciences Rennes - UMR and pollen suggest the Siberian High CNRS 6118, Rennes, France, 3Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of at 40 Ma Earth and Space Sciences, Peking University, Beijing, China, 4Department of Ecology, Environment and Plant Sciences • The coeval proto-Paratethys Sea 5 retreat triggered the onset of the and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden, Department of Ecosystem and Siberian High Landscape Dynamics (ELD), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands, 6Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany, 7College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China, 8Department of Earth and Supporting Information: Space Sciences, University of Washington, Seattle, WA, USA, 9Department of Geosciences and Engineering, Delft • Supporting Information S1 University of Technology, Delft, The Netherlands, 10GFZ German Research Centre for Geosciences, Potsdam, Germany • Data Set S1 • Data Set S2 • Data Set S3 • Data Set S4 Abstract Asian mineral dust has been studied extensively for its role in affecting regional-to global- scale climate and for its deposits, which enable reconstructing Asian atmospheric circulation in the Correspondence to: past.
    [Show full text]
  • Qinghai WLAN Area 1/13
    Qinghai WLAN area NO. SSID Location_Name Location_Type Location_Address City Province 1 ChinaNet Quality Supervision Mansion Business Building No.31 Xiguan Street Xining City Qinghai Province No.160 Yellow River Road 2 ChinaNet Victory Hotel Conference Center Convention Center Xining City Qinghai Province 3 ChinaNet Shangpin Space Recreation Bar No.16-36 Xiguan Street Xining City Qinghai Province 4 ChinaNet Business Building No.372 Qilian Road Xining City Qinghai Province Salt Mansion 5 ChinaNet Yatai Trade City Large Shopping Mall Dongguan Street Xining City Qinghai Province 6 ChinaNet Gome Large Shopping Mall No.72 Dongguan Street Xining City Qinghai Province 7 ChinaNet West Airport Office Building Business Building No.32 Bayi Road Xining City Qinghai Province Government Agencies 8 ChinaNet Chengdong District Government Xining City Qinghai Province and Other Institutions Delingha Road 9 ChinaNet Junjiao Mansion Business Building Xining City Qinghai Province Bayi Road Government Agencies 10 ChinaNet Higher Procuratortate Office Building Xining City Qinghai Province and Other Institutions Wusi West Road 11 ChinaNet Zijin Garden Business Building No.41, Wusi West Road Xining City Qinghai Province 12 ChinaNet Qingbai Shopping Mall Large Shopping Mall Xining City Qinghai Province No.39, Wusi Avenue 13 ChinaNet CYTS Mansion Business Building No.55-1 Shengli Road Xining City Qinghai Province 14 ChinaNet Chenxiong Mansion Business Building No.15 Shengli Road Xining City Qinghai Province 15 ChinaNet Platform Bridge Shoes City Large Shopping
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Prodigals in Love: Narrating Gay Identity and Collectivity on the Early Internet in China
    Prodigals in Love: Narrating Gay Identity and Collectivity on the Early Internet in China by Gang Pan A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of East Asian Studies University of Toronto © Copyright by Gang Pan 2015 Prodigals in Love: Narrating Gay Identity and Collectivity on the Early Internet in China Gang Pan Doctor of Philosophy Department of East Asian Studies University of Toronto 2015 Abstract This dissertation concerns itself with the eruption of a large number of gay narratives on the Chinese internet in its first decade. There are two central arguments. First, the composing and sharing of narratives online played the role of a social movement that led to the formation of gay identity and collectivity in a society where open challenges to the authorities were minimal. Four factors, 1) the primacy of the internet, 2) the vernacular as an avenue of creativity and interpretation, 3) the transitional experience of the generation of the internet, and 4) the evolution of gay narratives, catalyzed by the internet, enhanced, amplified, and interacted with each other in a highly complicated and accelerated dynamic, engendered a virtual gay social movement. Second, many online gay narratives fall into what I term “prodigal romance,” which depicts gay love as parent-obligated sons in love with each other, weaving in violent conflicts between desire and duty in its indigenous context. The prodigal part of this model invokes the archetype of the Chinese prodigal, who can only return home having excelled and with the triumph of his journey.
    [Show full text]
  • Studies on Ethnic Groups in China
    Kolas&Thowsen, Margins 1/4/05 4:10 PM Page i studies on ethnic groups in china Stevan Harrell, Editor Kolas&Thowsen, Margins 1/4/05 4:10 PM Page ii studies on ethnic groups in china Cultural Encounters on China’s Ethnic Frontiers Edited by Stevan Harrell Guest People: Hakka Identity in China and Abroad Edited by Nicole Constable Familiar Strangers: A History of Muslims in Northwest China Jonathan N. Lipman Lessons in Being Chinese: Minority Education and Ethnic Identity in Southwest China Mette Halskov Hansen Manchus and Han: Ethnic Relations and Political Power in Late Qing and Early Republican China, 1861–1928 Edward J. M. Rhoads Ways of Being Ethnic in Southwest China Stevan Harrell Governing China’s Multiethnic Frontiers Edited by Morris Rossabi On the Margins of Tibet: Cultural Survival on the Sino-Tibetan Frontier Åshild Kolås and Monika P. Thowsen Kolas&Thowsen, Margins 1/4/05 4:10 PM Page iii ON THE MARGINS OF TIBET Cultural Survival on the Sino-Tibetan Frontier Åshild Kolås and Monika P. Thowsen UNIVERSITY OF WASHINGTON PRESS Seattle and London Kolas&Thowsen, Margins 1/7/05 12:47 PM Page iv this publication was supported in part by the donald r. ellegood international publications endowment. Copyright © 2005 by the University of Washington Press Printed in United States of America Designed by Pamela Canell 12 11 10 09 08 07 06 05 5 4 3 2 1 All rights reserved. No part of this publication may be repro- duced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any infor- mation storage or retrieval system, without permission in writ- ing from the publisher.
    [Show full text]
  • ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2013 Climatic Data for Building Design Standards
    ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 169-2013 Climatic Data for Building Design Standards Approved by ASHRAE and the American National Standards Institute on July 31, 2020. This addendum was approved by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, docu- mented, consensus action on requests for change to any part of the standard. Instructions for how to submit a change can be found on the ASHRAE® website (https://www.ashrae.org/continuous-maintenance). The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website (www.ashrae.org) or from ASHRAE Customer Service, 180 Technology Parkway NW, Peachtree Corners, GA 30092. E-mail: [email protected]. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada). For reprint permission, go to www.ashrae.org/permissions. © 2020 ASHRAE ISSN 1041-2336 ASHRAE Standing Standard Project Committee 169 Cognizant TC: 4.2, Climate Information SPLS Liaison: Walter Grondzik Drury B. Crawley*, Chair Evyatar Erell Didier J. Thevenard* Joshua New*, Vice-Chair Jack N. Lott Russell Vose* Parag Rastogi*, Secretary Robert J. Morris Justin Wong Riad G. Assaf* Michael Roth* * Denotes members of voting status when the document was approved for publication ASHRAE STANDARDS COMMITTEE 2020–2021 Drury B. Crawley, Chair Srinivas Katipamula David Robin Rick M. Heiden, Vice Chair Gerald J. Kettler Lawrence J. Schoen Els Baert Essam E. Khalil Steven C. Sill Charles S. Barnaby Malcolm D.
    [Show full text]
  • Metallogeny of Northern, Central and Eastern Asia
    METALLOGENY OF NORTHERN, CENTRAL AND EASTERN ASIA Explanatory Note to the Metallogenic map of Northern–Central–Eastern Asia and Adjacent Areas at scale 1:2,500,000 VSEGEI Printing House St. Petersburg • 2017 Abstract Explanatory Notes for the “1:2.5 M Metallogenic Map of Northern, Central, and Eastern Asia” show results of long-term joint research of national geological institutions of Russia, China, Kazakhstan, Mongolia, and the Republic of Korea. The latest published geological materials and results of discussions for Uzbekistan, Kyrgyzstan, Tajikistan, Turkmenistan, and North Korea were used as well. Described metallogenic objects: 7,081 mineral deposits, 1,200 ore knots, 650 ore regions and ore zones, 231 metallogenic areas and metallogenic zones, 88 metallogenic provinces. The total area of the map is 30 M km2. Tab. 10, fig. 15, list of ref. 94 items. Editors-in-Chief: O.V. Petrov, A.F. Morozov, E.A. Kiselev, S.P. Shokalsky (Russia), Dong Shuwen (China), O. Chuluun, O. Tomurtogoo (Mongolia), B.S. Uzhkenov, M.A. Sayduakasov (Kazakhstan), Hwang Jae Ha, Kim Bok Chul (Korea) Authors G.A. Shatkov, O.V. Petrov, E.M. Pinsky, N.S. Solovyev, V.P. Feoktistov, V.V. Shatov, L.D. Rucheykova, V.A. Gushchina, A.N. Gureev (Russia); Chen Tingyu, Geng Shufang, Dong Shuwen, Chen Binwei, Huang Dianhao, Song Tianrui, Sheng Jifu, Zhu Guanxiang, Sun Guiying, Yan Keming, Min Longrui, Jin Ruogu, Liu Ping, Fan Benxian, Ju Yuanjing, Wang Zhenyang, Han Kunying, Wang Liya (China); Dezhidmaa G., Tomurtogoo O. (Mongolia); Bok Chul Kim, Hwang Jae Ha (Republic of Korea); B.S. Uzhkenov, A.L.
    [Show full text]