Pericarp, Seed Coat Anatomy and Seed Morphology of Calycanthaceae

Total Page:16

File Type:pdf, Size:1020Kb

Pericarp, Seed Coat Anatomy and Seed Morphology of Calycanthaceae International Journal of Plant Biology 2018; volume 9:7525 Pericarp, seed coat anatomy ily and Chimonanthus is sister to the and seed morphology of Calycanthus-Sinocalycanthus.1,25 In Correspondence: Kweon Heo, Department of angiosperms, floral phyllotaxis is often Applied Plant Sciences, Kangwon National Calycanthaceae variability of various taxonomic feature.27 University, Chuncheon 24341, South Korea. Gynoecium is unique to Idiospermum pres- Tel.: +82.33.2506412. Niroj Paudel, Kweon Heo ence of only one carpel, rarely up to five.1. E-mail: [email protected] Floral phyllotaxis and architecture were Department of Applied Plant Sciences, Key words: Calycanthaceae; pericarp; seed described which is further supported, devel- Kangwon National University, coat; SEM; trichome. opment of gynocium.28,29 Chuncheon, South Korea Structure and evolution of embryology Funding: none. in Laurales is described.30 Seed coat anato- my and trichome morphology of Contributions: the authors contributed equally. Abstract Calycanthacae have not studied. We focus Pericarp, trichome, and seed coat anato- on the seed morphology, seed anatomy, and Conflict of interest: the authors declare no my display great features of taxonomic trichome morphology on Calycanthaceae, potential conflict of interest. value in the Calycanthaceae. The present which support for the phylogenetic implica- tion. The main objective of this study is to Received for publication: 7 December 2017. study about trichome and seed coat anato- Accepted for publication: 27 June 2018. my has based on external and internal deduce their phylogenetic relationship. observation. Detail anatomical study of This work is licensed under a Creative seeds provides valuable information for fur- Commons Attribution-NonCommercial 4.0 ther study about their function, ontogeny, Materials and Methods International License (CC BY-NC 4.0). and phylogeny. Therefore, the goal of the The collected seeds were fixed with the study is to investigate trichome morphology ©Copyright N. Paudel and K. Heo, 2018 FAA (formalin: glacial acetic acid; 50% Licensee PAGEPress srl, Italy and seed coat anatomy in Calycanthaceae to ethanol, 5:5:90, by volume) from each International Journal of Plant Biology 2018; 9:7525 provide more detail characterization. Seeds species (Table 1). Mature seeds passed onlydoi:10.4081/pb.2018.7525 were collected after that preserved with through the alcohol series. After complete FAA. Furthermore, alcohol series applied dehydration, the seeds passed through com- for SEM and light microscopy. The unicel- bination alcohol/Technovit and then embed- lular trichome morphology is common in all ded in Technovit 7100 resin. use species in Calycanthaceae. Density of tri- Serial sections of 5-6 µm thickness 11.45×5.2-6.65). The variable seed feature chome is highest in Calycanthus occiden- were cut using the disposable blade knives of the species in order to measurement of talis. Different variation of seed coat and stuck into glass slides, and dried on electri- seed size (length-width, length/width ratio) pericarp layers are characteristics of poten- cal hot plate for 24 hours. Dried slides were, these are the significant dissimilarities of tial phylogenetic significance in the family. stained with 0.1% Toluidine blue for 60-90 the species we concluded That the number second, ringed with running water, and of species in genus Chimonanthus is quite again dried on the electric hotplate for more large than that of Calycanthus, but in case than 6 hour to remove water. The stained of Sinocalycanthus is medium size The Introduction slides then mounted with Entellan (Merck morphological character is little value for Calycanthaceae is small family compro- Co., Germany). Four permanent slides generic delamination in Calycanthaceae. mised four genera and ten species.1-6 observed under the Olympus BX-50 light There is difference on seed coat layer, peri- Calycanthaceae is temperate shrubs or trop- microscope (Olympus Co., Japan). carp layer cell shape structure. The seed sur- ical trees have relatively large flowers, The pre-treatment applied for SEM. The face, the seed coat and pericarp character which are pollinated by beetles.7-10 The fos- preserved seeds were passed through the certainly have significant in phylogeny. sil record of reproductive structures of alcohol series then immersed in 100% Detail individual description of the nature Calycanthaceae is relatively abundantNon-commercial in ethanol after that used critical point dryer of the seed surface and seed coat is given earlier.11-15 Some of these fossils are (CPD) then sample were attached from cop- (Tables 2-3). In this studies, seed shape was 15 16 per tape. SEM image was carried out from extremely well preserved. Van Heel quite variable large, the range of the helium KBSI, Chuncheon at (EHT= 3.00 KV). The studied carpel development. Within is concave, long or medium, the range 14.4- multiple image alignments did by using Calycanthaceae, gynoecium character is 16.4×6.4-7.5 mm the shape of the testal Photoshop CS6. unique to Idiospermum.10 Early studies rec- cells either, polygonal or sub polygonal, ognized the affinity of Calycanthaceae to irregular (Figures 1-3). The wall ornamen- Monimiaceae and Lauraceae.16 This affinity tation is roughly, most of the cell have con- was acknowledging in the major classifica- struction on the center in (Figure 2A, 2B, tion systems of the past 50 years.17-24 Results 2C) the color of seed was brown in Molecular phylogenetic analyses settled the Out of one Idiospermum genera we Calycanthaceae (Figure 1), the seed were family as sister to the rest of Laurales.2- include three genera for this study; enclosed in the fleshy hypanthium. 4,25,26 These analyses also divided the Sinocalycanthus Calycanthus and Pericarp separated in three histological remaining Laurales into two clades of three Chimonanthus. Of the 3 genera and eight zones: exocarp, mesocarp, and endocarp families each: the Siparunaceae- species included, the seed of Chimonanthus developing from the outer epidermis, meso- Atherospermataceae-Gomortegaceae clade3 fragrans (19.2-20×6.1-7.25 mm) is largest phyll and inner epidermis. The exocarp is and the Monimiaceae- Hernandiaceae- and we found that the size and shape were represented by the single layer and tangen- Lauraceae clade.3 Within Calycanthaceae, highly variable with in the study of genus tially attached with mesocarp (Figures 4C, Idiospermum is sister to the rest of the fam- small in Calycanthus occidentalis (10.1- 4L), thick (Figure 4F). The parenchyma of [International Journal of Plant Biology 2018; 9:7525] [page 19] Article mesocarp regular shape in Ch. nitens, Ch. Sinocalycanthus. Endocarp was highly lig- layer in Sinocalycanthus chinensis (Figure fragrans, Ch. salicifolius, Ch. yunnanensis, nified and well developed in 4B). The cell shape was circular or sub-cir- and Ch. luteus but irregular shape in Ch. Calycanthaceae. cular (Figure 5E). The cell shape was irreg- praecox, Sinocalycanthus chinensis and Ca. Seed coat divided into three layers as ular, more than two layers of exotesta in Ch. occidentalis. The intercellular spaces devel- exotesta, mesotesta, and endotesta. fragrans (Figure 5B). Cell shape is circular oped in the region of mesocarp (Figures 4C, Mesotesta was irregular and thick, endotes- which is attached with mesotesta in Ch. 4F, 4I, 4L, 5C, 5F, 5I, 5L, 6L). The vascular ta and exotesta were polygonal or sub luteus. In Ch. salicifolius, the cell was bundle developed in mesocarp (Figures 6A- polygonal in Ch. salicifolius (Figure 5E). arranged with each other formation of sin- 6H, 6K). Mesocarp layers were thickest in Exotestal layer was single, circular or sub- gle layered with elongation cell shape Chimonanthus than that of Calycanthus and circular, which is connected the mesotestal (Figure 5E). Single layer was defined in Ch. Table 1. Collection information of genus and species used in present study. Taxa Collection information Calycanthus occidentalis HooK. & Arn. Korea. Cultivated at Kangwon University, K. Heo & N. Paudel s.n. 2016 (KWNU) Chimonanthus fragrans (Loisel.) Lind. Korea. Cultivated in Chollipo Arboritum, K. Heo s.n. 2009 Chimonanthus luteus (G.Don) Biel. Korea. Cultivated in Chollipo Arboritum, K. Heo s.n. 2009 (KWNU) Chimonanthus nitens (Oliv.) Rehder Korea. Cultivated in Chollipo Arboritum, K. Heo s.n. 2009 Chimonanthus praecox (L.) Link Korea. Cultivated at Kangwon University, K. Heo & N. Paudel s.n. 2016 (KWNU) Chimonanthus salicifolius S.Y.Hu Korea. Cultivated in Chollipo Arboritum, K. Heo s.n. 2009 Chimonanthus yunnanensis (W.W.Sm.) Hu Korea. Cultivated in Chollipo Arboritum, K. Heo s.n. 2009 Sinocalycanthus chinensis W.C.Cheng & S.Y.Chang Korea. Cultivated at Kangwon University, K. Heoonly & N. Paudel s.n. 2016 (KWNU) Table 2. Seed morphology and measurement. Taxa Seed shape and size Seed character Cell shape Number Seed coat Tegmen use of layer width in µm Pericarp Seed coat Calycanthus occidentalis Elliptical: Relatively large, Relatively large, 4-5 3-4 124-128 2 layered Hook. & Arn. 10.1-11.45×5.2-6.65 concave, Hairy concave Chimonanthus fragrans Elliptical: Relatively large, Relatively large, 4-5 4-5 111-114 2 layered (Loisel.)Lind. 19.2-20×6.1-7.25 concave concave, Hairy Chimonanthus luteus Elliptical: Relatively large, Narrow, subpolygonal 4-5 4-5 120-124 2 layered (G.Don) Biel. 14.4-16.4×6.4-7.5 concave, Hairy to irregular Chimonanthus nitens Elliptical: Relatively large, Relatively large, 5-6 3-4 110-115 2 layered (Olive.) Rehder 10-11.35×5-6.1 concave, Hairy concave Chimonanthus praecox Elliptical: Relatively large, Relatively large, 2-3 3 124-129 2 layered (L.) Link 11.1-14×5-6.2-7.1 concave, Hairy concave Chimonanthus Elliptical: Relatively large, Narrow, sub polygonal 6-7 3 124-128 2 layered salicifolius S.Y.Hu 11.55-13.75×6.15-7.6 concave, Hairy to irregular Chimonanthus Elliptical: Relatively large, Narrow, polygonal 3-4 3 125-128 2 layered yunnanensis (W.W.Sm.)Hu 12.5-16.35×5.2-7.35 concave, Hairy to circular Sinocalycanthus Elliptical: Non-commercial Relatively large, Narrow, elongated 4-5 3-4 118-122 2 layered chinensis W.C.Cheng 12.3-14.35×7- 7.65 concave, Hairy to irregular & S.Y.
Recommended publications
  • Asian Journal of Chemistry Asian Journal of Chemistry
    Asian Journal of Chemistry; Vol. 26, No. 14 (2014), 4445-4448 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2014.16897 Chemical Composition, Antifungal Activity and Toxicity of Essential Oils from the Leaves of Chimonanthus praecox Located at Two Different Geographical Origin † † * * * REN-YI GUI , WEI-WEI LIANG , SHENG-XIANG YANG , LI LLU and JIAN-CHUN QIN College of Plant Science, Jilin University, Changchun, Jilin 130062, P.R. China; The Nurturing Station for the State Key Laboratory of Subtropical Silviculture; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an, Zhejiang 311300, P.R. China *Corresponding authors: E-mail: [email protected]; [email protected]; [email protected] †Contributed equally to this study Received: 19 December 2013; Accepted: 24 February 2014; Published online: 5 July 2014; AJC-15493 The composition of the essential oils obtained by hydrodistillation of different geographical origin of Chimonanthus praecox, including Hangzhou and Wenzhou samples, were investigated by GC/MS. Forty three components comprising 93.05 % of the leave oils from Hangzhou plant, and 32 components comprising 94.26 % of the leave oils from Wenzhou plant were identified. The major components in the leaf oil from Hangzhou samples were (-)-alloisolongifolene (10.20 %), caryophyllene (9.31 %), elixene (8.52 %), germacrene D (7.30 %), germacrene B (7.44 %), δ-cadinene (6.17 %) and β-elemen (4.67 %). While, the oil from Wenzhou samples contained furan, 3-(4,8- dimethyl-3,7-nonadienyl)-, (E)-(21.69 %), eucalyptol (19.02 %), terpilene (12.41 %), p-menth-1-en-8-ol (6.65 %) and geraniol (5.29 %) as the major components.
    [Show full text]
  • Research Article Chimonanthus Nitens Var. Salicifolius Aqueous Extract Protects Against 5-Fluorouracil Induced Gastrointestinal Mucositis in a Mouse Model
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 789263, 12 pages http://dx.doi.org/10.1155/2013/789263 Research Article Chimonanthus nitens var. salicifolius Aqueous Extract Protects against 5-Fluorouracil Induced Gastrointestinal Mucositis in a Mouse Model Zhenze Liu,1,2 Jun Xi,3 Sven Schröder,4 Weigang Wang,3 Tianpei Xie,5 Zhugang Wang,3 Shisan Bao,2,6 and Jian Fei1,2,3 1 School of Life Science and Technology, Tongji University, Shanghai 200092, China 2 The Sino-Australia Joint Laboratory, Lishui Institute of Traditional Chinese Medicine, Tongji University, Lishui 323000, China 3 Shanghai Research Centre for Model Organisms, Shanghai 201203, China 4 HanseMerkur Centre for Traditional Chinese Medicine at the University Medical Centre Hamburg-Eppendorf, Haus Ost 55, UKE Campus, Martinistraße 52, 20246 Hamburg, Germany 5 Shanghai Standard Biotech Co., Ltd., Shanghai 201203, China 6 Discipline of Pathology, Bosch Institute and School of Medical Sciences, University of Sydney, NSW 2006, Australia Correspondence should be addressed to Shisan Bao; [email protected] and Jian Fei; [email protected] Received 19 June 2013; Revised 8 September 2013; Accepted 16 September 2013 Academic Editor: Lorenzo Cohen Copyright © 2013 Zhenze Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gastrointestinal mucositis is a major side effect of chemotherapy, leading to life quality reduction in patients and interrupting the therapy of cancer. Chimonanthus nitens var. salicifolius (CS) is a traditional Chinese herb for enteral disease.
    [Show full text]
  • Winter Blooming Shrubs by RICHARD E
    Winter Blooming Shrubs by RICHARD E. WEAVER, JR. Winters in the eastern part of this country south of Washington, D.C. are seldom as unpleasant as they are here in the Northeast. Of course the temperatures there are less extreme, but for those of us who appreciate plants and flowers, the real difference is perhaps due to the Camellias. Blooming through the worst weather that January and February have to offer, these wonderful plants with their bright and showy blooms make winter something almost worth anticipating. Although there are some hopeful new developments through con- centrated breeding efforts, we in most of the Northeast still must do without Camellias in our gardens. Nevertheless, there are a sur- prising number of hardy shrubs, perhaps less showy but still charm- ing and attractive, that will bloom for us through the winter and the early days of spring. Some, such as the Witch Hazels, are foolproof; others present a challenge for they are susceptible to our capricious winters and may lose their opening flowers to a cold March. For those gardeners willing to take the chance, a few of the best early- flowering shrubs displayed in the border, or as the focal point in a winter garden, will help to soften the harshness of the season. Many plants that bloom in the early spring have their flowers per- fectly formed by the previous fall. Certain of these do not require a period of cold dormancy, and in mild climates will flower intermit- tently during the fall and winter. Most species, however, do require an environmental stimulus, usually a period of cold temperatures, before the buds will break and the flowers open.
    [Show full text]
  • Wood Anatomy of Calycanthaceae Sherwin Carlquist
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 10 | Issue 3 Article 6 1983 Wood Anatomy of Calycanthaceae Sherwin Carlquist Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1983) "Wood Anatomy of Calycanthaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 10: Iss. 3, Article 6. Available at: http://scholarship.claremont.edu/aliso/vol10/iss3/6 ALISO 10(3), 1983, pp. 427-441 WOOD ANATOMY OF CALYCANTHACEAE: ECOLOGICAL AND SYSTEMATIC IMPLICATIONS Sherwin Carlquist INTRODUCTION Wood anatomy of Calycanthaceae has not been studied as a unit. Wood features ofthe family have been summarized by Metcalfe and Chalk (1950); various authors have mentioned one or more traits in studies dealing with Calycanthaceae (e.g., Wilson 1979) or other families (e.g., Garratt 1934). In view of recent interest in Idiospermum australiense (Diels) Blake, a new comparative study is needed. One goal of the present study is clarification of relationships of Idiospermum to Calycanthus and Chimonanthus. Wood anatomy of Idiospermum was described by Blake ( 1972) and Wilson ( 1979); a new description is offered here to provide more quantitative data. De­ scriptions of the wood of Calycanthus and Chimonanthus provided here incorporate such quantitative data, but also modify earlier descriptions with respect to some important qualitative features. Material of the recently de­ scribed genus Sinocalycanthus (Cheng and Chan 1964) was not available, although the description of that genus suggests it is not strongly different from Calycanthus or Chimonanthus. The present study incorporates material of Calycanthus floridus L. var. floridus, C.
    [Show full text]
  • Landscaping Without Harmful Invasive Plants
    Landscaping without harmful invasive plants A guide to plants you can use in place of invasive non-natives Supported by: This guide, produced by the wild plant conservation Landscaping charity Plantlife and the Royal Horticultural Society, can help you choose plants that are without less likely to cause problems to the environment harmful should they escape from your planting area. Even the most careful land managers cannot invasive ensure that their plants do not escape and plants establish in nearby habitats (as berries and seeds may be carried away by birds or the wind), so we hope you will fi nd this helpful. A few popular landscaping plants can cause problems for you / your clients and the environment. These are known as invasive non-native plants. Although they comprise a small Under the Wildlife and Countryside minority of the 70,000 or so plant varieties available, the Act, it is an offence to plant, or cause to damage they can do is extensive and may be irreversible. grow in the wild, a number of invasive ©Trevor Renals ©Trevor non-native plants. Government also has powers to ban the sale of invasive Some invasive non-native plants might be plants. At the time of producing this straightforward for you (or your clients) to keep in booklet there were no sales bans, but check if you can tend to the planted area often, but it is worth checking on the websites An unsuspecting sheep fl ounders in a in the wider countryside, where such management river. Invasive Floating Pennywort can below to fi nd the latest legislation is not feasible, these plants can establish and cause cause water to appear as solid ground.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Published the Papers of GC-MS Analysis
    J Pharm Anal Voll, No 1, 60 -78 (2011) INFORMATION Published the papers of GC-MS Feng Lei, Ji Haiwei, Wang Decai, Wang Jianmei: liu Renmin. Analysis of volatile constituents from different parts of analysis Salvia miltiorrhiza by GC- MS China Pharmacy, 2010, 21(39) :3706-3709. -'fraditional Chinese medicine * Correspondence to: Wang Jianmei. Ermail: [email protected] Medicinal materials Wu Naizhu, Wu Juan, Yan Renlong, A Ping, Zhou XianJi: GeMS analysis of volatile oils of Tibetan medicine Rhododendron primu!aeflorum Bur. et Franch Chinese Journal ofPharmaceutical Analysis, 2010, 30(10): 1909-1912. * Correspondence to: Zhau Xianli. Ermai!: [email protected] Wu Huaien: Liang ehenyan, Li Yaohua, Huang Xiaoqiu, Zhu Xiaoyong. GC- MS analysis of chemical constituents of the essential oil from Adenosma indianum (Lour.) Merr. by different extraction methods Salvia miltiorrhiza Bge. ChinRse Journal of PhamUlceutical Analysis, 2010, 30(10): Salvia miltiorrhiza Bge. (Lamiaceae) is mainly distributed in Sbanxi, 1941-1946. Saanxi. Gansu. Guangxi. Liaoning. Hebei, Henan. Shandong, , Correspondence to: Wu Huaien. Anhui. Jiangsu, Zhejiang. Jiangxi and Hubei provinces, China. The Er mail: [email protected] roots are used medicinaUy. (Photography by Ren Vi; Text by Wang Xumei; Provided by Ren Vi and Wang Xumei, Shaanxi Normal University, Xi'an, China) She Jimning, Kuai Bihua, Xiong Jun, liang Yizeng: lang Xu. Analysis of essential oil in Rhizoma Atractylodes Zhang Suying: Zhang Renbo. Macrocephala by GC- MS and chemometric resolution Analysis of chemical constituents of the volatile oil from method Boenninghausenia albiflora in Kuankuoshui Nationa! Nature ChinRse Journal of Modern Applied Pharmacy, 2010, 27 Reserve (10) :928-931. China Pharmacy, 2010, 21(39) :3719-3721.
    [Show full text]
  • Commercialized Non-Camellia Tea Traditional Function And
    Acta Pharmaceutica Sinica B 2014;4(3):227–237 Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Commercialized non-Camellia tea: traditional function and molecular identification Ping Longa,b, Zhanhu Cuia,b, Yingli Wanga,b, Chunhong Zhangb, Na Zhangb, Minhui Lia,b,n, Peigen Xiaoc,d,nn aNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China bBaotou Medical College, Baotou 014060, China cSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China dInstitute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Received 10 November 2013; revised 16 December 2013; accepted 10 February 2014 KEY WORDS Abstract Non-Camellia tea is a part of the colorful Chinese tea culture, and is also widely used as beverage and medicine in folk for disease prevention and treatment. In this study, 37 samples were Non-Camellia tea; Traditional function; collected, including 33 kinds of non-Camellia teas and 4 kinds of teas (Camellia). Traditional functions of Molecular identification; non-Camellia teas were investigated. Furthermore, non-Camellia teas of original plants were characterized BLASTN; and identified by molecular methods. Four candidate regions (rbcL, matK, ITS2, psbA-trnH) were Phylogenetic tree amplified by polymerase chain reaction. In addition, DNA barcodes were used for the first time to discriminate the commercial non-Camellia tea and their adulterants, and to evaluate their safety. This study showed that BLASTN and the relevant phylogenetic tree are efficient tools for identification of the commercial non-Camellia tea and their adulterants.
    [Show full text]
  • Pollination-Induced Gene Changes That Lead to Senescence in Petunia × Hybrida
    Pollination-Induced Gene Changes That Lead to Senescence in Petunia × hybrida DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shaun Robert Broderick, M.S. Graduate Program in Horticulture and Crop Science The Ohio State University 2014 Dissertation Committee: Michelle L. Jones, Advisor Feng Qu Eric J. Stockinger Esther van der Knaap Copyrighted by Shaun Robert Broderick 2014 Abstract Flower longevity is a genetically programmed event that ends in flower senescence. Flowers can last from several hours to several months, based on flower type and environmental factors. For many flowers, particularly those that are ethylene- sensitive, longevity is greatly reduced after pollination. Cellular components are disassembled and nutrients are remobilized during senescence, which reduces the net energy expenditures of floral structures. The goal of this research is to identify the genes that can be targeted to extent shelf life by inhibiting pollination-induced senescence. Identifying and characterizing regulatory shelf-life genes will enable breeders to incorporate specific alleles that improve post production quality into ethylene-sensitive crops. Petunia × hybrida is particularly amenable to flower longevity studies because of its large floral organs, predictable flower senescence timing, and importance in the greenhouse industry. A general approach to gene functional analysis involves reducing gene expression and observing the resulting phenotype. Viruses, such as tobacco rattle virus (TRV), can be used to induce gene silencing in plants like petunia. We optimized several parameters that improved virus-induced gene silencing (VIGS) in petunia by increasing the consistency and efficiency of silencing.
    [Show full text]
  • Plant Gems from China©
    1 Plant Gems from China© Donghui Peng1, Longqing Chen2 and Mengmeng Gu3 1College of Landscape Architecture and Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PRC 2College of Forestry and Horticulture, Huazhong Agriculture University, Wuhan, Hubei Province 430070, PRC 3Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, College Station, TX 77843, USA Email: [email protected] INTRODUCTION A lot of plants native in China thrive in landscapes across the U.S. Chinese plant germplasm has been continuously introduced to the U.S., and used in breeding and selection. So many new cultivars with Chinese genetics have been introduced in the landscape plant market. The Chinese love plants and particularly enjoy ten “traditionally famous flowers”: lotus (Nelumbo nucifera), sweet olive (Osmanthus frangrans), peony (Paeonia suffruticosa), azalea (Azalea spp.), chrysanthemum (Chrysanthemum spp.), Mei flower (Prunus mume), daffodil (Narcissus spp.), rose (Rosa spp.), camellia (Camellia spp.) and cymbidium (Cymbidium spp.). Public and university breeders have focused on these taxa. In addition, many species and cultivars commonly grown in China may be of interest to growers and landscape professionals in the U.S, which this manuscript will be focused on. PLANT SPECIES AND CULTIVARS Sweet olive (Osmanthus fragrans). There are mainly four types of sweet olives, Auranticus Group, Luteus Group, Albus Group, orange and Semperflorens Group. Ever-blooming sweet 1 2 olives have peak blooming in the fall like the others, and continue for about six months although not as profusely. Recently there are three variegated cultivars: ‘Yinbian Caiye’ with white leaf margins mature leaves and red/white/green on new growth, ‘Yintian Cai’ with red-margined maroon leaves maturing to white-margined green leaves, and ‘Pearl Color’ with pink new growth.
    [Show full text]
  • Chimonanthus Praecox
    Shang et al. Genome Biology (2020) 21:200 https://doi.org/10.1186/s13059-020-02088-y RESEARCH Open Access The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter Junzhong Shang1†, Jingpu Tian1†, Huihui Cheng2†, Qiaomu Yan1, Lai Li1, Abbas Jamal1, Zhongping Xu3,4, Lin Xiang1, Christopher A. Saski5, Shuangxia Jin3,4* , Kaige Zhao1*, Xiuqun Liu1* and Longqing Chen6* * Correspondence: [email protected]. edu.cn; [email protected]; Abstract [email protected]; clqhzau@126. com Background: Wintersweet (Chimonanthus praecox), an important ornamental plant, †Junzhong Shang, Jingpu Tian and has evolved unique fragrant aroma and winter-flowering properties, which are critical Huihui Cheng contributed equally for its successful sexual reproduction. However, the molecular mechanisms underlying to this work. 3National Key Laboratory of Crop these traits are largely unknown in this species. In addition, wintersweet is also a typical Genetic Improvement, Huazhong representative species of the magnoliids, where the phylogenetic position of which Agricultural University, Wuhan, relative to eudicots and monocots has not been conclusively resolved. Hubei 430070, People’s Republic of China Results: Here, we present a chromosome-level wintersweet genome assembly with a 1Key Laboratory of Horticultural total size of 695.36 Mb and a draft genome assembly of Calycanthus chinensis. Plant Biology, Ministry of Education, Huazhong Agricultural University, Phylogenetic analyses of 17 representative angiosperm genomes suggest that Wuhan, Hubei 430070, People’s Magnoliids and eudicots are sister to monocots. Whole-genome duplication Republic of China signatures reveal two major duplication events in the evolutionary history of the 6Southwest Engineering Technology and Research Center of wintersweet genome, with an ancient one shared by Laurales, and a more recent Landscape Architecture, State one shared by the Calycantaceae.
    [Show full text]
  • Establishment of in Vitro Plant Regeneration System for Chimonanthus Praecox (L.)
    African Journal of Biotechnology Vol. 11(45), pp. 10358-10361, 5 June, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897/AJB11.4278 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Establishment of in vitro plant regeneration system for Chimonanthus praecox (L.) Mingxiao Zhao, Guoqiang Fan* and Xiaoshen Zhang College of Forestry, Henan Agricultural University, Zhengzhou 450002, China. Accepted 10 May, 2012 An efficient protocol for plant regeneration of Chimonanthus praecox (L.) Link, was developed using leaves from seedlings of seeds. Shoots induction were influenced by cytokinins and nodal positions. The results show that the highest callus induction frequency was obtained on MS medium supplemented with 2.0 mg l−1 6-benzyladenine (6-BA) and 0.9 mg l−1 1-naphthalene-acetic acid (NAA) after 10 days incubation in darkness. The frequency of callus induction of different nodal leaves (from the first to the forth node) varied from 70.0 to 93.5%; the highest frequency of callus induction (93.5%) was observed in the second node group. Through many times subculture of callus, green and compact callus was selected and transferred to regeneration medium (MS, 1/2 MS and woody plant medium (WPM) supplemented with different concentrations of thidiazuron (TDZ) (2.37, 4.74 and 9.48 mg l−1) and NAA (0.74, 1.48, and 2.96 mg l−1). It was shown that the optimal combination of the three factors was WPM + NAA + TDZ. The highest adventitious shoot regeneration frequency of leaf explants (71.33%) and the highest mean number of shoots per explant (2.23) were obtained on WPM supplemented with 2.37 mg l−1 TDZ and 1.48 mg l−1 NAA.
    [Show full text]