Some New Contributions to the Flora of Svalbard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Climate in Svalbard 2100
M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard. -
Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB). -
Seasonal Dynamics of the Marine CO System in Adventfjorden, a West
RESEARCH ARTICLE Seasonal dynamics of the marine CO2 system in Adventfjorden, a west Spitsbergen fjord Ylva Ericson1,2, Melissa Chierici1,3, Eva Falck1,2, Agneta Fransson4, Elizabeth Jones3 & Svein Kristiansen5 1Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway; 2Geophysical Institute, University of Bergen, Bergen, Norway; 3Institute of Marine Research, Fram Centre, Tromsø, Norway; 4Norwegian Polar Institute, Fram Centre, Tromsø, Norway; 5Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway Abstract Keywords Marine carbonate system; aragonite; Time series of the marine CO2 system and related parameters at the IsA Sta- net community production; Arctic fjord tion, by Adventfjorden, Svalbard, were investigated between March 2015 biogeochemistry; Svalbard and November 2017. The physical and biogeochemical processes that govern changes in total alkalinity (TA), total dissolved inorganic carbon (DIC) and the Correspondence Ylva Ericson, Department of Arctic saturation state of the calcium carbonate mineral aragonite (ΩAr) were assessed on a monthly timescale. The major driver for TA and DIC was changes in salin- Geophysics, University Centre in Svalbard, ity, caused by river runoff, mixing and advection. This accounted for 77 and PO Box 156, NO-9171 Longyearbyen, Norway. E-mail: [email protected] 45%, respectively, of the overall variability. It contributed minimally to the variability in ΩAr (5%); instead, biological activity was responsible for 60% of Abbreviations the monthly variations. For DIC, the biological activity was also important, con- ArW: Arctic water; AW: Atlantic water; tributing 44%. The monthly effect of air–sea CO2 fluxes accounted for 11 and CC: coastal current; CTD: conductivity– temperature–depth instrument; DIC: 15% of the total changes in DIC and ΩAr, respectively. -
Checklist of Lichenicolous Fungi and Lichenicolous Lichens of Svalbard, Including New Species, New Records and Revisions
Herzogia 26 (2), 2013: 323 –359 323 Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions Mikhail P. Zhurbenko* & Wolfgang von Brackel Abstract: Zhurbenko, M. P. & Brackel, W. v. 2013. Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions. – Herzogia 26: 323 –359. Hainesia bryonorae Zhurb. (on Bryonora castanea), Lichenochora caloplacae Zhurb. (on Caloplaca species), Sphaerellothecium epilecanora Zhurb. (on Lecanora epibryon), and Trimmatostroma cetrariae Brackel (on Cetraria is- landica) are described as new to science. Forty four species of lichenicolous fungi (Arthonia apotheciorum, A. aspicili- ae, A. epiphyscia, A. molendoi, A. pannariae, A. peltigerina, Cercidospora ochrolechiae, C. trypetheliza, C. verrucosar- ia, Dacampia engeliana, Dactylospora aeruginosa, D. frigida, Endococcus fusiger, E. sendtneri, Epibryon conductrix, Epilichen glauconigellus, Lichenochora coppinsii, L. weillii, Lichenopeltella peltigericola, L. santessonii, Lichenostigma chlaroterae, L. maureri, Llimoniella vinosa, Merismatium decolorans, M. heterophractum, Muellerella atricola, M. erratica, Pronectria erythrinella, Protothelenella croceae, Skyttella mulleri, Sphaerellothecium parmeliae, Sphaeropezia santessonii, S. thamnoliae, Stigmidium cladoniicola, S. collematis, S. frigidum, S. leucophlebiae, S. mycobilimbiae, S. pseudopeltideae, Taeniolella pertusariicola, Tremella cetrariicola, Xenonectriella lutescens, X. ornamentata, -
Written Exam SH-201 the History of Svalbard the University Centre in Svalbard, Monday 6 February 2012
Written exam SH-201 The History of Svalbard The University Centre in Svalbard, Monday 6 February 2012 The exam is a 3 hour written test. It consists of two parts: Part I is a multiple choice test of factual knowledge. Note: This sheet with answers to part I shall be handed in. Part II (see below) is an essay part where you write extensively about one of two alternative subjects. No aids except dictionary are permitted. You may answer in English, Norwegian, Swedish or Danish. 1 2 Part I counts approximately /3 and part II counts /3 of the grade at the evaluation, but adjustment may take place. Both parts must be passed in order to pass the whole exam. Part I: Multiple choice test. Make only one cross for each question. In what year was Bjørnøya discovered by Willem 1. 1569 1596 1603 Barentsz? 2. When did land-based whaling end on Svalbard? ca. 1630 ca. 1680 ca. 1720 Which geographical region did most Russian 3. Pechora Murmansk White Sea hunters and trappers come from? When did Norwegian hunters and trappers start 4. ca. 1700 the 1750s the 1820s going to Svalbard regularly? From when dates the first map to show the whole 5. 1598 1714 1872 Svalbard archipelago? A famous scientific expedition visited Svalbard in 6. Chichagov Fram 1838–39. Which name is it known under? Recherche Svalbard was for a long time a no man’s land. In 7. Norway Sweden Russia 1871, who took an initiative to annex the islands? 8. When did Norway formally take over sovereignty? 1916 1920 1925 When was the Sysselmann (Governor of Svalbard) 9. -
Lichens and Vascular Plants in Duvefjorden Area on Nordaust- Landet, Svalbard
CZECH POLAR REPORTS 9 (2): 182-199, 2019 Lichens and vascular plants in Duvefjorden area on Nordaust- landet, Svalbard Liudmila Konoreva1*, Mikhail Kozhin1,2, Sergey Chesnokov3, Soon Gyu Hong4 1Avrorin Polar-Alpine Botanical Garden-Institute of Kola Scientific Centre of RAS, 184250 Kirovsk, Murmansk Region, Russia 2Department of Geobotany, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1–12, GSP–1, 119234 Moscow, Russia 3Komarov Botanical Institute RAS, Professor Popov St. 2, 197376 St. Petersburg, Russia 4Division of Polar Life Sciences, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21900, Republic of Korea Abstract Floristic check-lists were compiled for the first time for Duvefjorden Bay on Nordaust- landet, Svalbard, based on field work in July 2012 and on data from literature and herbaria. The check-lists include 172 species of lichens and 51 species of vascular plants. Several species rare in Svalbard and in the Arctic were discovered: Candelariella borealis was new to Svalbard. 51 lichen species were newly recorded on Nordaustlandet and 131 lichen species were observed in the Duvefjorden area for the first time. Among lichen species rare in Svalbard and in the Arctic the following can be mentioned: Caloplaca magni-filii, C. nivalis, Lecidea silacea, Phaeophyscia nigricans, Polyblastia gothica, Protothelenella sphinctrinoidella, Rinodina conradii, Stenia geophana, and Tetramelas pulverulentus. Two species of vascular plants, Saxifraga svalbardensis and S. hyperborea, were found new to the Duvefjorden area. The investigated flora is represented mostly by species widespread in Svalbard and in the Arctic. Although Duvefjorden area is situated in the northernmost part of Svalbard, its flora is characterized by relatively high diversity of vascular plants and lichens. -
Polish Polar Research 4-16.Indd
vol. 37, no. 4, pp. 493–509, 2016 doi: 10.1515/popore-2016-0026 Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen, Svalbard Paulina WIETRZYK1*, Michał WĘGRZYN1 and Maja LISOWSKA2 1 Prof. Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland <[email protected]>, <[email protected]> 2 Centre for Polar Studies, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland <[email protected]> * corresponding author Abstract: The rapidly changing Arctic provides excellent opportunities for investigat- ing primary succession on freshly deglaciated areas. Research on the Gåsbreen foreland (S Spitsbergen) traced the succession of particular groups of organisms and species, particularly lichens and bryophytes, and determined the effect of selected abiotic fac- tors on this succession. Fieldwork in 2008, employed a continuous linear transect of phytosociological relevés (1 m2) along the foreland. Data analysis allowed to distinguish five different succession stages and three types of colonisers. Canonical correspondence analysis and a permutation test showed that distance from the front of the glacier and fine grain material in the substrate mostly influenced the distribution and abundance of vegetation, and the steepness of the moraine hills affected the colonisation process, mainly in the older part of the marginal zone. Key words: Arctic, colonisation, glacier, lichens, bryophytes, vascular plants. Introduction Arctic regions offer perfect opportunities for studying primary succession processes on freshly deglaciated areas (Frenot et al. 1998; Jorgenson et al. 2015). Areas which are exposed from retreating glaciers are successively colonised by different groups of organisms such as cyanobacteria, lichens, bryophytes and vascular plants. -
The Flora of Jan Mayen
NORSK POLARINSTITUTT SKRIFTER NR. 130 JOHANNES LID THE FLORA OF JAN MAYEN IlJustrated by DAGNY TANDE LID or1(f t ett} NORSK POLARINSTITUTT OSLO 1964 DET KONGELIGE DEPARTEMENT FOR INDUSTRI OG HÅNDVERK NORSK POLARINSTITUTT Observatoriegt. l, Oslo, Norway Short account of the publications of Norsk Polarinstitutt The two series, Norsk Polarinstitutt - SKRIFTER and Norsk Polarinstitutt - MEDDELELSER, were taken over from the institution Norges Svalbard- og Ishavs undersøkelser (NSIU), which was incorporated in Norsk Polarinstitutt when this was founded in 1948. A third series, Norsk Polarinstitutt - ÅRBOK, is published with one volum(� per year. SKRIFTER includes scientific papers, published in English, French or German. MEDDELELSER comprises shortcr papers, often being reprillts from other publi cations. They generally have a more popular form and are mostly published in Norwegian. SKRIFTER has previously been published under various tides: Nos. 1-11. Resultater av De norske statsunderstuttede Spitsbergen-ekspe. ditioner. No 12. Skrifter om Svalbard og Nordishavet. Nos. 13-81. Skrifter om Svalbard og Ishavet. 82-89. Norges Svalbard- og Ishavs-undersøkelser. Skrifter. 90- • Norsk Polarinstitutt Skrifter. In addition a special series is published: NORWEGIAN-BRITISH-SWEDISH ANTARCTIC EXPEDITION, 1949-52. SCIENTIFIC RESULTS. This series will comprise six volumes, four of which are now completed. Hydrographic and topographic surveys make an important part of the work carried out by Norsk Polarinstitutt. A list of the published charts and maps is printed on p. 3 and 4 of this cover. A complete list of publications, charts and maps is obtainable on request. ÅRBØKER Årbok 1960. 1962. Kr.lS.00. Årbok 1961. 1962. Kr. 24.00. -
Unis|Course Catalogue
1 COURSE UNIS| CATALOGUE the university centre in svalbard 2012-2013 2 UNIS | ARCTIC SCIENCE FOR GLOBAL CHALLENGES UNIS | ARCTIC SCIENCE FOR GLOBAL CHALLENGES 3 INTRODUCTION | 4 map over svalbard ADMISSION REQUIREMENTS | 5 HOW TO APPLY | 7 moffen | ACADEMIC MATTERS | 7 nordaustlandet | ÅsgÅrdfonna | PRACTICAL INFORMATION | 8 newtontoppen | ny-Ålesund | safety | 8 pyramiden | prins Karls | THE UNIS CAMPUS | forland | 8 barentsØya | UNIVERSITY OF THE ARCTIC | longyearbyen | 9 barentsburg | COURSES AT UNIS | isfJord radio | 10 sveagruva | ARCTIC BIOLOGY (AB) | 13 EDGEØYA | storfJorden | ARCTIC GEOLOGY (AG) | 29 hornsund | ARCTIC GEOPHYSICS (AGF) | 67 ARCTIC TECHNOLOGY (AT) SVALBARD | | 85 GENERAL COURSES | 105 4 UNIS | ARCTIC SCIENCE FOR GLOBAL CHALLENGES UNIS | ARCTIC SCIENCE FOR GLOBAL CHALLENGES 5 Semester studies are UNIS OFFERS BACHELOR-, MASTER AND PhD courses available at Bachelor LEVEL COURSES in: level (two courses AT unis | providing a total of ARCTIC BIOLOGY (AB) 30 ECTS). At Master ARCTIC GEOLOGY (AG) and PhD level UNIS offers 3-15 ECTS courses lasting from ARCTIC GEOphYsiCS (AGF) a few weeks to a full semester. In the 2012-2013 academic year, UNIS will be offering altogether 83 courses. An over- ARCTIC TEChnOLOGY (AT) INTRODUCTION view is found in the course table (pages 10-11). The University Centre in Svalbard (UNIS) is the world’s STUDENTS Admission to courses AcaDEMic reQUireMents: northernmost higher education institution, located in at UNIS requires that About 400 students from all over the world attend courses ADMISSION Department of Arctic Biology: Longyearbyen at 78º N. UNIS offers high quality research the applicant is en- annually at UNIS. About half of the students come from 60 ECTS within general natural science, of which 30 ECTS based courses at Bachelor-, Master-, and PhD level in Arctic rolled at Bachelor-, abroad and English is the official language at UNIS. -
Svalbard 2015–2016 Meld
Norwegian Ministry of Justice and Public Security Published by: Norwegian Ministry of Justice and Public Security Public institutions may order additional copies from: Norwegian Government Security and Service Organisation E-mail: [email protected] Internet: www.publikasjoner.dep.no KET T Meld. St. 32 (2015–2016) Report to the Storting (white paper) Telephone: + 47 222 40 000 ER RY M K Ø K J E L R I I Photo: Longyearbyen, Tommy Dahl Markussen M 0 Print: 07 PrintMedia AS 7 9 7 P 3 R 0 I 1 08/2017 – Impression 1000 N 4 TM 0 EDIA – 2 Svalbard 2015–2016 Meld. St. 32 (2015–2016) Report to the Storting (white paper) 1 Svalbard Meld. St. 32 (2015–2016) Report to the Storting (white paper) Svalbard Translation from Norwegian. For information only. Table of Contents 1 Summary ........................................ 5 6Longyearbyen .............................. 39 1.1 A predictable Svalbard policy ........ 5 6.1 Introduction .................................... 39 1.2 Contents of each chapter ............... 6 6.2 Areas for further development ..... 40 1.3 Full overview of measures ............. 8 6.2.1 Tourism: Longyearbyen and surrounding areas .......................... 41 2Background .................................. 11 6.2.2 Relocation of public-sector jobs .... 43 2.1 Introduction .................................... 11 6.2.3 Port development ........................... 44 2.2 Main policy objectives for Svalbard 11 6.2.4 Svalbard Science Centre ............... 45 2.3 Svalbard in general ........................ 12 6.2.5 Land development in Longyearbyen ................................ 46 3 Framework under international 6.2.6 Energy supply ................................ 46 law .................................................... 17 6.2.7 Water supply .................................. 47 3.1 Norwegian sovereignty .................. 17 6.3 Provision of services ..................... -
Gatekart Over Longyearbyen
6YkZciYVaZc K:,K:>:CÇ 6YkZci[_dgYZc K:>)%%Æ<GJ H_³h`gZciZc K:>'(- K:>'(+ 7n`V^V$L]Vg[ H_³dbgYZi K:>*%% K:>'() <gjkZYVaZc K:>'%%Æ=>AB6GG:@HI:CHK:>Ç K:>(%+ 7_³gcYVaZc K:>'(' K :> (%% K:>(%. B6K:>:CÇ<6C<K:>I>A;ANEA6HH:C K:>(%*Æ7JG $;DDIE6I=ID6>GEDGI K:>(%, K K:>'(% :> *% (B :A@ H`_²g^c\V :K: >:C Adc\nZVgZakV K:>(%( A^V K:>(%% K:>''- K:>*%% + K:>'' <VbaZ K:>(%' Adc\nZVgWnZc K:>'') K:>*%& K :> ''' K:>''% K:>&%% K:>(%% K:>'&- K:>'&+ K:>'&* K:>'&) K:>'&( K =Vj\Zc : > K:>&%' ' & % K:>&%%Æ9G6BB:CHK:>:CÇ K:>&%+ <gjkZ'W ?jaZc^hhZ\gjkV CnWnZc HkZgYgjeWnZc K:>&%% <gV[^h`WZVgWZ^YZahZ/HkVaWVgYGZ^hZa^k6H^hVbVgWZ^YbZYAjcYWaVYBZY^V6H!Igdbh³#@Vgi\gjccaV\Adc\nZVgWnZcad`VahingZ OVERNATTING ACCOMMODATION RaBi’s Bua HELSETJENESTER HEALTH SERVICES Arctic Adventures Rebekkas Gave & Suvenir Apotek Chemist/pharmacy Basecamp Spitsbergen Skinnboden Arctic Products Fysioterapeut Physiotherapis Gjestehuset 102 Sport 1 Svalbard Longyearbyen Sykehus Hospital Longyearbyen Camping Sportscenteret PolarLegeSenteret Medical Centre Mary-Ann’s Polarrigg Svalbard Arctic Sport/Skandinavisk Høyfjellsutstyr Tannlege Dentist Radisson SAS Polar Hotel Spitsbergen Svalbardbutikken (Coop Svalbard) Spitsbergen Guesthouse Svalbardbutikken Lyd & Bilde SEVERDIGHETER ATTRACTIONS Spitsbergen Hotel Atelier Aino Artist’s Workshop Svalbard Villmarkssenter TJENESTER SERVICES Barentszhuset The Barentsz House Arctic Autorent Car rental Galleri Svalbard Svalbard Art Gallery MAT OG DRIKKE FOOD & DRINK Bydrift Longyearbyen Gruve 3 Mine no. 3 Barentsz Pub & Spiseri Kultur- og fritidsforetak KF Kirkegård -
Lichen Diversity on Glacier Moraines in Svalbard
Cryptogamie, Mycologie, 2017, 38 (1): 67-80 © 2017 Adac. Tous droits réservés Lichen diversity on glacier moraines in Svalbard Paulina WIETRZYK a*, Michał WĘGRZYN a &Maja LISOWSKA b aProf. Z. Czeppe Department of Polar Research and Documentation, Institute of Botany,Jagiellonian University,Kopernika 27, 31-501 Kraków, Poland bCentrefor Polar Studies, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland Abstract – This paper contributes to studies on the lichen biota of Arctic glacier forelands. The research was carried out in the moraines of three different glaciers in Svalbard: Longyearbreen, Irenebreen and Rieperbreen. In total, 132 lichen taxa and three lichenicolous lichens were recorded. Eight species were recorded for the first time in the Svalbard archipelago: Arthonia gelidae, Buellia elegans, Caloplaca lactea, Cryptodiscus pallidus, Fuscidea kochiana, Merismatium deminutum, Physconia distorta,and Polyblastia schaereriana. One species, Staurothele arctica,was observed for the first time in Spitsbergen (previously recorded only on Hopen island). All the studied glaciers lie in Spitsbergen’s warm region. However,Kaffiøyra Plain, where Irenebreen is located, is characterized by higher levels of humidity,which may explain its different lichen composition compared to that of the other two moraines. The forelands of Rieperbreen and Longyearbreen are located in the same area of Svalbard, which is also the warmest and the driest and where high species diversity is expected. This proved to be true for the Rieperbreen moraine,but not for the Longyearbreen moraine, where species diversity was lowest. The expansion of tourism along Longyearbyen appears to be amajor factor behind the poor development of lichen biota on the Longyearbreen moraine.