Suitability and Profitability of a Cereal Aphid for the Parasitoid Aphidius Platensis in the Context of Conservation Biological
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chromosome-Level Genome Assembly of the Horned-Gall Aphid, Schlechtendalia
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431348; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Chromosome-level genome assembly of the horned-gall aphid, Schlechtendalia 2 chinensis (Hemiptera: Aphididae: Erisomatinae) 3 4 Hong-Yuan Wei1#, Yu-Xian Ye2#, Hai-Jian Huang4, Ming-Shun Chen3, Zi-Xiang Yang1*, Xiao-Ming Chen1*, 5 Chuan-Xi Zhang2,4* 6 1Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China 7 2Institute of Insect Sciences, Zhejiang University, Hangzhou, China 8 3Department of Entomology, Kansas State University, Manhattan, KS, USA 9 4State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; 10 Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant 11 Virology, Ningbo University, Ningbo, China 12 #Contributed equally. 13 *Correspondence 14 Zi-Xiang Yang, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China. 15 E-mail: [email protected] 16 Xiao-Ming Chen, Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China. 17 E-mail: [email protected] 18 Chuan-Xi Zhang, Institute of Insect Sciences, Zhejiang University, Hangzhou, China. 19 E-mail: [email protected] 20 Funding information 21 National Natural Science Foundation of China, Grant/Award number: 31872305, U1402263; The basic research 22 program of Yunnan Province, Grant/Award number: 202001AT070016; The grant for Innovative Team of ‘Insect 23 Molecular Ecology and Evolution’ of Yunnan Province 24 25 Abstract 26 The horned gall aphid Schlechtendalia chinensis, is an economically important insect that induces 27 galls valuable for medicinal and chemical industries. -
Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Panhandle Research and Extension Center Agricultural Research Division of IANR 2008 Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA Kristopher Giles Oklahoma State University, [email protected] Gary L. Hein University of Nebraska-Lincoln, [email protected] Frank Peairs Colorado State University - Fort Collins Follow this and additional works at: https://digitalcommons.unl.edu/panhandleresext Part of the Agriculture Commons Giles, Kristopher; Hein, Gary L.; and Peairs, Frank, "Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA" (2008). Panhandle Research and Extension Center. 33. https://digitalcommons.unl.edu/panhandleresext/33 This Article is brought to you for free and open access by the Agricultural Research Division of IANR at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Panhandle Research and Extension Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 19 Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA KRISTOPHER GILES, 1 GARY HEIN2 AND FRANK PEAIRS3 1Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA 2Department of Entomology, University of Nebraska Panhandle R&E Center, Scottsbluff, Nebraska, USA 3Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA Introduction: Description of the Problem and Need for an Areawide Pest Management Approach In the Great Plains of the USA from Wyoming to Texas, dryland winter wheat either is regularly grown continuously or is followed by a year of fallow in semi-arid locales (Royer and Krenzer, 2000). -
15 Foottit:15 Foottit
REDIA, XCII, 2009: 87-91 ROBERT G. FOOTTIT (*) - H. ERIC L. MAW (*) - KEITH S. PIKE (**) DNA BARCODES TO EXPLORE DIVERSITY IN APHIDS (HEMIPTERA APHIDIDAE AND ADELGIDAE) (*) Canadian National Collection of Insects, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada;[email protected] (**) Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350, U.S.A Foottit R.G., Maw H.E.L., Pike K.S. – DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). A tendency towards loss of taxonomically useful characters, and morphological plasticity due to host and environmental factors, complicates the identification of aphid species and the analysis of relationships. The presence of different morphological forms of a single species on different hosts and at different times of the year makes it difficult to consistently associate routinely collected field samples with particular species definitions. DNA barcoding has been proposed as a standardized approach to the characterization of life forms. We have tested the effectiveness of the standard 658-bp barcode fragment from the 5’ end of the mitochondrial cytochrome c oxidase 1 gene (COI) to differentiate among species of aphids and adelgids. Results are presented for a preliminary study on the application of DNA barcoding in which approximately 3600 specimens representing 568 species and 169 genera of the major subfamilies of aphids and the adelgids have been sequenced. Examples are provided where DNA barcoding has been used as a tool in recognizing the existence of cryptic new taxa, linking life stages on different hosts of adelgids, and as an aid in the delineation of species boundaries. -
Egg Load Dynamics and the Risk of Egg and Time Limitation Experienced by an Aphid Parasitoid in the field Christine Dieckhoff1, Julian C
Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field Christine Dieckhoff1, Julian C. Theobald2, Felix L. Wackers€ 2 & George E. Heimpel3 1Department of Entomology & Wildlife Ecology, University of Delaware, Newark, Delaware 19716 2Lancaster Environment Centre, Centre for Sustainable Agriculture, Lancaster University, Lancaster, LA1 4YQ, UK 3Department of Entomology, University of Minnesota, St Paul, Minnesota 55108 Keywords Abstract Aphis glycines, Binodoxys communis, biological control, egg load, soybean aphid. Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limita- Correspondence tion are mediated by oviposition and egg maturation rates as well as by starva- C. Dieckhoff, University of Delaware, tion risk and other determinants of adult lifespan. Here, we assessed egg load Entomology & Wildlife Ecology, 250 and nutritional state in the soybean aphid parasitoid Binodoxys communis under Townsend Hall, Newark, DE 19716, USA. field conditions to estimate its risk of becoming either egg- or time-limited. Tel: 302-731-7330 (ext 222); The majority of female B. communis showed no signs of egg limitation. Experi- Fax: 302-368-1674; E-mail: [email protected] mental field manipulations of B. communis females suggested that an average of 4–8 eggs were matured per hour over the course of a day. Regardless, egg loads Funding information remained constant over the course of the day at approximately 80 eggs, suggest- This research was funded through a USDA- ing that egg maturation compensates for oviposition. This is the first case of NRI grant to G. -
2009 Proceedings.Indd
Proceedings of the South Dakota Academy of Science, Vol. 88 (2009) 139 THE RELEASE OF A NEW BENEFICIAL INSECT FOR THE BIOLOGICAL CONTROL OF SOYBEAN APHID, A CROP PEST IN SOUTH DAKOTA Ana Mičijević1, Kelley J. Tilmon1, Roger Barrick2, Steve Sutera2, Larry Wag- ner2, Connie Strunk2, Paul Johnson2, Gary Erickson2, and Ray Gosmire2 1 Plant Science Department 2 South Dakota Cooperative Extension Service South Dakota State University Brookings, SD 57007 ABSTRACT The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an important insect pest of soybean, a major crop in South Dakota. First discovered in the USA in 2000, it was accidentally introduced from Asia and spread quickly throughout Midwest. Insecticides are currently the primary control method for this pest, but biological control—control of pests through beneficial species—is a promising management approach. Soybean aphid is seldom a problem in its native Asia largely because of a group of natural enemies that feed on it. Uni- versities and USDA entomologists have identified the Asian parasitoid Binodoxys communis (Gahan) (Hymenoptera: Braconidae) as a promising species to release in the US for biological control of the soybean aphid. Since 2007 South Dakota has been part of a multi-state project to introduce B. communis to the region. In the summer of 2008 seven Midwestern states participated in parasitoid releases. Releases in South Dakota were a cooperative effort between SDSU scientists, Extension Educators, and South Dakota producers. We released B. communis in ten soybean fields in ten counties in eastern South Dakota. We inoculated release sites with a small number of parasitoids which might increase and spread over time. -
Anatomical Investigations of the Male Reproductive System of Selected Species of Macrosiphini
Bulletin of Insectology 61 (1): 179, 2008 ISSN 1721-8861 Anatomical investigations of the male reproductive system of selected species of Macrosiphini Karina WIECZOREK Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland Abstract Histological sections and whole mount preparations of five species of Macrosiphini [Impatientinum asiaticum Nevsky, Hypero- myzus (Hyperomyzus) pallidus Hille Ris Lambers, Myzus (Myzus) cerasi (F.), Rhopalomyzus (Judenkoa) loniceare (Siebold) and Uroleucon obscurum (Koch)] were examined. Key words: Hemiptera, Aphidoidea, Aphididae, Macrosiphini, male reproductive system. In previous research on the structure of the male repro- References ductive system of aphids, about 70 species from various subfamilies have been described, mainly Lachninae BLACKMAN R. L., 1987.- Reproduction cytogenetics and de- (Wojciechowski, 1977), Chaitophorinae (Wieczorek and velopment, pp 163-191. In: Aphids, their biology, natural Wojciechowski, 2004), and Calaphidinae (Głowacka et. enemies and control (MINKS A. K., HARREWIJN P., Ed).- El- sevier, Amsterdam, The Netherland. al., 1974; Wieczorek and Wojciechowski, 2001; Wiec- BOCHEN K., KLIMASZEWSKI S. M., WOJCIECHOWSKI W., zorek, 2006). 1975.- Budowa męskiego układu rozrodczego Macrosipho- In contrast, Aphidinae are the largest and most diverse niella artemisiae (B.De Fonsc.) i M. millefolli (De Geer) group of aphids whose male reproductive system is least (Homoptera, Aphididae).- Acta Biologica Uniwersytet Slaski studied. In Pterocommatini the structure of the male re- w Katowicach, 90: 73-81. productive system has been analysed in Pterocomma GŁOWACKA E., KLIMASZEWSKI S. M., SZELEGIEWICZ H., WOJ- populeum (Kaltenbach) (Wieczorek and Wo- CIECHOWSKI W., 1974.- Uber den Bau des mannlichen Fort- jciechowski, 2005) and Pterocomma salicis (L.) (Wiec- pflanzungssystems der Aphiden (Homoptera, Aphidoidea).- zorek and Mróz, 2006), in Aphidini in Rhopalosiphum Annales Universitas Mariae Curie-Skłodowska, 29C: 133-138. -
DNA Barcodes for Bio-Surveillance
Page 1 of 44 DNA Barcodes for Bio-surveillance: Regulated and Economically Important Arthropod Plant Pests Muhammad Ashfaq* and Paul D.N. Hebert Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada * Corresponding author: Muhammad Ashfaq Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada Email: [email protected] Phone: (519) 824-4120 Ext. 56393 Genome Downloaded from www.nrcresearchpress.com by 99.245.208.197 on 09/06/16 1 For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. Page 2 of 44 Abstract Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. -
On Biodiversity in Grasslands: Coexistence, Invasion and Multitrophic Interactions
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2009 On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions Petermann, J S Abstract: In a rapidly changing world suffering from extensive diversity loss, the most pressing questions remain largely unanswered: how can diversity exist in the first place and what are the consequences of its decline for ecosystems? In grasslands, resource niches have to date been considered the major mechanism responsible for plant coexistence and diversity. The neutral theory has recently challenged this view by attributing species coexistence solely to stochastic processes. Whereas the negative effects of plant diversity loss on primary productivity have been demonstrated numerous times in biodiversity experiments, its effects on higher trophic levels have rarely been explored. Here, we used aglasshouse experiment, simulation modelling approaches and field studies in the Jena biodiversity experiment to examine diversity maintenance, invasion and community assembly in plant communities and effects of plant diversity loss on higher trophic levels. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-24943 Dissertation Published Version Originally published at: Petermann, J S. On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions. 2009, University of Zurich, Faculty of Science. On biodiversity in grasslands: Coexistence, invasion and multitrophic interactions Jana S. Petermann Die vorliegende Arbeit wurde von der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich im Herbstsemester 2009 als Dissertation angenommen. Promotionskomitee: Prof. Dr. Bernhard Schmid (Vorsitz) Prof. Dr. Christine Müller Prof. Dr. Jasmin Joshi Prof. Dr. -
Woolly Apple Aphid Generalist Predator Feeding Behavior Assessed Through Video Observation in an Apple Orchard
J Insect Behav https://doi.org/10.1007/s10905-019-09722-z Woolly Apple Aphid Generalist Predator Feeding Behavior Assessed through Video Observation in an Apple Orchard Robert J. Orpet & David W. Crowder & Vincent P. Jones Received: 19 February 2019 /Revised: 21 June 2019 /Accepted: 28 June 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Generalist predators are considered effective larvae and earwigs differ in their feeding behavior in biological control agents in many agroecosystems. the field, and provide new evidence that ants may hinder However, characterizing the behavior of different gen- aphid biological control by antagonizing earwigs. eralist predator species in realistic field settings is diffi- cult due to challenges associated with directly observing Keywords Biological control . Eriosoma lanigerum . predation events in the field. Here we video recorded Forficula auricularia . formicidae . intraguild predation woolly apple aphid (Erisoma lanigerum) (Hemiptera: Aphididae) colonies to directly observe the feeding behavior of their generalist predators during the day Introduction and night. To observe European earwigs (Forficula auricularia) (Dermaptera: Forficulidae), which are Pest consumption in agroecosystems generally increases thought to be key woolly apple aphid predators but were when different predator taxa complement each other by not present at our study location, we released earwigs feeding at different times or in different locations into the study area. Across 1413 h of video recorded (Straub et al. 2008). However, if niche overlap occurs, over 4 weeks, earwigs made the most attacks on woolly intraguild predation can disrupt biological control of apple aphid colonies, but coccinellid larvae spent more pests (Rosenheim 1998;Straubetal.2008). -
Development and Parasitism by Aphelinus Certus (Hymenoptera: Aphelinidae), a Parasitoid of Aphis Glycines (Hemiptera: Aphididae) Author(S): Andrew J
Development and Parasitism by Aphelinus certus (Hymenoptera: Aphelinidae), a Parasitoid of Aphis glycines (Hemiptera: Aphididae) Author(s): Andrew J. Frewin, Yingen Xue, John A. Welsman, A. Bruce Broadbent, Arthur W. Schaafsma, and Rebecca H. Hallett Source: Environmental Entomology, 39(5):1570-1578. 2010. Published By: Entomological Society of America DOI: 10.1603/EN09312 URL: http://www.bioone.org/doi/full/10.1603/EN09312 BioOne (www.bioone.org) is an electronic aggregator of bioscience research content, and the online home to over 160 journals and books published by not-for-profit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. BEHAVIOR Development and Parasitism by Aphelinus certus (Hymenoptera: Aphelinidae), a Parasitoid of Aphis glycines (Hemiptera: Aphididae) ANDREW J. FREWIN,1 YINGEN XUE,1 JOHN A. WELSMAN,2 A. BRUCE BROADBENT,3 2 1,4 ARTHUR W. SCHAAFSMA, AND REBECCA H. HALLETT Environ. Entomol. 39(5): 1570Ð1578 (2010); DOI: 10.1603/EN09312 ABSTRACT Since its introduction in 2000, the soybean aphid (Aphis glycines Matsumura) has been a serious pest of soybean in North America. -
Mating Behaviour of Aphidius Ervi (Hymenoptera: Braconidae): The
Eur. J. Entomol. 99: 451-456, 2002 ISSN 1210-5759 Mating behaviourAphidius of ervi (Hymenoptera: Braconidae): The role of antennae Donatella BATTAGLIA1, Nunzio ISIDORO2, Roberto ROMANI3, F erdinando BIN3 and F rancesco PENNACCHIO1* 1Dipartimento di Biología, Difesa e Biotecnologie Agro-Forestali, Universita della Basilicata, Macchia Romana, 85100 Potenza, Italy. 2Dipartimento di Biotecnologie Agrarie ed Ambientali, Universita di Ancona, via Brecce Bianche, 60100 Ancona, Italy. 3Dipartimento di Arboricoltura e Protezione delle Piante, Universita di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy. Key words. Mating behaviour, ultrastructure, parasitoid, pheromone, functional anatomy, antennal glands, sensilla,Aphidius ervi, Aphidiinae Abstract. In the mating behaviour ofAphidius ervi Haliday the antennae play a pivotal role in partner recognition and acceptance. Mating failure was always observed when antennal contact was experimentally prevented. The maleA. of ervi has filiform antennae, consisting of scape, pedicel and 18-20 cylindrical antennomeres (flagellar segments), which bear numerous types of sensory struc tures and, interspersed among the multiporous plate sensilla, especially on the 1th and 2nd flagellar segments, scattered pores. A secretion oozes from these pores in virgin males exposed to conspecific females. Transmission electron microscopy revealed that these pores are the external openings of integumentary glands. Behavioural and morpho-functional observations indicated that a double step sex recognition mechanism is present in A. ervi, as in other parasitic Hymenoptera. Basically, female recognition by males appears to be mediated by a volatile sex pheromone, that triggers the behavioural sequence leading to mounting. Then, the female recognizes and accepts the male after antennal contact. This is mediated by the secretion that oozes from the male antennal glands, which acts as a contact pheromone. -
Aphid-Parasitoid (Insecta) Diversity and Trophic Interactions in South Dakota
Proceedings of the South Dakota Academy of Science, Vol. 97 (2018) 83 APHID-PARASITOID (INSECTA) DIVERSITY AND TROPHIC INTERACTIONS IN SOUTH DAKOTA Abigail P. Martens* and Paul J. Johnson Insect Biodiversity Lab South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Parasitoid wasps of the subfamily Aphidiinae (Hymenoptera: Braconidae) specialize on aphids (Hemiptera: Aphididae) as hosts. The diversity of known and probable aphidiine wasps from South Dakota is itemized, with represen- tation by 13 genera and 42 species, 43% of which are probably adventitious. The wasps and aphids are central to various combinations of multitrophic relationships involving host plants and secondary parasitoids. Selected native and introduced aphid host taxa were quantitatively and qualitatively collected from diverse native and crop host plants in eastern South Dakota and western Iowa. Wasps were reared to confirm plant association, host aphid association, taxonomic diversity, and native or introduced status of the wasps. Acanthocaudus tissoti (Smith) and Aphidius (Aphidius) ohioensis (Smith) were found together on the native aphid Uroleucon (Uroleucon) nigrotuberculatum (Olive), a new host aphid species for both wasps on Solidago canadensis L. (Asterales: Asteraceae). The native waspLysiphlebus testaceipes (Cresson) was repeatedly reared in mas- sive numbers from mummies of invasive Aphis glycines Matsumura on soybean, Glycine max (L.) Merr. This wasp was also reared from the non-nativeAphis nerii Boyer de Fonscolombe and the native Aphis asclepiadis Fitch, both on Asclepias syriaca L. The introduced wasp Binodoxys communis (Gahan) was not recovered from any Aphis glycines population. Hyperparasitoids from the genus Dendrocerus Ratzeburg (Hymenoptera: Megaspilidae), and the pteromalid (Hymenoptera: Pteromalidae) genera Asaphes Walker, and Pachyneuron Walker were reared from mummies of Uroleucon (Uroleucon) nigrotuberculatum parasitized by either Acanthocaudus tissoti or Aphidius (Aphidius) ohioensis.