Time Lag Between Glacial Retreat and Upward Migration Alters Tropical Alpine ☆ T Communities

Total Page:16

File Type:pdf, Size:1020Kb

Time Lag Between Glacial Retreat and Upward Migration Alters Tropical Alpine ☆ T Communities Perspectives in Plant Ecology, Evolution and Systematics 30 (2018) 89–102 Contents lists available at ScienceDirect Perspectives in Plant Ecology, Evolution and Systematics journal homepage: www.elsevier.com/locate/ppees Research article Time lag between glacial retreat and upward migration alters tropical alpine ☆ T communities Anaïs Zimmera,b,c, Rosa I. Menesesb, Antoine Rabateld, Alvaro Sorucoe, Olivier Danglesf,g,h, ⁎ Fabien Anthelmea,b,c, a AMAP, IRD, CNRS, INRA, Université de Montpellier, Montpellier, France b Museo Nacional de Historia Natural, Herbario Nacional de Bolivia (LPB), Cota Cota, Casilla 10077 Correo Central, La Paz, Bolivia c Instituto de Ecología, Universidad Mayor San Andrés, Calle 27, Cota Cota, Campus Universitario, La Paz, Bolivia d Université Grenoble Alpes, CNRS, IRD, Institut des Géosciences de l’Environnement (IGE, UMR 5001), F-38000 Grenoble, France e Instituto de Geología y del Medio Ambiente, Universidad Mayor San Andrés, Calle 27, Cota Cota, Campus Universitario, La Paz, Bolivia f Institut de Recherche pour le Développement (IRD), EGCE, 91198 Gif-sur-Yvette Cedex, France g Université Paris-Sud 11, 91405 Orsay Cedex, France h Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Quito, Ecuador ARTICLE INFO ABSTRACT Keywords: Species range shifts and possible species extinctions in alpine regions are hypothesized being influenced by the Biological soil crust increasing time lag between the velocity of global warming and the slowness of primary succession. We tested this Climatic debt hypothesis in tropical alpine environments above 4700 m a.s.l. (Central Andes) and we explored the underlying Chronosequence mechanisms at work by using four sites gradually deglaciated since the acceleration of warming in the late 1970’s. Nurse plant These post-glacial chronosequences, made available by a multidisciplinary approach combining glaciology and Species range shifts ecology, are extremely rare and provide a pertinent space-for-time substitution for the study of climate change Tropical andes effects. We found consistent patterns in plant succession (abundance, species richness and functional strategies) along the four chronosequences. Dispersal limitation was a prominent constraint for succession, even at the end of the chronosequences, leading to an overrepresentation of anemochorous species in comparison with adjacent ecosystems. Nurse plants were infrequent and their low maturity seemed to make them poorly efficient as facil- itators, contrarily to the expectations made by the stress-gradient hypothesis in alpine regions. This suggests that, despite the accelerating rate of warming, the dynamics of primary succession remains slow, generating a climatic debt and hampering the adaptation to climate change in alpine plant communities. 1. Introduction warming (Gottfried et al., 2012; Lenoir and Svenning, 2015; Harsch and HilleRisLambers, 2016). Located at the upper limit of life, alpine species Under the pervasive effects of climate warming on ecosystems, are particularly sensitive to these range shifts because new, upward characterizing the biodiversity-climate change relationship has become habitats are often devoid of life and soil, or they are simply absent. The a major scientific challenge (Lavergne et al., 2010; Chen et al., 2011; migration lag experienced by alpine plants, i.e. the time spent between Urban, 2015). Especially, a detailed description of patterns and me- a climatic fluctuation and the moment when plants effectively reach the chanisms of vegetation succession is required to identify the ecological new site, has been shown to cause a significant reduction in their spatial processes that will shape future biodiversity (Walker and Wardle, distribution in a study centred on the Holocene scale (Dullinger et al., 2014). In mountain systems, despite the local availability of biotic and 2012). Given the high magnitude and velocity of current and predicted abiotic refuges in heterogeneous areas (Scherrer and Körner, 2011; climate change, it is expected that this migration lag might affect ne- Anthelme et al., 2014a), the majority of organisms need to perform gatively the altitudinal distribution of alpine species (Svenning and upward range shifts to adapt to the direct and indirect effects of Sandel, 2013). A key issue is to know whether plant migration lag can Abbreviations: CSR, competitor, stress-tolerant, ruderal; BSC, biological soil crust; LIA, little ice age ☆ This article is part of a special issue entitled Alpine and arctic plant communities: a worldwide perspective published at the journal Perspectives in Plant Ecology, Evolution and Systematics 30C. ⁎ Corresponding author at: UMR AMAP/DIADE, Boulevard de la Lironde, TA A-51/PS2, F-34398 Montpellier Cedex 5, France. E-mail addresses: [email protected] (A. Zimmer), [email protected] (R.I. Meneses), [email protected] (A. Rabatel), [email protected] (A. Soruco), [email protected] (O. Dangles), [email protected] (F. Anthelme). http://dx.doi.org/10.1016/j.ppees.2017.05.003 Received 11 October 2016; Received in revised form 24 May 2017; Accepted 30 May 2017 Available online 13 June 2017 1433-8319/ © 2017 Elsevier GmbH. All rights reserved. A. Zimmer et al. Perspectives in Plant Ecology, Evolution and Systematics 30 (2018) 89–102 result in a climatic debt for natural communities that would be no nurse plants, thus indirectly reducing plant diversity through cascade longer in equilibrium with climate (Devictor et al., 2012; Svenning and effects (sensu Malatesta et al., 2016)? And (2) would the short time Sandel, 2013). available for the development of alpine nurse plants in recently de- Elevation has been shown positively correlated with the intensity of glaciated sites impact negatively plant communities because of limited warming in mountainous areas, with tropical alpine ecosystems being ontogenic variations between the nurse and the beneficiary (Anthelme among the most heavily affected by global warming because of their and Dangles, 2012)? high elevation, generally above 4000 m a.s.l. (Bradley et al., 2006; MRI, More generally, how the various pioneer organisms interact early 2015). This is observable with the tropical Andean glaciers, which have after glacial retreat is poorly known and requires further investigation experienced a more pronounced shrinking than other glaciers world- (Matthews and Vater, 2015; Erschbamer and Caccianiga, 2016). Among wide since the late 1970’s(Rabatel et al., 2013). The impacts of these these organisms, biological soil crust (BSC), an association of bacteria, changes on biodiversity seem to be rapid and severe, as demonstrated lichens, algae, mosses and fungi, has been proposed to be another driver with aquatic and terrestrial invertebrates (Jacobsen et al., 2012; Cauvy- of primary succession after glacial retreat, through facilitative interac- Fraunié et al., 2016; Moret et al., 2016). They are in line with the recent tions with other plants (Türk and Gärtner, 2001; Breen and Lévesque, evidence that the biodiversity of South America −the continent that 2008; Matthews and Vater, 2015). Can they ensure successful primary shelters more than 90% of tropical alpine regions worldwide- is the succession under a rapidly changing climate irrespective of nurse plant most affected by changing climate with 23% of its species at risk vs. effects? 7.9% worldwide, under an optimistic warming scenario (Urban, 2015). By characterizing the abiotic environment, the species diversity, Tropical alpine environments are also impacted by climate warming at plant–plant and plant-rock spatial associations along primary succes- ecosystem level, through glacier shrinking, which has been shown to sion in four sites in the tropical Andes gradually deglaciated since the modify water input and increase ecosystem fragmentation (Dangles late 1970’s (post-glacial chronosequences) we aimed at testing these et al., 2017) and by increasing plant growth and organic carbon pro- specific hypotheses and their related research questions. Our results duction (Cooper et al., 2015). All in all, this makes tropical Andean were discussed into the recent conceptual framework on species range ecosystems flagship descriptors for the characterization of the biodi- shifts consecutive to global changes (Lenoir and Svenning, 2015), ex- versity-climate change interactions in a changing world. However, al- ploring future scenarios for the tropical alpine biodiversity. though secondary succession in the alpine tropics has received con- siderable attention (e.g. Sarmiento et al., 2003; Bueno and Llambí, 2. Material and methods 2015), primary succession has been overlooked, so far, especially its characterization in a changing world (but see Suárez et al., 2015). 2.1. Study area and study sites Our first specific hypothesis is that the unrivalled velocity of warming in tropical alpine regions may exacerbate the dispersal filter At elevations above 500 m a.s.l., the tropical Andes extend over 1.5 with new species assemblages being even more dominated by ane- millions km2. They are one of the most important biodiversity hotspots mochorous species than what has been observed along longer post- worldwide; by, with a high proportion of endemic plants (Anthelme glacial chronosequences, so far (Stöcklin and Bäumler, 1996; et al., 2014b). Tropical alpine regions in the Andes range between Erschbamer and Caccianiga, 2016; Marta et al., 2016). Indeed, wind is 3200 m a.s.l. and more than 5000 m a.s.l., even
Recommended publications
  • A REVISION of TRISETUM Victor L. Finot,' Paul M
    A REVISION OF TRISETUM Victor L. Finot,' Paul M. Peterson,3 (POACEAE: POOIDEAE: Fernando 0 Zuloaga,* Robert J. v sorene, and Oscar Mattnei AVENINAE) IN SOUTH AMERICA1 ABSTRACT A taxonomic treatment of Trisetum Pers. for South America, is given. Eighteen species and six varieties of Trisetum are recognized in South America. Chile (14 species, 3 varieties) and Argentina (12 species, 5 varieties) have the greatest number of taxa in the genus. Two varieties, T. barbinode var. sclerophyllum and T longiglume var. glabratum, are endemic to Argentina, whereas T. mattheii and T nancaguense are known only from Chile. Trisetum andinum is endemic to Ecuador, T. macbridei is endemic to Peru, and T. foliosum is endemic to Venezuela. A total of four species are found in Ecuador and Peru, and there are two species in Venezuela and Colombia. The following new species are described and illustrated: Trisetum mattheii Finot and T nancaguense Finot, from Chile, and T pyramidatum Louis- Marie ex Finot, from Chile and Argentina. The following two new combinations are made: T barbinode var. sclerophyllum (Hack, ex Stuck.) Finot and T. spicatum var. cumingii (Nees ex Steud.) Finot. A key for distinguishing the species and varieties of Trisetum in South America is given. The names Koeleria cumingii Nees ex Steud., Trisetum sect. Anaulacoa Louis-Marie, Trisetum sect. Aulacoa Louis-Marie, Trisetum subg. Heterolytrum Louis-Marie, Trisetum subg. Isolytrum Louis-Marie, Trisetum subsect. Koeleriformia Louis-Marie, Trisetum subsect. Sphenopholidea Louis-Marie, Trisetum ma- lacophyllum Steud., Trisetum variabile E. Desv., and Trisetum variabile var. virescens E. Desv. are lectotypified. Key words: Aveninae, Gramineae, Poaceae, Pooideae, Trisetum.
    [Show full text]
  • Project Report
    THE APPLICATION OF PHYTOLITH AND STARCH GRAIN ANALYSIS TO UNDERSTANDING FORMATIVE PERIOD SUBSISTENCE, RITUAL, AND TRADE ON THE TARACO PENINSULA, HIGHLAND BOLIVIA ___________________________________________________________________ A Thesis Presented to the Faculty of the Graduate School University of Missouri, Columbia ___________________________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Arts ___________________________________________________________________ By AMANDA LEE LOGAN Supervisor: Dr. Deborah M. Pearsall AUGUST 2006 Dedicated to the memory of my grandmother Joanne Marie Higgins 1940-2005 ACKNOWLEDGEMENTS There are a great number of people who have helped in this process in passing or in long, detailed conversations, and everything in between. First and foremost, many thanks to my advisor, Debby Pearsall, for creative and inspired guidance, and for taking the time to talk over everything from the smallest detail to the biggest challenges. Debby introduced me to the world of phytoliths, and then to the wonders of starch grains, and encouraged me to find and pursue the issues that drive me. My committee has been very helpful and patient, and made my oral exams and defense far more enjoyable then expected—Dr. Christine Hastorf, Dr. Bob Benfer, and Dr. Randy Miles. Dr. Benfer was crucial in helping me sort through the statistical applications. I also benefited tremendously from conversations with and advice from my cohorts in the MU Paleoethnobotany lab, or as we are better known, the “Pearsall Youth”— Neil Duncan, Shawn Collins, Meghann O’Brien, Tom Hart, and Nicole Little. Dr. Karol Chandler-Ezell gave me great advice on calcium oxalate and chemical processing. Dr. Todd VanPool graciously provided much needed advice on the statistical applications.
    [Show full text]
  • Moquegua, Perú) Revista Peruana De Biología, Vol
    Revista Peruana de Biología ISSN: 1561-0837 [email protected] Universidad Nacional Mayor de San Marcos Perú Montesinos-Tubée, Daniel B. Diversidad florística de la cuenca alta del río Tambo-Ichuña (Moquegua, Perú) Revista Peruana de Biología, vol. 18, núm. 1, abril, 2011, pp. 119-132 Universidad Nacional Mayor de San Marcos Lima, Perú Disponible en: http://www.redalyc.org/articulo.oa?id=195022429008 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Rev. peru. biol. 18(1): 119- 132 (Abril 2011) © Facultad de Ciencias Biológicas UNMSM Diversidad florística de la cuenca alta del ríoISSN Tambo-Ichuña 1561-0837 Diversidad florística de la cuenca alta del río Tambo-Ichuña (Moquegua, Perú) Floristic diversity of the upper river basin Tambo-Ichuña (Moquegua, Peru) Daniel B. Montesinos-Tubée Resumen NCP Group, Wageningen Univer- sity. Netherlands. Steinerbos 229, La diversidad florística de plantas vasculares es estudiada en la cuenca del río Tambo-Ichuña, la puna y bofe- 2134JX Hoofddorp, Netherlands. Dirección actual: Calle Ilo 125, dales altoandinos en los distritos de Ichuña, Ubinas y Yunga (3400 – 4700 m de altitud), provincia General San Martin de Socabaya, Arequi- Sánchez Cerro, departamento de Moquegua, Perú. La flora vascular de esta región está integrada por 70 pa, Perú. [email protected], familias, 238 géneros y 404 especies. Las Magnoliopsida representan el 78% de las especies, las Liliopsida [email protected] 16%, Pteridófitos 6% y Gimnospermas 0,5%.
    [Show full text]
  • Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
    bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species).
    [Show full text]
  • Classification and Description of World Formation Types
    CLASSIFICATION AND DESCRIPTION OF WORLD FORMATION TYPES PART II. DESCRIPTION OF WORLD FORMATIONS (v 2.0) Hierarchy Revisions Working Group (Federal Geographic Data Committee) 2012 Don Faber-Langendoen, Todd Keeler-Wolf, Del Meidinger, Carmen Josse, Alan Weakley, Dave Tart, Gonzalo Navarro, Bruce Hoagland, Serguei Ponomarenko, Jean-Pierre Saucier, Gene Fults, Eileen Helmer This document is being developed for the U.S. National Vegetation Classification, the International Vegetation Classification, and other national and international vegetation classifications. July 18, 2012 This report was produced by NVC partners (NatureServe, Ecological Society of America, U.S. federal agencies) through the Federal Geographic Data Committee. Printed from NatureServe Biotics on 24 Jul 2012 Citation: Faber-Langendoen, D., T. Keeler-Wolf, D. Meidinger, C. Josse, A. Weakley, D. Tart, G. Navarro, B. Hoagland, S. Ponomarenko, J.-P. Saucier, G. Fults, E. Helmer. 2012. Classification and description of world formation types. Part I (Introduction) and Part II (Description of formation types, v2.0). Hierarchy Revisions Working Group, Federal Geographic Data Committee, FGDC Secretariat, U.S. Geological Survey. Reston, VA, and NatureServe, Arlington, VA. i Classification and Description of World Formation Types. Part II: Formation Descriptions, v2.0 ACKNOWLEDGEMENTS The work produced here was supported by the U.S. National Vegetation Classification partnership between U.S. federal agencies, the Ecological Society of America, and NatureServe staff, working through the Federal Geographic Data Committee (FGDC) Vegetation Subcommittee. FGDC sponsored the mandate of the Hierarchy Revisions Working Group, which included incorporating international expertise into the process. For that reason, this product represents a collaboration of national and international vegetation ecologists.
    [Show full text]
  • Dated Historical Biogeography of the Temperate Lohinae (Poaceae, Pooideae) Grasses in the Northern and Southern Hemispheres
    -<'!'%, -^,â Availableonlineatwww.sciencedirect.com --~Î:Ùt>~h\ -'-'^ MOLECULAR s^"!! ••;' ScienceDirect PHJLOGENETICS .. ¿•_-;M^ EVOLUTION ELSEVIER Molecular Phylogenetics and Evolution 46 (2008) 932-957 ^^^^^^^ www.elsevier.com/locate/ympev Dated historical biogeography of the temperate LoHinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres Luis A. Inda^, José Gabriel Segarra-Moragues^, Jochen Müller*^, Paul M. Peterson'^, Pilar Catalán^'* ^ High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte km 1, E-22071 Huesca, Spain Institute of Desertification Research, CSIC, Valencia, Spain '^ Friedrich-Schiller University, Jena, Germany Smithsonian Institution, Washington, DC, USA Received 25 May 2007; revised 4 October 2007; accepted 26 November 2007 Available online 5 December 2007 Abstract Divergence times and biogeographical analyses liave been conducted within the Loliinae, one of the largest subtribes of temperate grasses. New sequence data from representatives of the almost unexplored New World, New Zealand, and Eastern Asian centres were added to those of the panMediterranean region and used to reconstruct the phylogeny of the group and to calculate the times of lineage- splitting using Bayesian approaches. The traditional separation between broad-leaved and fine-leaved Festuca species was still main- tained, though several new broad-leaved lineages fell within the fine-leaved clade or were placed in an unsupported intermediate position. A strong biogeographical signal was detected for several Asian-American, American, Neozeylandic, and Macaronesian clades with dif- ferent aifinities to both the broad and the fine-leaved Festuca. Bayesian estimates of divergence and dispersal-vicariance analyses indicate that the broad-leaved and fine-leaved Loliinae likely originated in the Miocene (13 My) in the panMediterranean-SW Asian region and then expanded towards C and E Asia from where they colonized the New World.
    [Show full text]
  • Redalyc.Micromorfología De La Epidermis De La Lemma De Trisetum Y Géneros Afines (Poaceae, Pooideae)
    Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina Finot, Victor L.; Baeza, Carlos M.; Matthei, Oscar Micromorfología de la epidermis de la lemma de trisetum y géneros afines (Poaceae, Pooideae) Darwiniana, vol. 44, núm. 1, julio, 2006, pp. 32-57 Instituto de Botánica Darwinion Buenos Aires, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=66944103 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto DARWINIANA 44(1): 32-57. 2006 ISSN 0011-6793 MICROMORFOLOGÍA DE LA EPIDERMIS DE LA LEMMA DE TRISETUM Y GÉNEROS AFINES (POACEAE, POOIDEAE) Víctor L. Finot1, Carlos M. Baeza2 & Oscar Matthei2 1Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Casilla 537, Chillán, Chile; [email protected] (autor corresponsal). 2Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile. Abstract. Finot, V. L., C. M. Baeza & O. Matthei. 2006. Epidermis micromorphology of the lemma in Trisetum and related genera (Poaceae, Pooideae). Darwiniana 44(1): 32-57. The micromorphological features of the lemma were investigated in Trisetum and related genera in Pooideae (Poaceae) using scanning electron microscopy to evaluate the circumscription of the genus Trisetum and its systematic relationships. Seventy six species were studied including 32 species of Tri- setum and selected species of Amphibromus (1 sp.), Avena (2 spp.), Avenula (6 spp.), Deschampsia (6 spp.), Dielsiochloa (1 sp.), Graphephorum (2 spp.), Gymnachne (1 sp.), Helictotrichon (8 spp.), Koe- leria (5 spp.), Leptophyllochloa (1 sp.), Peyritschia (4 spp.), Raimundochloa (1 sp.), Relchela (1 sp.), Rhombolytrum (1 sp.), Rostraria (1 sp.) and Sphenopholis (3 spp.).
    [Show full text]
  • Flora and Vegetation of the Huascarán National Park, Ancash, Peru: With
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Flora and vegetation of the Huascarán National Park, Ancash, Peru: with preliminary taxonomic studies for a manual of the flora David Nelson Smith Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Smith, David Nelson, "Flora and vegetation of the Huascarán National Park, Ancash, Peru: with preliminary taxonomic studies for a manual of the flora " (1988). Retrospective Theses and Dissertations. 8891. https://lib.dr.iastate.edu/rtd/8891 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Poaceae: Pooideae: Stipeae) Based on Analysis of Multiple Chloroplast Loci, ITS, and Lemma Micromorphology
    Romaschenko & al. • Systematics and evolution of needle grasses TAXON 61 (1) • February 2012: 18–44 SYSTEMATICS AND PHYLOGENY Systematics and evolution of the needle grasses (Poaceae: Pooideae: Stipeae) based on analysis of multiple chloroplast loci, ITS, and lemma micromorphology Konstantin Romaschenko,1,2 Paul M. Peterson,2 Robert J. Soreng,2 Nuria Garcia-Jacas,1 Oksana Futorna3 & Alfonso Susanna1 1 Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Passeig del Migdia s.n., 08038, Barcelona, Spain 2 Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20013, U.S.A. 3 M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 01601 Kiev, Ukraine Author for correspondence: Paul M. Peterson, [email protected] Abstract We conducted a molecular phylogenetic study of the tribe Stipeae using nine plastid DNA sequences (trnK-matK, matK, trnH-psbA, trnL-F, rps3, ndhF, rpl32-trnL, rps16-trnK, rps16 intron), the nuclear ITS DNA regions, and micromor- phological characters from the lemma surface. Our large original dataset includes 156 accessions representing 139 species of Stipeae representing all genera currently placed in the tribe. The maximum likelihood and Bayesian analyses of DNA sequences provide strong support for the monophyly of Stipeae; including, in phylogenetic order, Macrochloa as remote sister lineage to all other Stipeae, then a primary stepwise divergence of three deep lineages with a saw-like (SL) lemma epidermal pattern (a plesiomorphic state). The next split is between a lineage (SL1) which bifurcates into separate Eurasian and American clades, and a lineage of three parts; a small Patis (SL2) clade, as sister to Piptatherum s.str.
    [Show full text]
  • Diversidad Biológica De La Reserva Nacional De Salinas Y Aguada Blanca
    DIVERSIDAD BIOLÓGICA DE LA RESERVA NACIONAL DE SALINAS Y AGUADA BLANCA Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca Arequipa - Moquegua Horacio Zeballos José Antonio Ochoa Evaristo López EDITORES Código 13520 ZEBALLOS, Horacio; José Antonio OCHOA; Evaristo LÓPEZ, editores. Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca. Lima: desco, PROFONANPE, SERNANP, 2010. 314 pp. Recursos Naturales / Fauna / Ecología /Conservación de la Naturaleza / Perú Este trabajo ha sido posible gracias al apoyo de: Detalle de la carátula: Pájaro del queñual (Oreomanes fraseri) y queñua (Polylepis rugulosa). Diseño de carátula: José Luis Velásquez Fotografías interiores: José Luis Velásquez, Óscar Mujica, José Antonio Ochoa, Horacio Zeballos y archivo de desco Corrección de estilo y cuidado de la edición: Annie Ordóñez Diagramación: Ediciones Nova Print SAC. Editores: Horacio Zeballos, José A. Ochoa y Evaristo López Tirada: 1000 ejemplares. Primera edición. ISBN: 978-612-4043-09-3 Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2009-14887 Impresión: Litho & Arte SAC Jr. Iquique Nº 46 Breña, Lima – Perú. © desco / PROFONANPE / SERNANP desco Centro de Estudios y Promoción del Desarrollo León de la Fuente 110. Lima 17 – Perú ☎ (51-1) 6138300 Málaga Grenet 678. Arequipa – Perú ☎ (51-54) 257043 www.desco.org.pe PROFONANPE Fondo de Promoción de las Áreas Naturales Protegidas del Perú Av. Javier Prado Oeste 2378. Lima 27 – Perú ☎ (51-1) 2181097 www.profonanpe.org.pe SERNANP Servicio Nacional de Áreas Naturales Protegidas por el Estado Ministerio del Ambiente Calle Diecisiete Nº 355, Urb. El Palomar. Lima 27 – Perú ☎ (51-1) 2252803 www.sernanp.gob.pe Abril de 2010 Esta publicación ha sido elaborada en virtud al Contrato de Administración Parcial de Operaciones de la Reserva Nacional de Salinas y Aguada Blanca, ejecutado por desco, dentro del marco del Proyecto Gestión Participativa de Áreas Naturales Protegidas (GPAN), ejecutado por PROFONANPE y SERNANP con apoyo del Banco Mundial y KfW.
    [Show full text]
  • Redalyc.Plant Community Variation Across a Puna Landscape in the Chilean Andes
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile LAMBRINOS, JOHN G.; KLEIER, CATHERINE C.; RUNDEL, PHILIP W. Plant community variation across a puna landscape in the Chilean Andes Revista Chilena de Historia Natural, vol. 79, núm. 2, 2006, pp. 233-243 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944278009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative HIGH PUNA VEGETATION; ALTA VEGETACIÓN DELRevista PUNA Chilena de Historia Natural233 79: 233-243, 2006 Plant community variation across a puna landscape in the Chilean Andes Variación en la comunidad vegetal de un paisaje de puna en los Andes chilenos JOHN G. LAMBRINOS1,2*, CATHERINE C. KLEIER1,3 & PHILIP W. RUNDEL1 1 Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles, California 90095-1606, USA 2 Present address: Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, Oregon 97331-7304, USA 3 Present Address: Department of Biology, Regis University, 3333 Regis Boulevard, Denver, Colorado 80221, USA; * e-mail for correspondence: [email protected] ABSTRACT We describe patterns of plant species and growth form abundance in the puna vegetation of Parque Nacional Lauca, Chile. At more than 4,300 m, the extreme habitat of the study site supported relatively few species. These few species, however, represented a diverse array of growth forms that were organized with respect to distinct environmental gradients.
    [Show full text]
  • IV. Subfamily Pooideae
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 48: 1-730 Catalogue of New World Grasses (Poaceae): IV. Subfamily Pooideae m3 - :' ••' -: l o ; ! d i if 'J i :::.';v., ,;r)r:. M>;;-irii1aiS Robert J. Sbfehg, Paul M. Peterson, Gerrit Davidse, Emmet J. Judziewicz, Fernando O. Zuloaga, Tarciso S. Filgueiras, and Osvaldo Morrone ChiefEditor: Robert J. Soreng SchnlttspahnstraBe 10 D.64287 Darmstadt Department of Systematic Biology - Botany National Museum of Natural History Washington, DC 2003 CONTENTS INTRODUCTION 9 MATERIALS AND METHODS 9 GUIDE TO USING THE CATALOGUE OF NEW WORLD GRASSES 10 Nomenclature 10 Taxonomy 10 Synonymy 10 Levels of Acceptance and Status 10 Distribution 11 Abbreviations for Distribution by Country or Caribbean Region 11 Abbreviations Used in Subheadings 11 Abbreviations and Codes Used in NOTES 11 Abbreviations Used for Types 11 Determination of Types 12 Consulted Literature and Also Accepted By 12 Index to Catalogue of New World Grasses, Volumes I-IV 12 A CLASSIFICATION OF NEW WORLD POACEAE, SUBFAMILY: POOIDEAE. 12 ACKNOWLEDGMENTS 14 CATALOGUE OF NEW WORLD GRASSES: IV 15 Achnatherum 15 xAchnella 18 Aciachne 19 Aegilops 20 xAgropogon 25 Agropyron 25 Agrostis 42 Aira 89 Alopecurus 97 Ammophila 107 Ampelodesmos 108 Amphibromus 108 Anatherostipa 109 Anthochloa 111 Anthoxanthum 111 Apera 115 Aphanelytrum 115 Arctagrostis 115 xArctodupontia 117 Arctophila 118 Arrhenatherum 119 Austrostipa 126 Avena 126 Avenula 139 Becktnannia 140 Brachyelytrum 142 Brachypodium 143 Briza 146 Bromidium
    [Show full text]