Human Artificial Chromosome (HAC) Vector with a Conditional Centromere for Correction of Genetic Deficiencies in Human Cells
Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells Jung-Hyun Kima, Artem Kononenkoa, Indri Erliandria, Tae-Aug Kimb, Megumi Nakanoc, Yuichi Iidad, J. Carl Barrette, Mitsuo Oshimurad, Hiroshi Masumotoc, William C. Earnshawf, Vladimir Larionova, and Natalay Kouprinaa,1 Laboratories of aMolecular Pharmacology and bTumor and Stem Cell Biology, National Cancer Institute, Bethesda, MD 20892; cKazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; dInstitute of Regenerative Medicine and Biofunction, Tottori University, Tottori 683-8503, Japan; eTranslational Sciences for Oncology Innovative Medicine, AstraZeneca, Boston, MA 02451; and fWellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH14 4AS, Scotland Edited* by John Carbon, University of California, Santa Barbara, CA, and approved October 27, 2011 (received for review September 6, 2011) Human artificial chromosome (HAC)-based vectors offer a promis- 1 to 3 Mb (7, 8, 10, 19). Several groups have reported successful ing system for delivery and expression of full-length human genes expression of full-length genes in HACs (9–11, 20, 21). However, in of any size. HACs avoid the limited cloning capacity, lack of copy most cases, genes to be expressed were cotransfected with an number control, and insertional mutagenesis caused by integra- alphoid DNA array into human cells and were incorporated into tion into host chromosomes that plague viral vectors. We pre- the forming HAC in vivo. Therefore, gene copy number and lo- viously described a synthetic HAC that can be easily eliminated cation of the gene on the HAC were not predetermined. These from cell populations by inactivation of its conditional kineto- factors greatly limited the application of de novo-generated HACs chore.
[Show full text]