It's All in the Timing for Replication Origins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity
Vol. 10, 2551–2560, April 1, 2004 Clinical Cancer Research 2551 Introduction of Human Telomerase Reverse Transcriptase to Normal Human Fibroblasts Enhances DNA Repair Capacity Ki-Hyuk Shin,1 Mo K. Kang,1 Erica Dicterow,1 INTRODUCTION Ayako Kameta,1 Marcel A. Baluda,1 and Telomerase, which consists of the catalytic protein subunit, No-Hee Park1,2 human telomerase reverse transcriptase (hTERT), the RNA component of telomerase (hTR), and several associated pro- 1School of Dentistry and 2Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California teins, has been primarily associated with maintaining the integ- rity of cellular DNA telomeres in normal cells (1, 2). Telomer- ase activity is correlated with the expression of hTERT, but not ABSTRACT with that of hTR (3, 4). Purpose: From numerous reports on proteins involved The involvement of DNA repair proteins in telomere main- in DNA repair and telomere maintenance that physically tenance has been well documented (5–8). In eukaryotic cells, associate with human telomerase reverse transcriptase nonhomologous end-joining requires a DNA ligase and the (hTERT), we inferred that hTERT/telomerase might play a DNA-activated protein kinase, which is recruited to the DNA role in DNA repair. We investigated this possibility in nor- ends by the DNA-binding protein Ku. Ku binds to hTERT mal human oral fibroblasts (NHOF) with and without ec- without the need for telomeric DNA or hTR (9), binds the topic expression of hTERT/telomerase. telomere repeat-binding proteins TRF1 (10) and TRF2 (11), and Experimental Design: To study the effect of hTERT/ is thought to regulate the access of telomerase to telomere DNA telomerase on DNA repair, we examined the mutation fre- ends (12, 13). -
A Chloroplast Gene Is Converted Into a Nucleargene
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 391-395, January 1988 Biochemistry Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene (QB protein/atrazine tolerance/transit peptide) ALICE Y. CHEUNG*, LAWRENCE BOGORAD*, MARC VAN MONTAGUt, AND JEFF SCHELLt: *Department of Cellular and Developmental Biology, 16 Divinity Avenue, The Biological Laboratories, Harvard University, Cambridge, MA 02138; tLaboratorium voor Genetica, Rijksuniversiteit Ghent, B-9000 Ghent, Belgium; and TMax-Planck-Institut fur Zuchtungsforschung, D-500 Cologne 30, Federal Republic of Germany Contributed by Lawrence Bogorad, September 30, 1987 ABSTRACT The chloroplast gene psbA codes for the the gene for ribulose bisphosphate carboxylase/oxygenase photosynthetic quinone-binding membrane protein Q which can transport the protein product into chloroplasts (5). We is the target of the herbicide atrazine. This gene has been have spliced the coding region of the psbA gene isolated converted into a nuclear gene. The psbA gene from an from the chloroplast DNA of the atrazine-resistant biotype atrazine-resistant biotype of Amaranthus hybridus has been of Amaranthus to the transcriptional-control and transit- modified by fusing its coding region to transcription- peptide-encoding regions of a nuclear gene, ss3.6, for the regulation and transit-peptide-encoding sequences of a bona SSU of ribulose bisphosphate carboxylase/oxygenase of pea fide nuclear gene. The constructs were introduced into the (6). The fusion-gene constructions (designated SSU-ATR) nuclear genome of tobacco by using the Agrobacteium tumor- were introduced into tobacco plants via the Agrobacterium inducing (Ti) plasmid system, and the protein product of tumor-inducing (Ti) plasmid transformation system using the nuclear psbA has been identified in the photosynthetic mem- disarmed Ti plasmid vector pGV3850 (7). -
T-Loops and the Origin of Telomeres E
PERSPECTIVES 66. Steinman, R. M., Mellman, I. S., Muller, W. A. & Cohn, Z. A. Acknowledgments eukaryotes evolved. The presence of t-loops at Endocytosis and the recycling of plasma membrane. H.S. is supported by the Norwegian Cancer Society and the J. Cell Biol. 96, 1–27 (1983). Research Council of Norway, and J.G. by the Swiss National present-day telomeres and their association 67. Lafont, F., Lecat, S., Verkade, P. & Simons, K. Annexin Science Foundation and the Human Frontier Science Programme with proteins that have evolved from RDR XIIIb associates with lipid microdomains to function in Organization. apical delivery. J. Cell Biol. 142, 1413–1427 (1998). factors might be remnants of the original 68. Aniento, F., Gu, F., Parton, R. & Gruenberg, J. Competing interests statement telomere system. Furthermore, the relative An endosomal βcop is involved in the pH-dependent The authors declare that they have no competing financial interests. formation of transport vesicles destined for late ease with which many eukaryotes can main- endosomes. J. Cell Biol. 133, 29–41 (1996). tain telomeres without telomerase might 69. Gu, F., Aniento, F., Parton, R. & Gruenberg, J. Functional Online links dissection of COP-I subunits in the biogenesis of reflect this ancient system of chromosome-end multivesicular endosomes. J. Cell Biol. 139, 1183–1195 DATABASES replication. This proposal ends with a dis- (1997). The following terms in this article are linked online to: 70. Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent Interpro: http://www.ebi.ac.uk/interpro/ cussion of the advantages of the telom- COP functions in the early endocytic pathway. -
Telomeres.Pdf
Telomeres Secondary article Elizabeth H Blackburn, University of California, San Francisco, California, USA Article Contents . Introduction Telomeres are specialized DNA–protein structures that occur at the ends of eukaryotic . The Replication Paradox chromosomes. A special ribonucleoprotein enzyme called telomerase is required for the . Structure of Telomeres synthesis and maintenance of telomeric DNA. Synthesis of Telomeric DNA by Telomerase . Functions of Telomeres Introduction . Telomere Homeostasis . Alternatives to Telomerase-generated Telomeric DNA Telomeres are the specialized chromosomal DNA–protein . Evolution of Telomeres and Telomerase structures that comprise the terminal regions of eukaryotic chromosomes. As discovered through studies of maize and somes. One critical part of this protective function is to fruitfly chromosomes in the 1930s, they are required to provide a means by which the linear chromosomal DNA protect and stabilize the genetic material carried by can be replicated completely, without the loss of terminal eukaryotic chromosomes. Telomeres are dynamic struc- DNA nucleotides from the 5’ end of each strand of this tures, with their terminal DNA being constantly built up DNA. This is necessary to prevent progressive loss of and degraded as dividing cells replicate their chromo- terminal DNA sequences in successive cycles of chromo- somes. One strand of the telomeric DNA is synthesized by somal replication. a specialized ribonucleoprotein reverse transcriptase called telomerase. Telomerase is required for both -
DNA Microarrays (Gene Chips) and Cancer
DNA Microarrays (Gene Chips) and Cancer Cancer Education Project University of Rochester DNA Microarrays (Gene Chips) and Cancer http://www.biosci.utexas.edu/graduate/plantbio/images/spot/microarray.jpg http://www.affymetrix.com Part 1 Gene Expression and Cancer Nucleus Proteins DNA RNA Cell membrane All your cells have the same DNA Sperm Embryo Egg Fertilized Egg - Zygote How do cells that have the same DNA (genes) end up having different structures and functions? DNA in the nucleus Genes Different genes are turned on in different cells. DIFFERENTIAL GENE EXPRESSION GENE EXPRESSION (Genes are “on”) Transcription Translation DNA mRNA protein cell structure (Gene) and function Converts the DNA (gene) code into cell structure and function Differential Gene Expression Different genes Different genes are turned on in different cells make different mRNA’s Differential Gene Expression Different genes are turned Different genes Different mRNA’s on in different cells make different mRNA’s make different Proteins An example of differential gene expression White blood cell Stem Cell Platelet Red blood cell Bone marrow stem cells differentiate into specialized blood cells because different genes are expressed during development. Normal Differential Gene Expression Genes mRNA mRNA Expression of different genes results in the cell developing into a red blood cell or a white blood cell Cancer and Differential Gene Expression mRNA Genes But some times….. Mutations can lead to CANCER CELL some genes being Abnormal gene expression more or less may result -
DNA Replication
9 DNA Replication To understand the chemistry Living cells must be able to duplicate their entire set of genetic instructions Goal of DNA synthesis and how every time they divide. Likewise, multicellular organisms must be able to DNA is replicated with high pass on complete copies of their genetic information to future generations. accuracy. This requires that the instructions are stored in a form that is capable of Objectives being duplicated. As we have seen (and will return to in Chapter 11), genetic instructions are embedded in the order of nucleobases in the DNA. As we After this chapter, you should be able to have also seen, the self-complementary nature of the double helix provides • describe the experiment that proved a simple (in principle) templating mechanism for replicating DNA into two that DNA replication is semi- identical copies. Only DNA (and in some instances RNA when, as in the conservative. case of the genomes of RNA viruses, it is used as a repository of genetic • diagram the reaction for information) are self-complementary and hence capable of being replicated. phosphodiester bond formation. The other three categories of macromolecules—carbohydrates, lipids, and • explain the energetics of DNA proteins—are not self-complementary and do not serve as templates for synthesis. their own production. Instead, the synthesis of these macromolecules is • explain why the 5’-to-3’ rule creates a ultimately directed by information stored in DNA through the action of conundrum during replication. enzymes and other proteins. Here we focus on the chemical and enzymatic • explain how DNA is replicated mechanisms by which DNA acts as a template for its own duplication and accurately. -
The Novel Protein DELAYED PALE-GREENING1 Is Required For
www.nature.com/scientificreports OPEN The novel protein DELAYED PALE-GREENING1 is required for early chloroplast biogenesis in Received: 28 August 2015 Accepted: 21 April 2016 Arabidopsis thaliana Published: 10 May 2016 Dong Liu, Weichun Li & Jianfeng Cheng Chloroplast biogenesis is one of the most important subjects in plant biology. In this study, an Arabidopsis early chloroplast biogenesis mutant with a delayed pale-greening phenotype (dpg1) was isolated from a T-DNA insertion mutant collection. Both cotyledons and true leaves of dpg1 mutants were initially albino but gradually became pale green as the plant matured. Transmission electron microscopic observations revealed that the mutant displayed a delayed proplastid-to-chloroplast transition. Sequence and transcription analyses showed that AtDPG1 encodes a putatively chloroplast- localized protein containing three predicted transmembrane helices and that its expression depends on both light and developmental status. GUS staining for AtDPG1::GUS transgenic lines showed that this gene was widely expressed throughout the plant and that higher expression levels were predominantly found in green tissues during the early stages of Arabidopsis seedling development. Furthermore, quantitative real-time RT-PCR analyses revealed that a number of chloroplast- and nuclear-encoded genes involved in chlorophyll biosynthesis, photosynthesis and chloroplast development were substantially down-regulated in the dpg1 mutant. These data indicate that AtDPG1 plays an essential role in early chloroplast biogenesis, and its absence triggers chloroplast-to-nucleus retrograde signalling, which ultimately down-regulates the expression of nuclear genes encoding chloroplast- localized proteins. The chloroplast is an essential organelle in plant cells and plays important roles in primary metabolism, such as CO2 fixation, manufacture of carbon skeletons and fatty acids, and synthesis of amino acids from inorganic nitrogen1. -
Differential Inhibition of the Initiation of DNA Replication in Stringent and Relaxed Strains of Escherichia Coli
Genet. Res., Comb. (1988), 51, pp. 173-177 With 5 text-figures Printed in Great Britain 173 Differential inhibition of the initiation of DNA replication in stringent and relaxed strains of Escherichia coli ELENA C. GUZMAN, FRANCISCO J. CARRILLO AND ALFONSO JIMENEZ-SANCHEZ Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain (Received I May 1987 and in revised form 30 October 1987) Summary Starvation for isoleucine inhibits chromosome, minichromosome and pBR322 DNA replication in a stringent strain of E. coli, but does not do so in a relaxed mutant. Starvation for other amino acids inhibits either chromosome and minichromosome replication in both strains. From these results we conclude that oriC and pBR322 replication are stringently regulated and that isoleucine seems not to be essential for the protein synthesis required at the initiation of oriC replication. Deprivation of isoleucine in a Rel~ strain gives rise to amplification of minichromosome and pBR322 with a better yield of the latter plasmid than that following treatment with chloramphenicol. 1. Introduction amino acid inhibits the rate of RNA synthesis only in the stringent strain, as previously reported (Cashel, Initiation of chromosome replication requires RNA 1975; Gallant, 1979), whereas protein synthesis is and protein synthesis (Maaloe & Hanawalt, 1961; fully inhibited in both stringent and relaxed strains Messer, 1972) and inhibition of the synthesis of either after starvation for either isoleucine or arginine. From of these macromolecules has long been used to inhibit these results we conclude that initiation of oriC and the initiation step without affecting elongation (Bre- pBR322 replication is stringently regulated and that mer & Churchward, 1977, Maaloe & Hanawalt, isoleucine seems not to be essential for the protein 1961). -
Gene Therapy Glossary of Terms
GENE THERAPY GLOSSARY OF TERMS A • Phase 3: A phase of research to describe clinical trials • Allele: one of two or more alternative forms of a gene that that gather more information about a drug’s safety and arise by mutation and are found at the same place on a effectiveness by studying different populations and chromosome. different dosages and by using the drug in combination • Adeno-Associated Virus: A single stranded DNA virus that has with other drugs. These studies typically involve more not been found to cause disease in humans. This type of virus participants.7 is the most frequently used in gene therapy.1 • Phase 4: A phase of research to describe clinical trials • Adenovirus: A member of a family of viruses that can cause occurring after FDA has approved a drug for marketing. infections in the respiratory tract, eye, and gastrointestinal They include post market requirement and commitment tract. studies that are required of or agreed to by the study • Adeno-Associated Virus Vector: Adeno viruses used as sponsor. These trials gather additional information about a vehicles for genes, whose core genetic material has been drug’s safety, efficacy, or optimal use.8 removed and replaced by the FVIII- or FIX-gene • Codon: a sequence of three nucleotides in DNA or RNA • Amino Acids: building block of a protein that gives instructions to add a specific amino acid to an • Antibody: a protein produced by immune cells called B-cells elongating protein in response to a foreign molecule; acts by binding to the • CRISPR: a family of DNA sequences that can be cleaved by molecule and often making it inactive or targeting it for specific enzymes, and therefore serve as a guide to cut out destruction and insert genes. -
GENOME GENERATION Glossary
GENOME GENERATION Glossary Chromosome An organism’s DNA is packaged into chromosomes. Humans have 23 pairs of chromosomesincluding one pair of sex chromosomes. Women have two X chromosomes and men have one X and one Y chromosome. Dominant (see also recessive) Genes come in pairs. A dominant form of a gene is the “stronger” version that will be expressed. Therefore if someone has one dominant and one recessive form of a gene, only the characteristics of the dominant form will appear. DNA DNA is the long molecule that contains the genetic instructions for nearly all living things. Two strands of DNA are twisted together into a double helix. The DNA code is made up of four chemical letters (A, C, G and T) which are commonly referred to as bases or nucleotides. Gene A gene is a section of DNA that is the code for a specific biological component, usually a protein. Each gene may have several alternative forms. Each of us has two copies of most of our genes, one copy inherited from each parent. Most of our traits are the result of the combined effects of a number of different genes. Very few traits are the result of just one gene. Genetic sequence The precise order of letters (bases) in a section of DNA. Genome A genome is the complete DNA instructions for an organism. The human genome contains 3 billion DNA letters and approximately 23,000 genes. Genomics Genomics is the study of genomes. This includes not only the DNA sequence itself, but also an understanding of the function and regulation of genes both individually and in combination. -
Getting Ready for DNA Duplication
INSIGHT INTRACELLULAR ORGANIZATION Getting ready for DNA duplication The discovery of a biomolecular condensate involved in DNA replication has wide-ranging implications. NINA Y YAO AND MICHAEL E O’DONNELL involves regions with different physical proper- Related research article Parker MW, Bell ties separating from each other). The molecules M, Mir M, Kao JA, Darzacq X, Botchan MR, required for the formation of condensates are Berger JM. 2019. A new class of disordered called scaffolding factors, while the molecules elements controls DNA replication through encapsulated inside are known as clients. A initiator self-assembly. eLife 8:e48562. DOI: given condensate typically contains only those 10.7554/eLife.48562 clients involved in the relevant reaction. Now, in eLife, Michael Botchan (UC Berkeley), James Berger (Johns Hopkins) and colleagues – including Matthew Parker as first author – report on the discovery of a biomolecular condensate esearch into biomolecular condensates – required for the initiation of DNA replication in self-contained regions within cells where the fruit fly Drosophila melanogaster R specific reactions take place – is taking (Parker et al., 2019). Three proteins – ORC, cell biology by storm. Biomolecular condensates Cdc6 and Cdt1 – form the scaffold along with do not have membranes, but they are able to DNA, while a hexamer ring protein called keep the proteins and/or nucleic acids involved Mcm2-7 is the client. During the G1 phase of the in a particular reaction separate from the rest of cell cycle, the scaffold proteins load two Mcm2- the cell. Biomolecular condensates do not have 7 hexamers onto the DNA to form the pre-repli- membranes, but they are able to keep the mole- cative complex, which marks the spot where cules involved in a particular reaction (usually DNA replication will begin (Figure 1A–C; proteins, but sometimes also nucleic acids) sepa- Bell and Labib, 2016; Bleichert et al., 2017). -
Telomere and Telomerase in Oncology
Cell Research (2002); 12(1):1-7 http://www.cell-research.com REVIEW Telomere and telomerase in oncology JIAO MU*, LI XIN WEI International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China ABSTRACT Shortening of the telomeric DNA at the chromosome ends is presumed to limit the lifespan of human cells and elicit a signal for the onset of cellular senescence. To continually proliferate across the senescent checkpoint, cells must restore and preserve telomere length. This can be achieved by telomerase, which has the reverse transcriptase activity. Telomerase activity is negative in human normal somatic cells but can be detected in most tumor cells. The enzyme is proposed to be an essential factor in cell immortalization and cancer progression. In this review we discuss the structure and function of telomere and telomerase and their roles in cell immortalization and oncogenesis. Simultaneously the experimental studies of telomerase assays for cancer detection and diagnosis are reviewed. Finally, we discuss the potential use of inhibitors of telomerase in anti-cancer therapy. Key words: Telomere, telomerase, cancer, telomerase assay, inhibitor. Telomere and cell replicative senescence base pairs of the end of telomeric DNA with each Telomeres, which are located at the end of round of DNA replication. Hence, the continual chromosome, are crucial to protect chromosome cycles of cell growth and division bring on progress- against degeneration, rearrangment and end to end ing telomere shortening[4]. Now it is clear that te- fusion[1]. Human telomeres are tandemly repeated lomere shortening is responsible for inducing the units of the hexanucleotide TTAGGG. The estimated senescent phenotype that results from repeated cell length of telomeric DNA varies from 2 to 20 kilo division, but the mechanism how a short telomere base pairs, depending on factors such as tissue type induces the senescence is still unknown.