A Man Who Makes Chromosomes

Total Page:16

File Type:pdf, Size:1020Kb

A Man Who Makes Chromosomes Genetic Engineering A man who makes chromosomes A new method of genetic engineering – constructing small, whole artificial chromosomes in plant cells – may avoid many of the drawbacks of existing methods and generate high-yielding, pest-resistant agricultural crops. Professor James A Birchler, of the University of Missouri, USA, is at the forefront of research bringing this technology into practice. n a world with a rising population and Prof Birchler’s pioneering new technique ever-accelerating climatic change, avoids these dangers by generating agriculture is constantly playing catch- entire, artificial chromosomes in plant cells up. Degraded soils, resistant pests, alongside their existing genetic material, unpredictable rainfall and extreme giving scientists much more control of the temperatures can all wreak havoc with genetic engineering process and its results, Icrop yields, so new crop varieties that can and providing the potential to change withstand these pressures are now needed multiple characteristics of a crop plant in one more than ever to meet the growing fell swoop. demands of the human population. CONSTRUCTING CHROMOSOMES Traditional plant breeding methods, Chromosomes are like the pages in the by deliberate crossing, rely on chance instruction book for building an organism. mutations and may take many years to Each cell of an animal or plant contains develop crop varieties with the desired several pairs of these strings of DNA, each traits. More recently, science has turned to comprising multiple genes and associated orthodox genetic engineering for better- coded instructions for switching them on targeted and faster results. This usually and off. Each chromosome also contains a involves adding genes from other species specific structure used to organise it during (‘transgenes’) to a crop’s existing genome. cell division (the ‘centromere’) and protective caps at the ends of each string known as However, transgenes are usually inserted ‘telomeres’. randomly into the genome, which can cause their activity to be unpredictable. Even Although artificial chromosomes have been worse, they can land in the middle of an produced successfully in microorganisms existing gene, disrupting its precise code such as yeasts for many years, plants have with potentially deleterious consequences proved much more complex. However, in for plant survival. 2007 Prof Birchler and his lab successfully A minichromosome … is independent of the plant’s natural genetic material and can be stably transmitted to the next generation: a blank slate for designing bespoke crops 49 Genetic Engineering © Nat Graham Detail RESEARCH OBJECTIVES Dr Birchler’s research focuses on using Can you explain why it was so chromosomes are separate from the artificial chromosome technology in difficult initially to generate artificial other chromosomes, which allows their plants, and the benefits it can have on chromosomes in plants compared to inheritance without linkage to them. More improving agricultural practices. yeast? importantly, gene editing and insertion The first artificial chromosomes were technology is limited in the size of the FUNDING produced in yeast, which served as an insertion; artificial chromosomes can likely National Science Foundation (NSF) inspiration for attempts in plants. However, accept tens of kilobases (up to ~100 kb) with the centromeres in yeast are determined by continued ability for further additions – BIO DNA sequence but functional centromeres all as an independent entity. James A. Birchler is Curators' in plants are epigenetically determined by Distinguished Professor perpetuation of chromatin state. Until this What are the remaining barriers of Biological Sciences at latter realisation became known, attempts to using minichromosomes for the University of Missouri, at producing artificial chromosomes breeding new varieties of crops? Columbia. After obtaining a in plants were destined to fail (with Small chromosomes behave differently BS degree from Eastern Illinois the exception that de novo epigenetic than normal sized chromosomes. However, University in Botany and Zoology in centromeres might form on introduced one can envision straightforward ways 1972, he attended graduate school at DNA). in which normal transmission from one Indiana University majoring in Genetics generation to the next can be made to with a minor in Biochemistry. Why did you choose maize as a model be faithful. A separate issue, but one species to test the artificial chromosome that impacts both artificial chromosome CONTACT technology? technology and gene editing, is the need James Birchler, PhD Our lab had worked on maize as a for more efficient crop plant transformation. University of Missouri genetic model for several years and we Division of Biological Sciences were experienced with working with its What would be your prediction for the 105 Tucker Hall chromosomes. first crop species and/or traits to be Columbia, MO 65211-7400 successfully engineered and brought USA constructed an artificial ‘minichromosome’ DESIGNER CROPS Engineered minichromosome. A root tip metaphase Can you outline the advantages of into agricultural production using karyotype of a plant carrying an engineered in maize. The success of the method The next step envisaged by Prof Birchler minichromosome in maize is shown. The arrow depicts artificial chromosomes over existing minichromosome technology? T: +1 573 882 4905 was demonstrated by proving that the and his team is to start ‘stacking’ a truncated supernumerary B chromosome that carries methods of genetic engineering? One never knows from whence the next E: [email protected] minichromosome was both genetically active multiple beneficial genes upon a single a transgene at the terminus. The green signals are Artificial chromosomes are independent new idea will emerge. The beauty of ipg.missouri.edu/faculty/birchler.cfm probes to various repetitive sequence clusters that W: within its host cell, and successfully passed minichromosome, a process that would allow chromosome identification. The red signal is of the normal set and allow multiple genes science is that it builds on the contributions W: birchler.biology.missouri.edu/maize- on to the next generation of maize plants. be almost impossible to manage through the B chromosome centromeric specific sequence. to be added to them. Thus, the artificial of many individuals going forward. minichromosomes/ traditional modification of the plant’s existing The B chromosome is a nonvital chromosome that is essentially inert and can serve as a foundational The new minichromosome was derived from chromosomes. Incorporating multiple genes platform for engineered minichromosomes. The Find out more: a small, otherwise inactive chromosome in this way could introduce whole new engineered minichromosome was produced by You can find out more about Prof transforming a line with B chromosomes with a in maize known as a ‘B’ chromosome. The biochemical pathways into the plant, more truncating construct containing genes and a telomere Birchler’s work at: https://birchler. use of B chromosomes minimises the risk and more of which could be added as the repeat at one end a minichromosome will vary depending on greatly expand the options available to plant biology.missouri.edu/maize- that the minichromosome will interact needs of producers and consumers develop. the surrounding genetic environment of the breeders. minichromosomes/ detrimentally with the function of the host cell. plant’s other, natural ‘A’ chromosomes. In Ultimately, Prof Birchler believes we could Prof Birchler’s current project, funded by the Artificial chromosomes may be particularly essence, the minichromosome contains produce crops that are resistant to multiple US National Science Foundation, explores ACROSS THE PLANT KINGDOM useful in clonally-propagated crops, both only a centromere, with the telomeres pests including bacteria, viruses, fungi how these ideas can become a reality, by Artificial chromosomes have now been because it is in these species that the and transgenes coding for the new traits and insect herbivores. At the same time, testing methods that allow large numbers developed in several plant species including minichromosomes will be most stable, and desired. It is independent of the plant’s they could be higher-yielding, resistant to of genes to be added to a minichromosome rice and barley, and Prof Birchler sees no also because these are the most difficult to original genetic material and can be stably herbicides, and tolerant to stresses such as in a single step. The methods are still under reason why this method of manufacturing improve by traditional breeding. Clonally transmitted to the next generation: a blank salinity, drought, or extremes of temperature. development, but emerging technologies, minichromosomes – termed ‘telomere propagated crops include some of the slate for designing bespoke crops. It should even be possible to introduce novel such as enzyme-based gene editing and truncation’ – should not be transferrable to most important staple foods of developing traits such as the production of therapeutic haploid breeding, look likely to facilitate many others. This is because the process countries, such as cassava, sweet potato drugs, vaccines, antibodies or micronutrients. the process. Prof Birchler says it will also be uses a chromosome structure – the telomere and banana. Although, as Prof Birchler puts important to explore the wide realm of non- – that is ubiquitous throughout
Recommended publications
  • Differential Inhibition of the Initiation of DNA Replication in Stringent and Relaxed Strains of Escherichia Coli
    Genet. Res., Comb. (1988), 51, pp. 173-177 With 5 text-figures Printed in Great Britain 173 Differential inhibition of the initiation of DNA replication in stringent and relaxed strains of Escherichia coli ELENA C. GUZMAN, FRANCISCO J. CARRILLO AND ALFONSO JIMENEZ-SANCHEZ Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain (Received I May 1987 and in revised form 30 October 1987) Summary Starvation for isoleucine inhibits chromosome, minichromosome and pBR322 DNA replication in a stringent strain of E. coli, but does not do so in a relaxed mutant. Starvation for other amino acids inhibits either chromosome and minichromosome replication in both strains. From these results we conclude that oriC and pBR322 replication are stringently regulated and that isoleucine seems not to be essential for the protein synthesis required at the initiation of oriC replication. Deprivation of isoleucine in a Rel~ strain gives rise to amplification of minichromosome and pBR322 with a better yield of the latter plasmid than that following treatment with chloramphenicol. 1. Introduction amino acid inhibits the rate of RNA synthesis only in the stringent strain, as previously reported (Cashel, Initiation of chromosome replication requires RNA 1975; Gallant, 1979), whereas protein synthesis is and protein synthesis (Maaloe & Hanawalt, 1961; fully inhibited in both stringent and relaxed strains Messer, 1972) and inhibition of the synthesis of either after starvation for either isoleucine or arginine. From of these macromolecules has long been used to inhibit these results we conclude that initiation of oriC and the initiation step without affecting elongation (Bre- pBR322 replication is stringently regulated and that mer & Churchward, 1977, Maaloe & Hanawalt, isoleucine seems not to be essential for the protein 1961).
    [Show full text]
  • 63Rd Annual Maize Genetics Meeting Program and Abstracts
    63rd Annual Maize Genetics Meeting Program and Abstracts March 8 – March 12, 2021 2nd Virtual Maize Meeting Facilitated in partnership with This conference received financial support from: National Science Foundation Corteva Agriscience, Agriculture Division of DowDuPont Bayer BASF Syngenta NCGA KWS We thank these sponsors for their generosity! A special thank you for the in-kind support from the USDA-ARS. ii Table of Contents Cover Page ................................................................................................................... i Contributors ................................................................................................................. ii Table of Contents ......................................................................................................... iii General Information ..................................................................................................... iv From the Maize Genetics Cooperation............................................................................ vi Introducing the Committee on Outreach, Diversity, Inclusion & Education (CODIE)...viii Financial Aid Awards ......................................................................................................viii Data Management Made Simple...................................................................................... xi Program ........................................................................................................................ 1 List of Posters .............................................................................................................
    [Show full text]
  • Resolution of the Position of Restorer-Of-Fertility Gene
    LOCALIZATION OF THE RF3 RESTORER-OF-FERTILITY GENE FOR MAIZE S-TYPE CYTOPLASMIC MALE STERILITY A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By TIFFANY LANGEWISCH Dr. Kathleen Newton, Dissertation Supervisor December 2012 © Copyright by Tiffany Langewisch 2012 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the Dissertation entitled LOCATION OF THE RF3 RESTORER-OF-FERTILITY GENE FOR MAIZE S-TYPE CYTOPLASMIC MALE STERILTY Presented by TIFFANY LANGEWISCH A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Kathleen Newton James Birchler Sherry Flint-Garcia Chris Pires ACKNOWLEDGEMENTS I would first like to acknowledge members of my committee, past and present, including Drs. Kathleen Newton, James Birchler, Sherry Flint-Garcia, Michael McMullen, Christopher Pires, and Karen Cone. My committee has provided helpful input and guidance throughout my dissertation research. I would like to thank them for their invaluable advice in all aspects of my graduate studies. As my advisor, Kathleen Newton has particularly provided advice, guidance, and support. This research would not have been possible without the development of Rf3 near-isogenic lines by Dr. Susan Gabay-Laughnan. She has been a crucial resource for seed and feedback throughout the years. Barbara Sonderman is thanked for her tireless effort of keeping my “babies” happy and healthy in the greenhouse. I thankfully acknowledge everyone in the Newton lab for discussions, field assistance, and help in my everyday research.
    [Show full text]
  • Minichromosomes: the Second Generation Genetic Engineering Tool
    Invited Micro Review Plant Omics Journal Southern Cross Journals©2009 2(1):1-8 (2009) www.pomics.com ISSN: 1836-3644 Minichromosomes: The second generation genetic engineering tool Aakash Goyal 1, Pankaj Kumar Bhowmik 2 and Saikat Kumar Basu 2,3* 1Sustaiable Production Systems; 2Bioproducts and Bioprocesses, Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, AB Canada T1J 4B1; 3Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4 *corresponding author: [email protected] Abstract Genetic engineering is a scientific tool used in every field of science like plant, animal and human sciences. Plant genetic engineering technology has changed the face of plant sciences and the first generation of transgenic crops has become the most rapidly adopted technology in modern agriculture. But genetic engineering has some limitations and therefore still there is a clear need of new technologies to overcome issues like gene stacking, transgene position effects and insertion-site complexity. The recent strategy that researchers have developed to overcome those limitations is the development of plant artificial minichromosomes for delivery of large DNA sequences, including large genes, multigene complexes, or even complete metabolic pathways. A minichromosome is an extremely small version of a chromosome that have been produced by de novo construction using cloned components of chromosomes or through telomere-mediated truncation of endogenous chromosomes. After a successful experiment in maize with the help of minichromsomes by J. Birchler and colleagues (Yu et al., 2007a), a new paradigm have been set for all the agricultural researchers to use the minichromosome techniques for crop improvement. Engineered minichromosomes also offer an enormous opportunity to improve crop performance, as discussed by Houben and Schubert (2007).
    [Show full text]
  • Alternative Ac/Ds Transposition Induces Major Chromosomal Rearrangements in Maize
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize Jianbo Zhang,1 Chuanhe Yu,1 Vinay Pulletikurti,2,4 Jonathan Lamb,3,5 Tatiana Danilova,3 David F. Weber,2 James Birchler,3 and Thomas Peterson1,6 1Department of Genetics, Development and Cell Biology, and Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA; 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; 3Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA Barbara McClintock reported that the Ac/Ds transposable element system can generate major chromosomal rearrangements (MCRs), but the underlying mechanism has not been determined. Here, we identified a series of chromosome rearrangements derived from maize lines containing pairs of closely linked Ac transposable element termini. Molecular and cytogenetic analyses showed that the MCRs in these lines comprised 17 reciprocal translocations and two large inversions. The breakpoints of all 19 MCRs are delineated by Ac termini and characteristic 8-base-pair target site duplications, indicating that the MCRs were generated by precise trans- position reactions involving the Ac termini of two closely linked elements. This alternative transposition mechanism may have contributed to chromosome evolution and may also occur during V(D)J recombination resulting in oncogenic translocations. [Keywords: V(D)J recombination; chromosome rearrangements; hAT elements; transposition] Supplemental material is available at http://www.genesdev.org. Received December 30, 2008; revised version accepted February 11, 2009. In the 1940s, Barbara McClintock reported that the maize aberrant Ds transposition that results in fusion of sister Activator (Ac) element could induce transposition of the chromatids, chromosome breakage, and formation of nonautonomous Dissociation (Ds) element, which she deletions has been described (English et al.
    [Show full text]
  • Homoeologous Shuffling and Chromosome Compensation
    Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus Zhiyong Xiong, Robert T. Gaeta, and J. Chris Pires1 Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Edited by Susan R. Wessler, University of Georgia, Athens, GA, and approved March 31, 2011 (received for review September 22, 2010) Polyploidy has contributed to the evolution of eukaryotes, partic- B. napus affords an excellent opportunity for conducting cy- ularly flowering plants. The genomic consequences of polyploidy togenetic investigations of evolution in a resynthesized allo- have been extensively studied, but the mechanisms for chromo- polyploid. Natural B. napus (AACC; 2n = 38) is thought to have some stability and diploidization in polyploids remain largely un- formed 5,000 to 10,000 y ago by the hybridization of ancestors of known. By using new cytogenetic tools to identify all of the Brassica rapa (AA; 2n = 20) and Brassica oleracea (CC; 2n = 18) homoeologous chromosomes, we conducted a cytological investi- (28, 29, 30). B. rapa and B. oleracea are also ancient polyploids, gation of 50 resynthesized Brassica napus allopolyploids across gen- and large-scale chromosome rearrangements occurred in the A erations S0:1 to S5:6 and in the S10:11 generation. Changes in copy and C genomes following divergence from a common ancestor number of individual chromosomes were detected in the S0:1 gen- (31). Several studies have demonstrated that genetic changes eration and increased in subsequent generations, despite the fact caused by homoeologous chromosome rearrangement are com- that the mean chromosome number among lines was approxi- mon in newly resynthesized B.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Rick Masonbrink Home: 1222 Scholl Road, Ames, IA 50014 United States Office: 208 Bessey Hall, Ames, IA 50011 United States Home Phone and Work Phone: (660) 424-4118 Email: [email protected] Education BS Biology, Northwest Missouri State University (2006) Ph.D. Genetics, University of Missouri (2012) Grants NSF National Plant Genome Initiative Postdoctoral Research Fellowship ($207,000/3yrs) Research Experience 1/2006 - 5/2006 Undergraduate Researcher: Department of Biology, Northwest Missouri State University. Principal Investigator: Dr. Jeffrey Thornsberry Research: Genetic drift in freshwater mussels 8/2006 – 05/2012 Research Assistant: Department of Biology, University of Missouri. Principal Investigator: Dr. James Birchler Research: Investigating the effects of minichromosomes in maize 07/2012 – 06/2013 Postdoctoral Research Associate: Department of EEOB, Iowa State University. Principal Investigator: Dr. Jonathan Wendel Research: Centromere evolution and cyto-nuclear coevolution in Gossypium 07/2013 – present Postdoctoral Research Fellow: Department of EEOB, Iowa State University. Principal Investigator: Dr. Jonathan Wendel Research: Centromere evolution in Gossypium Mentoring Experience 06/2014 – 08/2014 Mentored a high school teacher in cytology 06/2013 – 08/2013 Mentored Justin Conover in bioinformatics 11/2012 – 05/2013 Mentored Josef Jareczek in molecular and phylogenetic techniques 02/2011 – 05/2012 Mentored and trained undergraduates in molecular and cytological techniques Teaching Experience 8/2006 - 12/2006 Biology 110 - Undergraduate level introductory biology, taught seminars and labs 1/2007 - 5/2007 General Genetics - Undergraduate level introductory genetics, taught seminars Skills Fluorescence in-situ hybridization, PCR, immunostaining, plant transformation and regeneration, chromatin immunoprecipitation, molecular cloning, QPCR, QRTPCR, proficient in Microsoft Office, bioinformatics, phylogenetics, UNIX, Perl, and Python programming, analysis of large-scale sequencing datasets Current Research 1.
    [Show full text]
  • Swyersnathan.Pdf
    DEVELOPMENT OF AN AMENABLE SYSTEM FOR SITE-SPECIFIC ADDITION TO A MAIZE CHROMOSOME _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by NATHAN CHARLES SWYERS Dr. James A. Birchler, Dissertation Supervisor December, 2019 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled DEVELOPMENT OF AN AMENABLE SYSTEM FOR SITE-SPECIFIC ADDITION TO A MAIZE CHROMOSOME Presented by Nathan Charles Swyers, A candidate for the degree of Doctor of Philosophy, And hereby certify that, in their opinion, it is worthy of acceptance. Dr. James A. Birchler Dr. Kathleen Newton Dr. David Braun Dr. Sherry Flint-Garcia ACKNOWLEDGMENTS The following list of people helped make this work possible: Birchler Lab: MU Biological Sciences: • Rebecca Ballew • Patrice Albert • David Braun • James A. Birchler • Lori Eggert • Weihong Chen • Nila Emerich • Robert Gaeta • Benjamin Julius • Rick Masonbrink • Melody Kroll • Ryan Donohue • Kathleen Newton • Ryan Douglas • Will Swatson • Lin Sun Family • Adam Johnson • Amie Swyers • Zhi Gao • Gideon Swyers • Nathaniel Graham • Michael Swyers • Becca Lukasak • Brenda Swyers • Morgan McCaw • Charles Swyers • Xiaowen Shi • Rita Henderson • Jon Cody • Michael Noble • Hua Yang • Jill Noble • Changzeng Zhao • Robert
    [Show full text]
  • Diversity and Dynamics of the Minichromosomal Karyotype in Trypanosoma Brucei 
    Molecular & Biochemical Parasitology 113 (2001) 79–88 www.parasitology-online.com. Diversity and dynamics of the minichromosomal karyotype in Trypanosoma brucei Sam Alsford 1, Bill Wickstead1, Klaus Ersfeld *, Keith Gull School of Biological Sciences, Uni6ersity of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Received 18 August 2000; received in revised form 28 November 2000; accepted 8 December 2000 Abstract The genome of African trypanosomes contains a large number of minichromosomes. Their only proposed role is in the expansion of the parasites’ repertoire of telomeric variant surface glycoprotein (VSG) genes as minichromosomes carry silent VSG gene copies in telomeric locations. Despite their importance as VSG gene donors, little is known about the actual composition of the minichromosomal karyotype and the stability of its inheritance. In this study we show, by using high-resolution pulsed-field electrophoresis, that a non-clonal trypanosome population contains an extremely diverse pattern of minichromosomes, which can be resolved into less complex clone-specific karyotypes by non-selective cloning. We show that the minichromosome patterns of such clones are stable over at least 360 generations. Furthermore, using DNA markers for specific minichromosomes, we demonstrate the mitotic stability of these minichromosomes within the population over a period of more than 5 years. Length variation is observed for an individual minichromosome and is most likely caused by a continuous telomeric growth of approximately 6 bp per telomere per cell division. This steady telomeric growth, counteracted by stochastic large losses of telomeric sequences is the most likely cause of minichromosome karyotype heterogeneity within a population. © 2001 Elsevier Science B.V.
    [Show full text]
  • Analysis of the VSG Gene Silent Archive in Trypanosoma Brucei
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure Lucio Marcello and J. David Barry1 Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow G12 8TA, United Kingdom Trypanosoma brucei evades host acquired immunity through differential activation of its large archive of silent variant surface glycoprotein (VSG) genes, most of which are pseudogenes in subtelomeric arrays. We have analyzed 940 VSGs, representing one half to two thirds of the arrays. Sequence types A and B of the VSG N-terminal domains were confirmed, while type C was found to be a constituent of type A. Two new C-terminal domain types were found. Nearly all combinations of domain types occurred, with some bias to particular combinations. One-third of encoded N-terminal domains, but only 13% of C-terminal domains, are intact, indicating a particular need for silent VSGs to gain a functional C-terminal domain to be expressed. About 60% of VSGs are unique, the rest occurring in subfamilies of two to four close homologs (>50%–52% peptide identity). We found a subset of VSG-related genes, differing from VSGs in genomic environment and expression patterns, and predict they have distinct function. Almost all (92%) full-length array VSGs have the partially conserved flanks associated with the duplication mechanism that activates silent genes, and these sequences have also contributed to archive evolution, mediating most of the conversions of segments, containing Ն1 VSG, within and between arrays.
    [Show full text]
  • Minichromosomes: Vectors for Crop Improvement
    Agronomy 2015, 5, 309-321; doi:10.3390/agronomy5030309 OPEN ACCESS agronomy ISSN 2073-4395 www.mdpi.com/journal/agronomy Review Minichromosomes: Vectors for Crop Improvement Jon P. Cody †, Nathan C. Swyers†, Morgan E. McCaw†, Nathaniel D. Graham†, Changzeng Zhao and James A. Birchler * Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO 65211-7400, USA; E-Mails: [email protected] (J.P.C.); [email protected] (N.C.S.); [email protected] (M.E.M.); [email protected] (N.D.G.); [email protected] (C.Z.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-573-882-4905; Fax: +1-573-882-0123. Academic Editor: Gareth Norton Received: 15 May 2015 / Accepted: 24 June 2015 / Published: 6 July 2015 Abstract: Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops. Keywords: minichromosomes; biofortification; B chromosomes; telomere truncation; BIBAC; genetic engineering; haploid induction 1. Introduction While efforts to reduce global hunger have been successful, one in nine humans still suffer from malnourishment [1]. Such a statistic is not exclusively dependent on plant nutritional content, but arises from compounded factors in food security, with developing countries being greatly impacted [1].
    [Show full text]
  • © American Society of Plant Biologists ADVANCING the SCIENCE of PLANT BIOLOGY This Article Is a Plant Cell Advance Online Publication
    Centromere Pairing in Early Meiotic Prophase Requires Active Centromeres and Precedes Installation of the Synaptonemal Complex in Maize Jing Zhang, Wojciech P. Pawlowski and Fangpu Han Plant Cell; originally published online October 18, 2013; DOI 10.1105/tpc.113.117846 This information is current as of October 21, 2013 Supplemental Data http://www.plantcell.org/content/suppl/2013/10/11/tpc.113.117846.DC1.html Permissions https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X eTOCs Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain CiteTrack Alerts Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain Subscription Information Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm © American Society of Plant Biologists ADVANCING THE SCIENCE OF PLANT BIOLOGY This article is a Plant Cell Advance Online Publication. The date of its first appearance online is the official date of publication. The article has been edited and the authors have corrected proofs, but minor changes could be made before the final version is published. Posting this version online reduces the time to publication by several weeks. Centromere Pairing in Early Meiotic Prophase Requires Active Centromeres and Precedes Installation of the Synaptonemal Complex in MaizeW Jing Zhang,a,b Wojciech P. Pawlowski,c and Fangpu Hana,1 a State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China b University of the Chinese Academy of Sciences, Beijing 100049, China c Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853 ORCID ID: 0000-0001-8393-3575 (F.H.).
    [Show full text]