Analysis of Subtelomeric Heterochromatin in the Drosophila Minichromosome Dpll87 by Single P Element Insertional Mutagenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transposon Mutagenesis in Streptomycetes
Transposon Mutagenesis in Streptomycetes Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Bohdan Bilyk Saarbrücken 2014 Tag des Kolloquiums: 6. Oktober 2014 Dekan: Prof. Dr. Volkhard Helms Berichterstatter: Dr. Andriy Luzhetskyy Prof. Dr. Rolf Müller Vorsitz: Prof. Dr. Claus-Michael Lehr Akad. Mitarbeiter: Dr. Mostafa Hamed To Danylo and Oksana IV PUBLICATIONS Bilyk, B., Weber, S., Myronovskyi, M., Bilyk, O., Petzke, L., Luzhetskyy, A. (2013). In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol. 2013 Jan; 97(1):351-9. Bilyk, B., Luzhetskyy, A. (2014). Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol. Accepted CONFERENCE CONTRIBUTIONS Bilyk, B., Weber, S., Myronovskyi, M., Luzhetskyy, A. Himar1 in vivo transposon mutagenesis of Streptomyces coelicolor and Streptomyces albus. Poster presentation at International VAAM Workshop, University of Braunschweig, September 27-29, 2012. Bilyk, B., Weber, S., Welle, E., Luzhetskyy, A. Himar1 in vivo transposon mutagenesis of Streptomyces coelicolor. Poster presentation at International VAAM Workshop, University of Bonn, September 28 – 30, 2011. Bilyk, B., Weber, S., Welle, E., Luzhetskyy, A. In vivo transposon mutagenesis of streptomycetes using a modified version of Himar1. Poster presentation at International VAAM Workshop, University of Tübingen, September 26 -28, 2010. V TABLE OF CONTENTS SUMMARY XIII 1. INTRODUCTION 15 1.1. Streptomycetes, organisms with outstanding potential 15 1.1.1. Phylogeny of actinomycetes 15 1.1.2. Streptomyces 15 1.1.3. Exploiting the potential of streptomycetes as antibiotic producers. -
Differential Inhibition of the Initiation of DNA Replication in Stringent and Relaxed Strains of Escherichia Coli
Genet. Res., Comb. (1988), 51, pp. 173-177 With 5 text-figures Printed in Great Britain 173 Differential inhibition of the initiation of DNA replication in stringent and relaxed strains of Escherichia coli ELENA C. GUZMAN, FRANCISCO J. CARRILLO AND ALFONSO JIMENEZ-SANCHEZ Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain (Received I May 1987 and in revised form 30 October 1987) Summary Starvation for isoleucine inhibits chromosome, minichromosome and pBR322 DNA replication in a stringent strain of E. coli, but does not do so in a relaxed mutant. Starvation for other amino acids inhibits either chromosome and minichromosome replication in both strains. From these results we conclude that oriC and pBR322 replication are stringently regulated and that isoleucine seems not to be essential for the protein synthesis required at the initiation of oriC replication. Deprivation of isoleucine in a Rel~ strain gives rise to amplification of minichromosome and pBR322 with a better yield of the latter plasmid than that following treatment with chloramphenicol. 1. Introduction amino acid inhibits the rate of RNA synthesis only in the stringent strain, as previously reported (Cashel, Initiation of chromosome replication requires RNA 1975; Gallant, 1979), whereas protein synthesis is and protein synthesis (Maaloe & Hanawalt, 1961; fully inhibited in both stringent and relaxed strains Messer, 1972) and inhibition of the synthesis of either after starvation for either isoleucine or arginine. From of these macromolecules has long been used to inhibit these results we conclude that initiation of oriC and the initiation step without affecting elongation (Bre- pBR322 replication is stringently regulated and that mer & Churchward, 1977, Maaloe & Hanawalt, isoleucine seems not to be essential for the protein 1961). -
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities
International Journal of Molecular Sciences Review Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities Pauline J. Beckmann 1 and David A. Largaespada 1,2,3,4,* 1 Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] 2 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA 3 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA 4 Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA * Correspondence: [email protected]; Tel.: +1-612-626-4979; Fax: +1-612-624-3869 Received: 3 January 2020; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity. Keywords: animal modeling; cancer; transposon screen 1. Transposon Basics Until the mid of 1900’s, DNA was widely considered to be a highly stable, orderly macromolecule neatly organized into chromosomes. -
Lecture 3 Mutagens and Mutagenesis A. Physical and Chemical
Lecture 3 Mutagens and Mutagenesis 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA 2. Mutagenesis A. Screen B. Selection C. Lethal mutations Read: 508-514 Figs: 14.23-28 1 Transposon (transposable element) as a mutagen Transposon (or TE): DNA segment that can move from one position to another (1) Retrotransposons Copia Drosophila (LTR-type) Ty1 Yeast (LTR-type) LINEs Human (non-LTR-type) SINEs (Alu) Human (non-LTR-type) (2) Transposons Ac/Ds Maize P-element Drosophila 2 Retrovirus Figure 5-73. The life cycle of a retrovirus. The retrovirus genome consists of an RNA molecule of about 8500 nucleotides; two such molecules are packaged into each viral particle. The enzyme reverse transcriptase first makes a DNA copy of the viral RNA molecule and then a second DNA strand, generating a double-stranded DNA copy of the RNA genome. The integration of this DNA double helix into the host chromosome is then catalyzed by a virus-encoded integrase enzyme. This integration is required for the synthesis of new viral RNA molecules by the host cell RNA polymerase, the enzyme that transcribes DNA into RNA. (From Molecular Biology of the Cell by Alberts et al.) 3 Fig. 14.26 4 5 Figure 5-76. Transpositional site- specific recombination by a nonretroviral retrotransposon. Transposition by the L1 element (red) begins when an endonuclease attached to the L1 reverse transcriptase and the L1 RNA (blue) makes a nick in the target DNA at the point at which insertion will occur. This cleavage releases a 3′-OH DNA end in the target DNA, which is then used as a primer for the reverse transcription step shown. -
Transposon Based Mutagenesis and Mapping of Transposon Insertion Sites Within the Ehrlichia Chaffeensis Genome Using Semi Random Two-Step Pcr
TRANSPOSON BASED MUTAGENESIS AND MAPPING OF TRANSPOSON INSERTION SITES WITHIN THE EHRLICHIA CHAFFEENSIS GENOME USING SEMI RANDOM TWO-STEP PCR by VIJAYA VARMA INDUKURI B.S., ANDHRA UNIVERSITY, India, 2008 A THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Approved by: Major Professor Roman Reddy Ganta Copyright VIJAYA VARMA INDUKURI 2013 Abstract Ehrlichia chaffeensis a tick transmitted Anaplasmataceae family pathogen responsible for human monocytic ehrlichiosis. Differential gene expression appears to be an important pathogen adaptation mechanism for its survival in dual hosts. One of the ways to test this hypothesis is by performing mutational analysis that aids in altering the expression of genes. Mutagenesis is also a useful tool to study the effects of a gene function in an organism. Focus of my research has been to prepare several modified Himar transposon mutagenesis constructs for their value in introducing mutations in E. chaffeensis genome. While the work is in progress, research team from our group used existing Himar transposon mutagenesis plasmids and was able to create mutations in E. chaffeensis. Multiple mutations were identified by Southern blot analysis. I redirected my research efforts towards mapping the genomic insertion sites by performing the semi-random two step PCR (ST-PCR) method, followed by DNA sequence analysis. In this method, the first PCR is performed with genomic DNA as the template with a primer specific to the insertion segment and the second primer containing an anchored degenerate sequence segment. The product from the first PCR is used in the second PCR with nested transposon insertion primer and a primer designed to bind to the known sequence portion of degenerate primer segment. -
Potential Whole-Cell Biosensors for Detection of Metal Using Merr Family Proteins from Enterobacter Sp
micromachines Article Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02 Georgina Baya 1, Stephen Muhindi 2, Valentine Ngendahimana 3 and Jonathan Caguiat 1,* 1 Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA; [email protected] 2 Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; [email protected] 3 Biology Department, Lone Star College-CyFair, 9191 Barker Cypress Rd, Cypress, TX 77433, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-330-941-2063 Abstract: Cell-based biosensors harness a cell’s ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multi- metal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which ap- pear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and Citation: Baya, G.; Muhindi, S.; reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to Ngendahimana, V.; Caguiat, J. activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. -
Minichromosomes: the Second Generation Genetic Engineering Tool
Invited Micro Review Plant Omics Journal Southern Cross Journals©2009 2(1):1-8 (2009) www.pomics.com ISSN: 1836-3644 Minichromosomes: The second generation genetic engineering tool Aakash Goyal 1, Pankaj Kumar Bhowmik 2 and Saikat Kumar Basu 2,3* 1Sustaiable Production Systems; 2Bioproducts and Bioprocesses, Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, AB Canada T1J 4B1; 3Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4 *corresponding author: [email protected] Abstract Genetic engineering is a scientific tool used in every field of science like plant, animal and human sciences. Plant genetic engineering technology has changed the face of plant sciences and the first generation of transgenic crops has become the most rapidly adopted technology in modern agriculture. But genetic engineering has some limitations and therefore still there is a clear need of new technologies to overcome issues like gene stacking, transgene position effects and insertion-site complexity. The recent strategy that researchers have developed to overcome those limitations is the development of plant artificial minichromosomes for delivery of large DNA sequences, including large genes, multigene complexes, or even complete metabolic pathways. A minichromosome is an extremely small version of a chromosome that have been produced by de novo construction using cloned components of chromosomes or through telomere-mediated truncation of endogenous chromosomes. After a successful experiment in maize with the help of minichromsomes by J. Birchler and colleagues (Yu et al., 2007a), a new paradigm have been set for all the agricultural researchers to use the minichromosome techniques for crop improvement. Engineered minichromosomes also offer an enormous opportunity to improve crop performance, as discussed by Houben and Schubert (2007). -
Diversity and Dynamics of the Minichromosomal Karyotype in Trypanosoma Brucei
Molecular & Biochemical Parasitology 113 (2001) 79–88 www.parasitology-online.com. Diversity and dynamics of the minichromosomal karyotype in Trypanosoma brucei Sam Alsford 1, Bill Wickstead1, Klaus Ersfeld *, Keith Gull School of Biological Sciences, Uni6ersity of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK Received 18 August 2000; received in revised form 28 November 2000; accepted 8 December 2000 Abstract The genome of African trypanosomes contains a large number of minichromosomes. Their only proposed role is in the expansion of the parasites’ repertoire of telomeric variant surface glycoprotein (VSG) genes as minichromosomes carry silent VSG gene copies in telomeric locations. Despite their importance as VSG gene donors, little is known about the actual composition of the minichromosomal karyotype and the stability of its inheritance. In this study we show, by using high-resolution pulsed-field electrophoresis, that a non-clonal trypanosome population contains an extremely diverse pattern of minichromosomes, which can be resolved into less complex clone-specific karyotypes by non-selective cloning. We show that the minichromosome patterns of such clones are stable over at least 360 generations. Furthermore, using DNA markers for specific minichromosomes, we demonstrate the mitotic stability of these minichromosomes within the population over a period of more than 5 years. Length variation is observed for an individual minichromosome and is most likely caused by a continuous telomeric growth of approximately 6 bp per telomere per cell division. This steady telomeric growth, counteracted by stochastic large losses of telomeric sequences is the most likely cause of minichromosome karyotype heterogeneity within a population. © 2001 Elsevier Science B.V. -
Analysis of the VSG Gene Silent Archive in Trypanosoma Brucei
Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure Lucio Marcello and J. David Barry1 Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow G12 8TA, United Kingdom Trypanosoma brucei evades host acquired immunity through differential activation of its large archive of silent variant surface glycoprotein (VSG) genes, most of which are pseudogenes in subtelomeric arrays. We have analyzed 940 VSGs, representing one half to two thirds of the arrays. Sequence types A and B of the VSG N-terminal domains were confirmed, while type C was found to be a constituent of type A. Two new C-terminal domain types were found. Nearly all combinations of domain types occurred, with some bias to particular combinations. One-third of encoded N-terminal domains, but only 13% of C-terminal domains, are intact, indicating a particular need for silent VSGs to gain a functional C-terminal domain to be expressed. About 60% of VSGs are unique, the rest occurring in subfamilies of two to four close homologs (>50%–52% peptide identity). We found a subset of VSG-related genes, differing from VSGs in genomic environment and expression patterns, and predict they have distinct function. Almost all (92%) full-length array VSGs have the partially conserved flanks associated with the duplication mechanism that activates silent genes, and these sequences have also contributed to archive evolution, mediating most of the conversions of segments, containing Ն1 VSG, within and between arrays. -
Minichromosomes: Vectors for Crop Improvement
Agronomy 2015, 5, 309-321; doi:10.3390/agronomy5030309 OPEN ACCESS agronomy ISSN 2073-4395 www.mdpi.com/journal/agronomy Review Minichromosomes: Vectors for Crop Improvement Jon P. Cody †, Nathan C. Swyers†, Morgan E. McCaw†, Nathaniel D. Graham†, Changzeng Zhao and James A. Birchler * Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO 65211-7400, USA; E-Mails: [email protected] (J.P.C.); [email protected] (N.C.S.); [email protected] (M.E.M.); [email protected] (N.D.G.); [email protected] (C.Z.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-573-882-4905; Fax: +1-573-882-0123. Academic Editor: Gareth Norton Received: 15 May 2015 / Accepted: 24 June 2015 / Published: 6 July 2015 Abstract: Minichromosome technology has the potential to offer a number of possibilities for expanding current biofortification strategies. While conventional genome manipulations rely on random integration of one or a few genes, engineered minichromosomes would enable researchers to concatenate several gene aggregates into a single independent chromosome. These engineered minichromosomes can be rapidly transferred as a unit to other lines through the utilization of doubled haploid breeding. If used in conjunction with other biofortification methods, it may be possible to significantly increase the nutritional value of crops. Keywords: minichromosomes; biofortification; B chromosomes; telomere truncation; BIBAC; genetic engineering; haploid induction 1. Introduction While efforts to reduce global hunger have been successful, one in nine humans still suffer from malnourishment [1]. Such a statistic is not exclusively dependent on plant nutritional content, but arises from compounded factors in food security, with developing countries being greatly impacted [1]. -
Chapter 3 Transposon Mutagenesis of Rhodobacter Sphaeroides
Chapter 3 Transposon Mutagenesis of Rhodobacter sphaeroides Timothy D. Paustian and Robin S. Kurtz Department of Bacteriology University of Wisconsin–Madison Madison, Wisconsin 53706 (608) 263-4921, [email protected] Robin and Tim are associate faculty and coordinate the instructional labs for the Department of Bacteriology. Tim earned his B.S. in Biochemistry from the University of Wisconsin–Madison and Ph.D. from the Department of Bacteriology at UW–Madison. His interests include curriculum development, computer-aided instruction, and development of computer programs. Robin earned her B.S. and Ph.D. in Bacteriology from UW-Madison. Her interests include instructional lab development, curriculum improvement, and immunology. Robin and Tim have co-authored three lab manuals that are used in the introductory and advanced microbiology laboratories at UW–Madison. Reprinted from: Paustian, T. D., and R. S. Kurtz. 1994. Transposon mutagenesis of rhodobacter sphaeroides. Pages 45-61, in Tested studies for laboratory teaching, Volume 15 (C. A. Goldman, Editor). Proceedings of the 15th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 390 pages. - Copyright policy: http://www.zoo.utoronto.ca/able/volumes/copyright.htm Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibility for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards -
EZ-Tn5™ Transposon and Transposome Kits Speed Your Metagenomics, Strain Engineering, and Mutagenesis Projects with EZ-Tn5™ Transposomics™
TRANSPOSON MUTAGENESIS lucigen.com/Transposon-Mutagenesis/ EZ-Tn5™ Transposon and Transposome Kits Speed your metagenomics, strain engineering, and mutagenesis projects with EZ-Tn5™ Transposomics™ Use this powerful system to: • Create mutant libraries for bacterial strain development • Identify essential genes or regulatory elements Exclusively available • Generate random insertional knockout libraries in your favorite bacterial strain thru Lucigen. • Insert promoter sequences for gene expression studies • Sequence large clones and chromosomal DNA easily • Recover and propagate plasmids from diverse bacterial genera Transposomics provides a fast and easy method for generating a library of DNA sequences with insertional mutations, or a library of live mutant bacteria. Many genomics applications bene t from the high e ciency and low bias of the EZ-Tn5 system, including metagenomics, strain develop- ment, functional genomics and large fragment sequencing. Transposomics is easier than chemical mutagenesis, and is a trusted and well-established method for generating mutations across over 60 species of bacteria. With 100’s of publications and a wide array of applications and tools available, you are limited only by your imagination. Method Example Applications Target Transposon Tools Used In Vivo Transposomics Create mutant bacterial libraries and Living bacteria Transposome insertional gene knockouts (genomic DNA) (complex of transposon DNA and EZ-Tn5™ Transposase enzyme) In Vitro Transposomics Insert replication origins into viral or novel Puri ed DNA Transposon DNA sequence + EZ-Tn5™ plasmids (plasmid or genomic DNA) Transposase enzyme What is an EZ-Tn5 Transposome? Transposomes are used for in vivo mutagenesis in a broad EZ-Tn5 Transposome range of bacteria, including Gram positive and Gram negative strains.