Chapter 3 Transposon Mutagenesis of Rhodobacter Sphaeroides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phototrophic Oxidation of Ferrous Iron by a Rhodomicrobium Vannielii Strain
Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain Silke Heising and Bernhard Schink Author for correspondence: Bernhard Schink. Tel: 49 7531 882140. Fax: 49 7531 882966. e-mail: Bernhard.Schink!uni-konstanz.de Fakulta$ tfu$r Biologie, Oxidation of ferrous iron was studied with the anaerobic phototrophic Universita$ t Konstanz, bacterial strain BS-1. Based on morphology, substrate utilization patterns, Postfach 5560, D-78434 Konstanz, Germany arrangement of intracytoplasmic membranes and the in vivo absorption spectrum, this strain was assigned to the known species Rhodomicrobium vannielii. Also, the type strain of this species oxidized ferrous iron in the light. Phototrophic growth of strain BS-1 with ferrous iron as electron donor was stimulated by the presence of acetate or succinate as cosubstrates. The ferric iron hydroxides produced precipitated on the cell surfaces as solid crusts which impeded further iron oxidation after two to three generations. The complexing agent nitrilotriacetate stimulated iron oxidation but the yield of cell mass did not increase stoichiometrically under these conditions. Other complexing agents inhibited cell growth. Ferric iron was not reduced in the dark, and manganese salts were neither oxidized nor reduced. It is concluded that ferrous iron oxidation by strain BS-1 is only a side activity of this bacterium that cannot support growth exclusively with this electron source over prolonged periods of time. Keywords: iron metabolism, phototrophic bacteria, Rhodomicrobium vannielii, iron complexation, nitrilotriacetate (NTA) INTRODUCTION anoxygenic purple bacteria, including a Rhodo- microbium vannielii-like isolate (Widdel et al., 1993). Iron is the fourth most important element in the Earth’s Other strains of purple phototrophs able to oxidize crust, making up about 5% of the total crust mass ferrous iron are strain L7, a non-motile rod with gas (Ehrlich, 1990). -
Transposon Mutagenesis in Streptomycetes
Transposon Mutagenesis in Streptomycetes Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Bohdan Bilyk Saarbrücken 2014 Tag des Kolloquiums: 6. Oktober 2014 Dekan: Prof. Dr. Volkhard Helms Berichterstatter: Dr. Andriy Luzhetskyy Prof. Dr. Rolf Müller Vorsitz: Prof. Dr. Claus-Michael Lehr Akad. Mitarbeiter: Dr. Mostafa Hamed To Danylo and Oksana IV PUBLICATIONS Bilyk, B., Weber, S., Myronovskyi, M., Bilyk, O., Petzke, L., Luzhetskyy, A. (2013). In vivo random mutagenesis of streptomycetes using mariner-based transposon Himar1. Appl Microbiol Biotechnol. 2013 Jan; 97(1):351-9. Bilyk, B., Luzhetskyy, A. (2014). Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol. Accepted CONFERENCE CONTRIBUTIONS Bilyk, B., Weber, S., Myronovskyi, M., Luzhetskyy, A. Himar1 in vivo transposon mutagenesis of Streptomyces coelicolor and Streptomyces albus. Poster presentation at International VAAM Workshop, University of Braunschweig, September 27-29, 2012. Bilyk, B., Weber, S., Welle, E., Luzhetskyy, A. Himar1 in vivo transposon mutagenesis of Streptomyces coelicolor. Poster presentation at International VAAM Workshop, University of Bonn, September 28 – 30, 2011. Bilyk, B., Weber, S., Welle, E., Luzhetskyy, A. In vivo transposon mutagenesis of streptomycetes using a modified version of Himar1. Poster presentation at International VAAM Workshop, University of Tübingen, September 26 -28, 2010. V TABLE OF CONTENTS SUMMARY XIII 1. INTRODUCTION 15 1.1. Streptomycetes, organisms with outstanding potential 15 1.1.1. Phylogeny of actinomycetes 15 1.1.2. Streptomyces 15 1.1.3. Exploiting the potential of streptomycetes as antibiotic producers. -
A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and Their Association with the Endangered, Endemic Snail Physella Johnsoni
A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and their Association with the Endangered, Endemic Snail Physella johnsoni By Michael Bilyj A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Microbiology Faculty of Science University of Manitoba Winnipeg, Manitoba October 2011 © Copyright 2011, Michael A. Bilyj 1 Abstract The seasonal population fluctuation of anoxygenic phototrophs and the diversity of cyanobacteria at the Sulphur Mountain thermal springs of Banff, Canada were investigated and compared to the drastic population changes of the endangered snail Physella johnsoni. A new species and two strains of Rhodomicrobium were taxonomically characterized in addition to new species of Rhodobacter and Erythromicrobium. Major mat-forming organisms included Thiothrix-like species, oxygenic phototrophs of genera Spirulina, Oscillatoria, and Phormidium and purple nonsulfur bacteria Rhodobacter, Rhodopseudomonas and Rhodomicrobium. Aerobic anoxygenic phototrophs comprised upwards of 9.6 x 104 CFU/cm2 of mat or 18.9% of total aerobic heterotrophic bacterial isolates at certain sites, while maximal purple nonsulfur and purple sulfur bacteria were quantified at 3.2 x 105 and 2.0 x 106 CFU/cm2 of mat, respectively. Photosynthetic activity measurements revealed incredibly productive carbon fixation rates averaging 40.5 mg C/cm2/24 h. A temporal mismatch was observed for mat area and prokaryote-based organics to P. johnsoni population flux in a ―tracking inertia‖ manner. 2 Acknowledgements It is difficult to express sufficient gratitude to my supervisor Dr. Vladimir Yurkov for his unfaltering patience, generosity and motivation throughout this entire degree. -
The Microbial Ecology of Sulfur Transformations in Oyster Pond, Woods Hole, Massachusetts
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1970 THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS IN OYSTER POND, WOODS HOLE, MASSACHUSETTS FRANK W. BARVENIK Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation BARVENIK, FRANK W., "THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS IN OYSTER POND, WOODS HOLE, MASSACHUSETTS" (1970). Doctoral Dissertations. 933. https://scholars.unh.edu/dissertation/933 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. 71-5863 BARVENIK, Frank W., 1943- | THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS I IN OYSTER POND, WOODS HOLE, MASSACHUSETTS. f i University of New Hampshire, Ph.D., 1970 f Microbiology University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS IN OYSTER POND, WOODS HOLE, MASSACHUSETTS by FRANK W. BARVENIK B.A., University of Connecticut, 1965 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Microbiology June, 1970 This thesis has been examined and approved. C. __ _ Thesisis director, #£len2alen E. Jones, Prof. of Microbiology William R. Chesbro, Prof. of Microbiology ______ jawrence W. Slanetz, Prof. of M igroipiology IjHtVX 7 ~ _____ ___ _________________ Henri E. Gaudettfy, Asso. Prcff. of Geiology Sanuiel C. -
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities
International Journal of Molecular Sciences Review Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities Pauline J. Beckmann 1 and David A. Largaespada 1,2,3,4,* 1 Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] 2 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA 3 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA 4 Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA * Correspondence: [email protected]; Tel.: +1-612-626-4979; Fax: +1-612-624-3869 Received: 3 January 2020; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity. Keywords: animal modeling; cancer; transposon screen 1. Transposon Basics Until the mid of 1900’s, DNA was widely considered to be a highly stable, orderly macromolecule neatly organized into chromosomes. -
Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number . -
Supporting Information
Supporting Information Musat et al. 10.1073/pnas.0809329105 SI Text bottles at in situ light and temperature conditions for 4, 8, and Method Development and Testing. Before application to environ- 12 h. In situ light and temperature conditions were created in the mental samples, the HISH-SIMS procedure was tested using a laboratory based on multiple measurements of light intensities mixture of 2 bacterial cultures, E. coli, a gammaproteobacterium and temperature performed annually and seasonally in the grown on 13C-labeled glucose as sole carbon source, and Azo- chemocline of Lake Cadagno between 1994–2007 [e.g., (5–7), arcus sp., a betaproteobacterium grown without labeled sub- this study]. In situ temperature was maintained between 5 to 8 °C strate. The cultures were fixed and then mixed, filtered on using a mix of water and ice under light intensities of 10–20 mol Ϫ Ϫ gold-palladium coated filters, and hybridized with a horseradish m 2 s 1 as previously described (5, 7). Subsamples were taken peroxidase (HRP)-labeled oligonucleotide probe targeting the for bulk measurements of nitrogen and carbon from all three 23S rRNA gene of the Gammaproteobacteria. Following the incubation time points and only from a 12-h incubation exper- deposition of fluorine-containing tyramides within the hybrid- iment for nanoSIMS analysis of single cells. Water samples for ized cells, filters were analyzed using nanoSIMS. In this way, only bulk measurements were filtered on 0.7 m pore-size type GF/F a single nanoSIMS scan was required to quantify the incorpo- filters (Millipore). After freeze-drying and decalcifying with ration of 13C-glucose by individual cells and to identify these cells 37% hydrochloric acid, the GF/F filters were kept at room based on a signal conferred by rRNA-targeted oligonucleotide temperature until further processing. -
Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacterla RICHARD L
JOURNAL OF BACTERIOLOGY, Apr. 1972, p. 256-261 Vol. 110, No. 1 Copyright © 1972 American Society for Microbiology Printed in U.S.A. Deoxyribonucleic Acid Base Sequence Homologies of Some Budding and Prosthecate Bacterla RICHARD L. MOORE' AND PETER HIRSCH2 Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48823 Received for publication 21 December 1971 The genetic relatedness of a number of budding and prosthecate bacteria was determined by deoxyribonucleic acid (DNA) homology experiments of the di- rect binding type. Strains of Hyphomicrobium sp. isolated from aquatic habi- tats were found to have relatedness values ranging from 9 to 70% with strain "EA-617," a subculture of the Hyphomicrobium isolated by Mevius from river water. Strains obtained from soil enrichments had lower values with EA-617, ranging from 3 to 5%. Very little or no homology was detected between the amino acid-utilizing strain Hyphomicrobium neptunium and other Hyphomi- crobium strains, although significant homology was observed with the two Hyphomonas strains examined. No homology could be detected between pros- thecate bacteria of the genera Rhodomicrobium, Prosthecomicrobium, Ancal- omicrobium, or Caulobacter, and Hyphomicrobium strain EA-617 or H. nep- tunium LE-670. The grouping of Hyphomicrobium strains by their relatedness values agrees well with a grouping according to the base composition of their DNA species. It is concluded that bacteria possessing cellular extensions repre- sent a widely diverse group of organisms. Two genera of bacteria, Hyphomicrobium drum, P. pneumaticum, Ancalomicrobium adetum, and Rhodomicrobium, are listed under the and Caulobacter crescentus were obtained from J. T. family of Hyphomicrobiaceae in the seventh Staley (Seattle); Rhodomicrobium vannielii was re- edition of Bergey's Manual of Determinative ceived from H. -
Lecture 3 Mutagens and Mutagenesis A. Physical and Chemical
Lecture 3 Mutagens and Mutagenesis 1. Mutagens A. Physical and Chemical mutagens B. Transposons and retrotransposons C. T-DNA 2. Mutagenesis A. Screen B. Selection C. Lethal mutations Read: 508-514 Figs: 14.23-28 1 Transposon (transposable element) as a mutagen Transposon (or TE): DNA segment that can move from one position to another (1) Retrotransposons Copia Drosophila (LTR-type) Ty1 Yeast (LTR-type) LINEs Human (non-LTR-type) SINEs (Alu) Human (non-LTR-type) (2) Transposons Ac/Ds Maize P-element Drosophila 2 Retrovirus Figure 5-73. The life cycle of a retrovirus. The retrovirus genome consists of an RNA molecule of about 8500 nucleotides; two such molecules are packaged into each viral particle. The enzyme reverse transcriptase first makes a DNA copy of the viral RNA molecule and then a second DNA strand, generating a double-stranded DNA copy of the RNA genome. The integration of this DNA double helix into the host chromosome is then catalyzed by a virus-encoded integrase enzyme. This integration is required for the synthesis of new viral RNA molecules by the host cell RNA polymerase, the enzyme that transcribes DNA into RNA. (From Molecular Biology of the Cell by Alberts et al.) 3 Fig. 14.26 4 5 Figure 5-76. Transpositional site- specific recombination by a nonretroviral retrotransposon. Transposition by the L1 element (red) begins when an endonuclease attached to the L1 reverse transcriptase and the L1 RNA (blue) makes a nick in the target DNA at the point at which insertion will occur. This cleavage releases a 3′-OH DNA end in the target DNA, which is then used as a primer for the reverse transcription step shown. -
Transposon Based Mutagenesis and Mapping of Transposon Insertion Sites Within the Ehrlichia Chaffeensis Genome Using Semi Random Two-Step Pcr
TRANSPOSON BASED MUTAGENESIS AND MAPPING OF TRANSPOSON INSERTION SITES WITHIN THE EHRLICHIA CHAFFEENSIS GENOME USING SEMI RANDOM TWO-STEP PCR by VIJAYA VARMA INDUKURI B.S., ANDHRA UNIVERSITY, India, 2008 A THESIS Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Diagnostic Medicine/Pathobiology College of Veterinary Medicine KANSAS STATE UNIVERSITY Manhattan, Kansas 2013 Approved by: Major Professor Roman Reddy Ganta Copyright VIJAYA VARMA INDUKURI 2013 Abstract Ehrlichia chaffeensis a tick transmitted Anaplasmataceae family pathogen responsible for human monocytic ehrlichiosis. Differential gene expression appears to be an important pathogen adaptation mechanism for its survival in dual hosts. One of the ways to test this hypothesis is by performing mutational analysis that aids in altering the expression of genes. Mutagenesis is also a useful tool to study the effects of a gene function in an organism. Focus of my research has been to prepare several modified Himar transposon mutagenesis constructs for their value in introducing mutations in E. chaffeensis genome. While the work is in progress, research team from our group used existing Himar transposon mutagenesis plasmids and was able to create mutations in E. chaffeensis. Multiple mutations were identified by Southern blot analysis. I redirected my research efforts towards mapping the genomic insertion sites by performing the semi-random two step PCR (ST-PCR) method, followed by DNA sequence analysis. In this method, the first PCR is performed with genomic DNA as the template with a primer specific to the insertion segment and the second primer containing an anchored degenerate sequence segment. The product from the first PCR is used in the second PCR with nested transposon insertion primer and a primer designed to bind to the known sequence portion of degenerate primer segment. -
Potential Whole-Cell Biosensors for Detection of Metal Using Merr Family Proteins from Enterobacter Sp
micromachines Article Potential Whole-Cell Biosensors for Detection of Metal Using MerR Family Proteins from Enterobacter sp. YSU and Stenotrophomonas maltophilia OR02 Georgina Baya 1, Stephen Muhindi 2, Valentine Ngendahimana 3 and Jonathan Caguiat 1,* 1 Department of Biological and Chemical Sciences, Youngstown State University, Youngstown, OH 44555, USA; [email protected] 2 Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; [email protected] 3 Biology Department, Lone Star College-CyFair, 9191 Barker Cypress Rd, Cypress, TX 77433, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-330-941-2063 Abstract: Cell-based biosensors harness a cell’s ability to respond to the environment by repurposing its sensing mechanisms. MerR family proteins are activator/repressor switches that regulate the expression of bacterial metal resistance genes and have been used in metal biosensors. Upon metal binding, a conformational change switches gene expression from off to on. The genomes of the multi- metal resistant bacterial strains, Stenotrophomonas maltophilia Oak Ridge strain 02 (S. maltophilia 02) and Enterobacter sp. YSU, were recently sequenced. Sequence analysis and gene cloning identified three mercury resistance operons and three MerR switches in these strains. Transposon mutagenesis and sequence analysis identified Enterobacter sp. YSU zinc and copper resistance operons, which ap- pear to be regulated by the protein switches, ZntR and CueR, respectively. Sequence analysis and Citation: Baya, G.; Muhindi, S.; reverse transcriptase polymerase chain reaction (RT-PCR) showed that a CueR switch appears to Ngendahimana, V.; Caguiat, J. activate a S. maltophilia 02 copper transport gene in the presence of CuSO4 and HAuCl4·3H2O. -
Research Collection
Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms.