The Microbial Ecology of Sulfur Transformations in Oyster Pond, Woods Hole, Massachusetts
Total Page:16
File Type:pdf, Size:1020Kb
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1970 THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS IN OYSTER POND, WOODS HOLE, MASSACHUSETTS FRANK W. BARVENIK Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation BARVENIK, FRANK W., "THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS IN OYSTER POND, WOODS HOLE, MASSACHUSETTS" (1970). Doctoral Dissertations. 933. https://scholars.unh.edu/dissertation/933 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. 71-5863 BARVENIK, Frank W., 1943- | THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS I IN OYSTER POND, WOODS HOLE, MASSACHUSETTS. f i University of New Hampshire, Ph.D., 1970 f Microbiology University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED THE MICROBIAL ECOLOGY OF SULFUR TRANSFORMATIONS IN OYSTER POND, WOODS HOLE, MASSACHUSETTS by FRANK W. BARVENIK B.A., University of Connecticut, 1965 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Microbiology June, 1970 This thesis has been examined and approved. C. __ _ Thesisis director, #£len2alen E. Jones, Prof. of Microbiology William R. Chesbro, Prof. of Microbiology ______ jawrence W. Slanetz, Prof. of M igroipiology IjHtVX 7 ~ _____ ___ _________________ Henri E. Gaudettfy, Asso. Prcff. of Geiology Sanuiel C. Smith, Asso. Prof. of Biochemistry and Poultry Science ii DEDICATION This thesis is dedicated to my wife Trina, who through her love, patience, and understanding, offered encouragement to me throughout this endeavor. ACKNOWLEDGEMENTS I would like to express my sincere appreciation to Galen E. Jones, under whose direction this study was con ducted. His advice and encouragement were invaluable. Thanks are also expressed to William R. Chesbro, Henri E. Gaudette, and other members of the Microbiology and Geology Departments for their valuable suggestions. I would like to thank K. 0. Emery, with whom fruitful discussions were held and who provided a boat and other equipment for this study. I would also like to thank Holger W. Jannasch, who supplied laboratory space and offered encouragement and suggestions. Equipment, advice, and infor mative discussions were also provided by Ralph F. Vaccaro and other members of the staff of the Woods Hole Oceanographic Institution; their assistance is appreciated. This thesis was funded by an N.D.E.A. predoctoral fellowship at Boston University during 1965-66, and by a University of New Hampshire predoctoral fellowship during 1966-69, and a Dissertation Year Fellowship during 1969-70 at the University of New Hampshire. The study was conducted while I was a Guest Student Investigator at the Woods Hole Oceanographic Institution. iv TABLE OF CONTENTS LIST OF TABLES ........................................ viii LIST OF ILLUSTRATIONS ................................. xii LIST OF ABBREVIATIONS ................................. xiv ABSTRACT ................................................. XV I. INTRODUCTION ........................................ 1 II. LITERATURE REVIEW .................................... 3 A. Principles and Examples of Aquatic Stratification ............................. 3 B. Conditions Leading to Anoxia and Sulfide Production in Stratified Aquatic Environments ................................. 10 C. Production of Sulfide ............................. 15 D. Solubility and Volatilization of H 2 S ..............19 E. Sedimentation of Sulfides ....................... 20 F. Oxidation of Reduced Sulfur Compounds ......... 24 G. Dark CO 2 F i x a t i o n ................................. 40 H. Limnology of Oyster P o n d ...........................43 III. MATERIALS AND ME T H O D S ...................................52 A. Sampling Locations ................................ 52 B. Sampling Methods .................................. 52 C. Physical Factors ..................................52 1. Water Temperature ........................... 52 2. Transparency ....................................53 D. Chemical Analyses of the Water ............... 5 3 1. p H ............................... 53 2. Salinity ........................................ 53 3. Dissolved Oxygen .............................. 54 4. S u l f i d e ........................................ 55 5. Thiosulfate and Polythionates .............. 55 6. S u l f u r ...........................................57 7. S u l f i t e ........................................ 58 8. S u l f a t e ........................................ 58 9. Inorganic Phosphorus and Nitrogen .......... 59 a. Phosphate ................................. 59 b. N i t r i t e ....................................60 c. N i t r a t e ....................................61 d. A m m o n i u m ....................................62 10. Total Inorganic Carbon ....................... 64 E. Analyses of Sediments ............................. 64 1. Dry Weight and Ash W e i g h t .................... 64 2. Chloride ......................... ...... 65 3. Water Soluble Sulfides ......... 65 4. Acid Soluble Sulfides ........................ 65 v 5. S u l f a t e ...................................... 66 6. Sulfur . ............................... 66 7. P y r i t e ........................................ 67 F. Bacteriological Methods ......................... 67 1. Enumeration of Thiobacilli .................. 68 2. Pure Cultures of Thiobacilli ................74 3. Culture of Heterotrophic Thiosulfate Oxidizing Organisms .................... 77 4. Enrichment Cultures for Other "Colorless" Sulfur Bacteria" ...................... 78 5. Cultural and Optical Techniques for Photosynthetic Sulfur Bacteria .... 80 6. Enrichment Cultures for Other Chemo- lithotrophic Bacteria .................. 83 7. Enumeration of Heterotrophic Bacteria .. 88 8. Enumeration of Sulfide-Producing Bacteria . 89 G. Productivity Studies Using N a H C ^ O g ............90 H. Oxidation of Sulfide Using S35 .................. 9 5 IV. RESULTS A. Physical and Chemical D a t a .............. 99 1. Transparency ................................. 99 2. Temperature ................................... 100 3. Chlorinity ..................................... 100 4. p H .............................................. 103 5. Dissolved Oxygen ............................. 103 6. S u l f i d e ........................................ 104 7. Elemental Sulfur ............................. 105 8. Other Reduced Inorganic Sulfur Compounds . 106 9. S u l f a t e ........................................ 107 10. Inorganic Sulfur Balances .................. 109 11. Ammonium, Nitrite, and Nitrate ............. 109 12. Phosphate ..................................... Ill 13. Inorganic Carbon ............................. Ill 14. Summary of Physical and Chemical Data . Ill B. Thiobacilli ........................................ 112 1. Distribution of Thiobacilli ............... 112 2. Evaluation of MPN Procedures ................. 115 3. Thiobacillus Culture Comparison ........... 118 C. Photosynthetic Sulfur Bacteria .................. 120 D. Enrichment Cultures for Other "Colorless" Sulfur Bacteria ........................... 123 E. Other Chemolithotrophic Bacteria ................ 129 F. Heterotrophic Bacteria ........................... 131 1. Distribution of Aerobic Heterotrophic B a c t e r i a ................................. 132 2. Distribution of Anaerobic Heterotrophic B a c t e r i a ................................. 133 3. Heterotrophic Thiosulfate Oxidizing B a c t e r i a ................................. 133 G. Sulfide-Producing Bacteria ....................... 135 H. Productivity Studies ............... 138 vi I. Sulfide Oxidation Studies ........................ 148 J. Sediment Analyses ............................... 159 K. Results from the North Ba s i n ........................ 160 V. D I S C U S S I O N ............................................... 165 VI. REFERENCES ............................................... 324 vii LIST OP TABLES 1. Secchi Disc Readings, Extinction Coefficients, and 1% Light Levels - Southern B a s i n ...........................186 2. Temperature Readings - Southern Basin .................... 189 3. Chlorinity Determinations - Southern Basin ............... 195 4. pH Measurements - Southern Basin .............................202 5. Dissolved Oxygen Determinations - Southern Basin ......... 207 6. Sulfide Determinations - Southern Basin .................. 211 7. Elemental Sulfur Determinations - Southern Basin ......... 215 8. Thiosulfate Determinations -Southern Basin ............... 216 9. Polythionate Determinations - Southern Basin ............. 218 10. Sulfite Determinations - Southern Basin .................. 220 11. Sulfate Determinations - Southern Basin .................. 221 12. Inorganic Sulfur Balance - Southern Basin - 7/ 2/69 . 224 " " " " " - 7/14/69 ... 225 " " " " - 8/ 1/69 . 226 " " " - 8/15/69 . 227 13. Enumeration of Thiobacilli - Southern Basin - 1968 .... 228 14. Enumeration of T. thioparus - Southern Basin - 1969 . 229 15. Enumeration of T. thiooxidans - Southern Basin