Investigation of Nuclear Acoustic Resonance for the Nondestructive Determination of Residual Stress

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Nuclear Acoustic Resonance for the Nondestructive Determination of Residual Stress INVESTIGATION OF NUCLEAR ACOUSTIC RESONANCE FOR THE NONDESTRUCTIVE DETERMINATION OF RESIDUAL STRESS G. A. Matzkanin Southwest Research Institute San Antonio, Texas and R. G. Leisure and D. K. Hsu Colorado State University Fort Collins, Colorado ABSTRACT Nuclear acoustic resonance has been studied in cylindrical specimens of polycrystalline aluminum deformed in compression and tension. The acoustic absorption lineshape is found' to be asymmetric and dependent on the amount of deformation. Analysis of the signals in terms of an admixture of the real and imaginary parts of the nuclear susceptibility has been performed. The linewidth measured from the experimental signals varies with deformation exhibiting a minimum between twelve and fifteen percent strain. INTRODUCTION attenuation as the applied magnetic field was slowly swept through the resonance condition were measured As is well known, residual stresses and inter­ by means of a second transducer bonded to the other nal strains play important roles in determining the end of the specimen. To enhance the signal-to-noise service behavior of many materials, components and ratio, synchronous detection and signal averaging structures. As such, the detection and quantita­ were used. Experimental conditions are d'tailed in tive characterization of residual stresses and Table I. internal strains are crucial factors in the ratio­ nal assessment of the serviceability of structural RESULTS materials. The present program was initiated in response to the important need for a practical Typical NAR signals obtained from aluminum method of making residual stress measurements in specimens subjected to various amounts of compres­ nonferromagnetic materials. One of the methods sive deformation are shown in Fig. 4. The indicated under investigation is nuclear acoustic resonance strain values were determined from the changes in (NAR) in which changes in acoustic absorption due specimen length after deformation. The displayed to nuclear magnetic resonance (NMR) are measured. NAR signals are the first derivatives of the acous­ The advantage of this approach for NDE over the tic absorption. The amplitudes of these signals conventional inductive NMR method is that the cannot be directly compared since this parameter is acoustic approach is sensitive to the interior of affected by the bonding characteristics of the bulk metal specimens whereas the inductive approach transducers among other factors. However, all of is limited to the electromagnetic skin depth which the detected NAR signals were found to be asymmetric is typically only 10 to 100 microns at the radio­ in agreement with previously reported results for frequencies usually employed. single crystai aluminum. (2) This asymmetry has been shown both experimentally(3) and theoretically(4) to The effect of residual stress and internal be associated with an admixture of x' and x" (the strain on the nuclear resonance signal (either real and imaginary parts,. respectively, of the com­ inductive or acoustic) is associated with the plex nuclear susceptibility) according to the fol­ interaction between the nuclear quadrupole moment lowing expression for the resonant acoustic absorp­ and the electric field gradient (EFG) determined tion by other ions and electrons. For cubic symmetry the EFG normally vanishes, however, lattice distor­ (1) tion associated with stress-strain. fields can pro­ duce EFG's in nominally cubic materials {Figs. 1 where B is a factor depending on the acoustic veloc­ and 2). The resulting quadrupole interaction per­ ity and electrical conductivity. turbs the magnetic energy levels thus modifying the detected nuclear resonance signal. The relative amplitudes of the peaks of the NAR first derivatives are a measure of the asyrnrnet~y of EXPERIMENTAL the acoustic absorption lineshape and can be used to determine the percentages of x' and x" based on the The NAR approach, illustrated in Fig. 3, assumption of a Gaussian lineshape. The amounts of involves coupling ultrasonically to a specimen x" determined in this way are listed in the second \~hich is subjected to a static magnetic field. In column of Table II, while similar reisults obtained the experiments reported here, a continuous wave by analyzing the experimental acoustic absorption (cw) transmission method was used. (1) Acoustic second derivatives ar~ listed in the third column. standing waves of approximately 60 MHz were estab­ No consistent variation of x" with strain was found lished by means of a transducer bonded to one end and except for the undeforrned specimen, the x" com­ of a cylindrical specimen. Changes in acoustic ponents computed from the two derivatives are quite 92 different. The implication of these results is that ACKNOWLEDGEMENTS the assumption of a Gaussian lineshape for acoustic absorption from deformed aluminum may not be valid. The assistance of Don Allred and Gary Ashton at Indeed, comparisons between the experimental signals Colorado State University in performing the experi­ and Gaussian lineshapes (shown by open circles in mental measurements is gratefully acknowledged. The Fig. 4} show that the deviation from a Gaussian research was supported by the Air Force Office of lineshape increases with increasing deformation. Scientific Research (AFSC} under Contract #F44G20- 76-C-0114. In addition to determining x", theNAR signals from deformed aluminum were analyzed to obtain REFERENCES information on the acoustic absorption linewidth. The linewidths determined by measuring the peak-to­ 1. Leisure, R. G. and Btflef, D. I., "CI'I Microwave peak separations of the experimentally recorded Spectrometer for Ultrasonic Paramagnetic signals are tabulated in columns 2 and 3 of Table Resonance," Rev. Sci. Instrum. 12_, 199 (1968}. III for the first and second derivatives, respec­ 2. Buttet, J., Gregory, E. H., and Bailey, D. K., tively. Determined in this way, the experimental "Nuclear Acoustic Resonance in Aluminum Via linewidth initially decreases with plastic deforma­ Coupling to the Magnetic Dipole Moment," Phys. tion and then increases for strains greater than Rev. Lett.~. 1030 (1969}. approximately 15 percent. Although a change in resonance linewidth is expected for quadrupole per­ 3. Leisure, R. G., Hsu, D. K., and Seiber, B. A., turbed energy levels, the results presented here "Nuclear-Acoustic-Resonance Absorption and are difficult to interpret analytically since the Dispersion in Aluminum," Phys. Rev. Lett. 30, variation of the admixture of x' and x" with strain 1326 (1973}. also affects the linewidth. Thus for comparison with theory, the linewidth in terms of the x" com­ 4. Fedders, P. A., "Acoustic Magnetic Resonance in ponent must be extracted from the experimental NAR Metals via the Alpher-Rubin Mechanism," Phys. signals. Rev. BB 5156 (1973}. Interesting results have been obtained indi­ Table I. cating that the acoustic absorption lineshape for Experimental Conditions the deformed aluminum specimens is dependent on the frequency used to modulate the static magnetic field SPECIMENS: 99.999-% PURE POLYCRYSTALLINE for synchronous detection. As shown in Fig. 5, for ALUMINUM a lightly deformed specimen (5% tensile strain}, the NAR lineshape is essentially independent of modula­ CYLINDERS: 1/2-IN. LONG BY 1/2-IN. DIAMETER tion frequency (results were obtained in the 25-100 FREQUENCY: 60 MHz Hz range} whereas for a highly deformed specimen (25% tensile strain} the lineshape changes substan­ MAGNETIC FIELD: 54 kG tially with modulation frequency·. In fact, as the modulation frequency is decreased from 100 Hz to TEMPERATURE: 4.2°K & 65•K 35 Hz, the lineshape for the 25% tensile strain specimen changes from approximately 50% or 60% x" ACOUSTIC MODE: SHEAR to approximately 20% x". Since the modulation fre­ Table II. quency determines the depth of penetration of the The Imaginary Component, x", of the Complex Nuclear magnetic field into the specimen, a possible inter­ Susceptibility for Plastically Deformed pretation of these results is that the change in Aluminum Based on Measurements of lineshape observed for the 25% deformed specimen Experimental Curves and Gaussian may be associated with inhomogeneous deformation Lineshape Assumption existing in this specimen. Strain x"!%1 CONCLUSIONS (%) First Derivative Second Derivative As a consequence of the results obtained to 0 84 89 date, the following conclusions are reached: 4.8 49 88 9.8 82 63 (1} Nuclear acous~ic resonance signals observed in polycrystalline aluminum 14.9 53 71 are quantitavely similar to NAR signals 19.8 48 77 in single crystal aluminum. 25.0 66 51 (2} The NAR signals are asymmetric due to Table III. an admixture of X' and X"· The Acoustic Absorption Linewidth for Plastically Deformed Aluminum Measured from Experimental Curves (3} The"NAR linewidth and admixture of x' Strain Linewidth (Gauss) and x" vary with plastic deformation. (%) First Derivative Second Derivative (4} The NAR lineshape for plastically deformed aluminum does not fit a 0 9.3 10.5 Gaussian function. 4.8 8.0 11.3 9.8 7.3 9.7 (5} The effect of modulation frequency 14.9 7.2 8.5 on lineshape depends on the amount of plastic deformation. 19.8 8.9 9.3 ,, 25.0 8.0 10.5 I STRAIN I ELECTRIC FIELD lOTHER IONS;· ~ GRADIENT ELECTRONS GRADIENT­ ELASTIC TENSOR EFG IN CUBIC CRYSTAlS CAUSED BY: lr 1. Stress-Strain Fields Produced by External Loads or Lattice Defects I ELECTRIC FIELD GRADIENT l 2. Charge Difference Between Point Defects and Host Ions I' 3. Redistribution of Conduction Electrons Around a Defect in the Case of Metals QUADRUPOLE
Recommended publications
  • Acoustic Resonance Lab 1 Introduction 2 Sound Generation
    Summer Music Technology 2013 Acoustic Resonance Lab 1 Introduction This activity introduces several concepts that are fundamental to understanding how sound is produced in musical instruments. We'll be measuring audio produced from acoustic tubes. General Notes • Work in groups of 2 or 3 • Divide up the tasks amongst your group members so everyone contributes Equipment Check Make sure you have the following: • (2) iPads • (1) Microphone • (1) Tape Measure • (1) Adjustable PVC tube with speaker • (1) Amplifier • (1) RCA to 1/8" audio cable • (1) iRig Pre-Amp • (2) Pieces of speaker wire • (1) XLR cable • (1) Pair of Alligator clips 2 Sound Generation Setup We will use one iPad to generate tones that will play through our tube. However, the iPad can't provide enough power to drive the speaker, so we need to connect it to an amplifier. From here on, we'll refer to this iPad as the Synthesizer. 1. Plug the Amplifier’s power cord into an outlet. DO NOT TURN IT ON. 2. Plug one end of the 1/8" audio cable to the iPad's headphone output jack. Plug the other end into the Amplifier’s Input jack. 3. Attach the alligator clips to the speaker wires on the Amplifier’s Output jack. Attach the other end of the clips to the speaker terminals (the speaker should be mounted to the tube). MET-lab 1 Drexel University Summer Music Technology 2013 3 Sound Analysis Setup In order to measure the audio, we need to record audio from a microphone. The other iPad will be used to record sound.
    [Show full text]
  • Acoustical and Optical Radiation Pressures and the Development of Single Beam Acoustical Tweezers Jean-Louis Thomas, Régis Marchiano, Diego Baresch
    Acoustical and optical radiation pressures and the development of single beam acoustical tweezers Jean-Louis Thomas, Régis Marchiano, Diego Baresch To cite this version: Jean-Louis Thomas, Régis Marchiano, Diego Baresch. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers. Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2017, 195, pp.55-65. 10.1016/j.jqsrt.2017.01.012. hal-01438774 HAL Id: hal-01438774 https://hal.archives-ouvertes.fr/hal-01438774 Submitted on 18 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers Jean-Louis Thomasa,∗, R´egisMarchianob, Diego Barescha,b aSorbonne Universit´es,UPMC Univ Paris 06, CNRS UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, Paris, France bSorbonne Universit´es,UPMC Univ Paris 06, CNRS UMR 7190, Institut Jean le Rond d'Alembert, 4 place Jussieu, Paris, France Abstract Studies on radiation pressure in acoustics and optics have enriched one an- other and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexter- ity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices.
    [Show full text]
  • Nuclear Acoustic Resonance Investigations of the Longitudinal and Transverse Electron-Lattice Interaction in Transition Metals and Alloys V
    NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer To cite this version: V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer. NUCLEAR ACOUSTIC RESONANCE INVES- TIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERAC- TION IN TRANSITION METALS AND ALLOYS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-389-C6-391. 10.1051/jphyscol:19816113. jpa-00221175 HAL Id: jpa-00221175 https://hal.archives-ouvertes.fr/jpa-00221175 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE CoZZoque C6, suppZe'ment au no 22, Tome 42, de'cembre 1981 page C6-389 NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Miiller, G. Schanz, E.-J. Unterhorst and D. Maurer &eie Universit8G Berlin, Fachbereich Physik, Kiinigin-Luise-Str.28-30, 0-1000 Berlin 33, Gemany Abstract.- In metals the conduction electrons contribute significantly to the acoustic-wave-induced electric-field-gradient-tensor (DEFG) at the nuclear positions. Since nuclear electric quadrupole coupling to the DEFG is sensi- tive to acoustic shear modes only, nuclear acoustic resonance (NAR) is a par- ticularly useful tool in studying the coup1 ing of electrons to shear modes without being affected by volume dilatations.
    [Show full text]
  • In-Situ Attenuation Corrections for Radiation Force Measurements of High Frequency Ultrasound with a Conical Target
    Volume 111, Number 6, November-December 2006 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 111, 435-442 (2006)] In-situ Attenuation Corrections for Radiation Force Measurements of High Frequency Ultrasound With a Conical Target Volume 111 Number 6 November-December 2006 Steven E. Fick Radiation force balance (RFB) measure- Key words: attenuation correction; coni- ments of time-averaged, spatially-integrat- cal target; in-situ attenuation; power meas- National Institute of Standards ed ultrasound power transmitted into a urement; radiation force balance; radiation and Technology, reflectionless water load are based on pressure; ultrasonic power; ultrasound Gaithersburg, MD 20899 measurements of the power received by power. the RFB target. When conical targets are used to intercept the output of collimated, and circularly symmetric ultrasound sources operating at frequencies above a few Dorea Ruggles megahertz, the correction for in-situ atten- uation is significant, and differs signifi- cantly from predictions for idealized cir- School of Architecture, Accepted: November 7, 2006 cumstances. Empirical attenuation correc- Program in Architectural tion factors for a 45° (half-angle) absorp- Acoustics, tive conical RFB target have been deter- Rensselaer Polytechnic Institute, mined for 24 frequencies covering the 5 Troy, NY 12180 MHz to 30 MHz range. They agree well with previously unpublished attenuation calibration factors determined in 1994 for [email protected] a similar target. Available online: http://www.nist.gov/jres 1. Introduction stances, the inertia of the target causes it to effectively integrate pulses into the corresponding steady-state Radiation pressure [1-13] has been employed in a force.
    [Show full text]
  • THE SPECIAL RELATIONSHIP BETWEEN SOUND and LIGHT, with IMPLICATIONS for SOUND and LIGHT THERAPY John Stuart Reid ABSTRACT
    Theoretical THE SPECIAL RELATIONSHIP BETWEEN SOUND AND LIGHT, WITH IMPLICATIONS FOR SOUND AND LIGHT THERAPY John Stuart Reid ABSTRACT In this paper we explore the nature of sound and light and the special relationship that exists between these two seemingly unrelated forms of energy. The terms 'sound waves' and 'electromagnetic waves' are examined. These commonly used expressions, it is held, misrepresent science and may have delayed new discoveries. A hypothetical model is proposed for the mechanism that creaIL'S electromagnetism. named "Sonic Propagation of Electromagnetic Energy Components" (SPEEC). The SPEEC hypothesis states that all sounds have an electromagnetic component and that all electromagnetism is created as a consequence of sound. SPEEC also predicts that the electromagnetism created by sound propagation through air will be modulated by the same sound periodicities that created the electromagnetism. The implications for SPEEC are discussed within the context of therapeutic sound and light. KEYWORDS: Sound, Light, SPEEC, Sound and Light Therapy Subtle Energies &- Energy Medicine • Volume 17 • Number 3 • Page 215 THE NATURE OF SOUND ound traveling through air may be defined as the transfer of periodic vibrations between colliding atoms or molecules. This energetic S phenomenon typically expands away from the epicenter of the sound event as a bubble-shaped emanation. As the sound bubble rapidly increases in diameter its surface is in a state of radial oscillation. These periodic movements follow the same expansions and contractions as the air bubble surrounding the initiating sound event. DE IUPlIUlIEPIESEITInU IF ..... mBIY II m DE TEll '..... "'EI' II lIED, WIIIH DE FAlSE 111101111 DAT ..... IUYEIJ AS I lAVE.
    [Show full text]
  • Recent Advances in the Sound Insulation Properties of Bio-Based Materials
    PEER-REVIEWED REVIEW ARTICLE bioresources.com Recent Advances in the Sound Insulation Properties of Bio-based Materials Xiaodong Zhu,a,b Birm-June Kim,c Qingwen Wang,a and Qinglin Wu b,* Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an understanding of sound transmission properties of bio-based materials. In addition, the review presents discussions on the composite structure optimization and future research in using co-extruded wood plastic composite for sound insulation control. This review contributes to the body of knowledge on the sound transmission properties of bio-based materials, provides a better understanding of the models of some multiporous bio-based materials and multilayered structures, and contributes to the wider adoption of bio-based materials as sound absorbers. Keywords: Bio-based material; Acoustic properties; Sound transmission; Transmission loss; Sound absorbing; Sound insulation Contact information: a: Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China; b: School of Renewable Natural Resources, LSU AgCenter, Baton Rouge, Louisiana; c: Department of Forest Products and Biotechnology, Kookmin University, Seoul 136-702, Korea. * Corresponding author: [email protected] (Qinglin Wu) INTRODUCTION Noise reduction is a must, as noise has negative effects on physiological processes and human psychological health.
    [Show full text]
  • An Experiment in High-Frequency Sediment Acoustics: SAX99
    An Experiment in High-Frequency Sediment Acoustics: SAX99 Eric I. Thorsos1, Kevin L. Williams1, Darrell R. Jackson1, Michael D. Richardson2, Kevin B. Briggs2, and Dajun Tang1 1 Applied Physics Laboratory, University of Washington, 1013 NE 40th St, Seattle, WA 98105, USA [email protected], [email protected], [email protected], [email protected] 2 Marine Geosciences Division, Naval Research Laboratory, Stennis Space Center, MS 39529, USA [email protected], [email protected] Abstract A major high-frequency sediment acoustics experiment was conducted in shallow waters of the northeastern Gulf of Mexico. The experiment addressed high-frequency acoustic backscattering from the seafloor, acoustic penetration into the seafloor, and acoustic propagation within the seafloor. Extensive in situ measurements were made of the sediment geophysical properties and of the biological and hydrodynamic processes affecting the environment. An overview is given of the measurement program. Initial results from APL-UW acoustic measurements and modelling are then described. 1. Introduction “SAX99” (for sediment acoustics experiment - 1999) was conducted in the fall of 1999 at a site 2 km offshore of the Florida Panhandle and involved investigators from many institutions [1,2]. SAX99 was focused on measurements and modelling of high-frequency sediment acoustics and therefore required detailed environmental characterisation. Acoustic measurements included backscattering from the seafloor, penetration into the seafloor, and propagation within the seafloor at frequencies chiefly in the 10-300 kHz range [1]. Acoustic backscattering and penetration measurements were made both above and below the critical grazing angle, about 30° for the sand seafloor at the SAX99 site.
    [Show full text]
  • Musical Acoustics - Wikipedia, the Free Encyclopedia 11/07/13 17:28 Musical Acoustics from Wikipedia, the Free Encyclopedia
    Musical acoustics - Wikipedia, the free encyclopedia 11/07/13 17:28 Musical acoustics From Wikipedia, the free encyclopedia Musical acoustics or music acoustics is the branch of acoustics concerned with researching and describing the physics of music – how sounds employed as music work. Examples of areas of study are the function of musical instruments, the human voice (the physics of speech and singing), computer analysis of melody, and in the clinical use of music in music therapy. Contents 1 Methods and fields of study 2 Physical aspects 3 Subjective aspects 4 Pitch ranges of musical instruments 5 Harmonics, partials, and overtones 6 Harmonics and non-linearities 7 Harmony 8 Scales 9 See also 10 External links Methods and fields of study Frequency range of music Frequency analysis Computer analysis of musical structure Synthesis of musical sounds Music cognition, based on physics (also known as psychoacoustics) Physical aspects Whenever two different pitches are played at the same time, their sound waves interact with each other – the highs and lows in the air pressure reinforce each other to produce a different sound wave. As a result, any given sound wave which is more complicated than a sine wave can be modelled by many different sine waves of the appropriate frequencies and amplitudes (a frequency spectrum). In humans the hearing apparatus (composed of the ears and brain) can usually isolate these tones and hear them distinctly. When two or more tones are played at once, a variation of air pressure at the ear "contains" the pitches of each, and the ear and/or brain isolate and decode them into distinct tones.
    [Show full text]
  • AN INTRODUCTION to MUSIC THEORY Revision A
    AN INTRODUCTION TO MUSIC THEORY Revision A By Tom Irvine Email: [email protected] July 4, 2002 ________________________________________________________________________ Historical Background Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy. Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency. German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote “On the Sensations of Tone” to establish the scientific basis of musical theory. Natural Frequencies of Strings A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones. Ratios The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1. Table 1. Standard Frequency Ratios Ratio Name 1:1 Unison 1:2 Octave 1:3 Twelfth 2:3 Fifth 3:4 Fourth 4:5 Major Third 3:5 Major Sixth 5:6 Minor Third 5:8 Minor Sixth 1 These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.
    [Show full text]
  • The Emergence of Low Frequency Active Acoustics As a Critical
    Low-Frequency Acoustics as an Antisubmarine Warfare Technology GORDON D. TYLER, JR. THE EMERGENCE OF LOW–FREQUENCY ACTIVE ACOUSTICS AS A CRITICAL ANTISUBMARINE WARFARE TECHNOLOGY For the three decades following World War II, the United States realized unparalleled success in strategic and tactical antisubmarine warfare operations by exploiting the high acoustic source levels of Soviet submarines to achieve long detection ranges. The emergence of the quiet Soviet submarine in the 1980s mandated that new and revolutionary approaches to submarine detection be developed if the United States was to continue to achieve its traditional antisubmarine warfare effectiveness. Since it is immune to sound-quieting efforts, low-frequency active acoustics has been proposed as a replacement for traditional passive acoustic sensor systems. The underlying science and physics behind this technology are currently being investigated as part of an urgent U.S. Navy initiative, but the United States and its NATO allies have already begun development programs for fielding sonars using low-frequency active acoustics. Although these first systems have yet to become operational in deep water, research is also under way to apply this technology to Third World shallow-water areas and to anticipate potential countermeasures that an adversary may develop. HISTORICAL PERSPECTIVE The nature of naval warfare changed dramatically capability of their submarine forces, and both countries following the conclusion of World War II when, in Jan- have come to regard these submarines as principal com- uary 1955, the USS Nautilus sent the message, “Under ponents of their tactical naval forces, as well as their way on nuclear power,” while running submerged from strategic arsenals.
    [Show full text]
  • Fundamentals of Duct Acoustics
    Fundamentals of Duct Acoustics Sjoerd W. Rienstra Technische Universiteit Eindhoven 16 November 2015 Contents 1 Introduction 3 2 General Formulation 4 3 The Equations 8 3.1 AHierarchyofEquations ........................... 8 3.2 BoundaryConditions. Impedance.. 13 3.3 Non-dimensionalisation . 15 4 Uniform Medium, No Mean Flow 16 4.1 Hard-walled Cylindrical Ducts . 16 4.2 RectangularDucts ............................... 21 4.3 SoftWallModes ................................ 21 4.4 AttenuationofSound.............................. 24 5 Uniform Medium with Mean Flow 26 5.1 Hard-walled Cylindrical Ducts . 26 5.2 SoftWallandUniformMeanFlow . 29 6 Source Expansion 32 6.1 ModalAmplitudes ............................... 32 6.2 RotatingFan .................................. 32 6.3 Tyler and Sofrin Rule for Rotor-Stator Interaction . ..... 33 6.4 PointSourceinaLinedFlowDuct . 35 6.5 PointSourceinaDuctWall .......................... 38 7 Reflection and Transmission 40 7.1 A Discontinuity in Diameter . 40 7.2 OpenEndReflection .............................. 43 VKI - 1 - CONTENTS CONTENTS A Appendix 49 A.1 BesselFunctions ................................ 49 A.2 AnImportantComplexSquareRoot . 51 A.3 Myers’EnergyCorollary ............................ 52 VKI - 2 - 1. INTRODUCTION CONTENTS 1 Introduction In a duct of constant cross section, with a medium and boundary conditions independent of the axial position, the wave equation for time-harmonic perturbations may be solved by means of a series expansion in a particular family of self-similar solutions, called modes. They are related to the eigensolutions of a two-dimensional operator, that results from the wave equation, on a cross section of the duct. For the common situation of a uniform medium without flow, this operator is the well-known Laplace operator 2. For a non- uniform medium, and in particular with mean flow, the details become mo∇re complicated, but the concept of duct modes remains by and large the same1.
    [Show full text]
  • Acoustic Resonance Between Ground and Thermosphere
    Data Science Journal, Volume 8, 30 March 2009 ACOUSTIC RESONANCE BETWEEN GROUND AND THERMOSPHERE 1 1 2 3 1 1 4 Matsumura, M., * Iyemori, T., Tanaka, Y., Han, D., Nose, M., Utsugi, M., Oshiman, N., 5 1 6 Shinagawa, H., Odagi, Y. and Tabata, Y. *1 Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan E-mail: [email protected] 2 Faculty of Engineering, Setsunan University, Neyagawa 572-8508, Japan 3 Polar Research Institute of China, Pudong, Jinqiao Road 451, Shanghai 200136, China 4 Disaster Prevention Research Institute, Kyoto University, Uji 611-0011, Japan 5 National Institute of Information and Communications Technology, Koganei 184-8795, Japan 6Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan ABSTRACT Ultra-low frequency acoustic waves called "acoustic gravity waves" or "infrasounds" are theoretically expected to resonate between the ground and the thermosphere. This resonance is a very important phenomenon causing the coupling of the solid Earth, neutral atmosphere, and ionospheric plasma. This acoustic resonance, however, has not been confirmed by direct observations. In this study, atmospheric perturbations on the ground and ionospheric disturbances were observed and compared with each other to confirm the existence of resonance. Atmospheric perturbations were observed with a barometer, and ionospheric disturbances were observed using the HF Doppler method. An end point of resonance is in the ionosphere, where conductivity is high and the dynamo effect occurs. Thus, geomagnetic observation is also useful, so the geomagnetic data were compared with other data. Power spectral density was calculated and averaged for each month. Peaks appeared at the theoretically expected resonance frequencies in the pressure and HF Doppler data.
    [Show full text]