Maximilian Hell's Geomagnetic Observations in Norway 1769
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“The Touch of Cold Philosophy”
Edinburgh Research Explorer The Fragmentation of Renaissance Occultism and the Decline of Magic Citation for published version: Henry, J 2008, 'The Fragmentation of Renaissance Occultism and the Decline of Magic', History of Science, vol. 46, no. Part 1, No 151, pp. 1-48. <http://www.ingentaconnect.com/content/shp/histsci/2008/00000046/00000001/art00001> Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: History of Science Publisher Rights Statement: With permission © Henry, J. (2008). The Fragmentation of Renaissance Occultism and the Decline of Magic. History of Science, 46(Part 1, No 151), 1-48 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 The Fragmentation of Renaissance Occultism and the Decline of Magic* [History of Science, 46 (2008), pp. 1-48.] The touch of cold philosophy? At a Christmas dinner party in 1817 an admittedly drunken -
Maximilian Hell of Shining Stars
Obverse Coin details The coin’s obverse design depicts Father Hell as a Denomination: €10 standing astronomer observing a starry night sky through a period telescope. At the left edge is the Composition: .900 silver, .100 copper Slovak coat of arms, and in the lower centre, betwe- Weight: 18 g en the figure and the telescope, are the coin’s deno- Diameter: 34 mm mination ‘10’ and currency ‘EURO’, one above the other. The name of the issuing country ‘SLOVEN- Edge lettering: PRIEKOPNÍK MODERNEJ SKO’ appears along the upper edge of the design, ASTRONOMICKEJ VEDY) followed by the year of issuance ‘2020’. At the lower (Pioneer of modern astronomy) right are the stylised letters ‘KL’, referring to the de- Issuing volume: limited to a maximum of signer Karol Ličko, and the mint mark of the Krem- 11,000 coins nica Mint (Mincovňa Kremnica), consisting of the Designer: Karol Ličko letters ‘MK’ placed between two dies. Engraver: Filip Čerťaský Producer: Kremnica Mint Published by Národná banka Slovenska, May 2020 © Národná banka Slovenska 2020 19th century illustration entitled “Transit of Venus in 1761” Original Slovak text written by Dr Ingrid Kušniráková Photographs: www.alamy.com, Reverse www.slovenskivynalezcovia.webz.cz www.nbs.sk/sk/bankovky-a-mince/ 300th anniversary of The reverse depicts, on the right side, Father Hell eurove-mince/zberatelske dressed for his journey to the Arctic Circle, where the birth of he observed the transit of Venus across the Sun. The transit is shown on the left side above a cluster Maximilian Hell of shining stars. In the midst of the stars are dates of Father Hell’s birth ‘1720’ and death ‘1792’, one abo- ve the other. -
Camoenae Hungaricae 6(2009)
Camoenae Hungaricae 6(2009) ANDREA MOLNÁR MIHÁLY PAINTNER’S MANUSCRIPT BIOGRAPHY ON MAXIMILIAN HELL Maximilian Hell (1720–1792), Maria Theresa’s royal and imperial astronomer was a well-known figure of the scientific life of contemporary Europe. He published his astro- nomical yearbook (Ephemerides Astronomicae) annually from 1756 to his death in 1792 reporting his astronomical observations, theoretical conclusions. Maximilian Hell, how- ever, made his reputation in 1769, when invited by King Christian VII of Denmark and Norway to the small town of Vardø situated beyond the Arctic Circle, he gave the scien- 1 tific description of the transit of Venus in front of the Sun. Hell also made various scien- tific observations in the Scandinavian peninsula. The succeeding generations did not cherish his memory (and his fellow Jesuit brothers’) as it would have been appropriate for his importance, albeit he can be honoured not only as a famous astronomer but also as a linguist who, among others, lay the scientific foundations of the Finno-Ugrian linguistic 2 relation. There is only scattered information of his life and works available. History of science is still to come up with an up-to-date monograph based on the thorough study of sources.3 The first steps were only taken in recent years to present his astronomical and geophysical results and evaluate them on the basis of his published and unpublished 4 works from the perspective of the history of science. The current knowledge of Maximilian Hell is not much greater than it was at the end of the 18th century. The pursuit of the history of literature and science started spreading in that century in Hungary, therefore more and more educated people engaged in compil- ing encyclopaedias of writers. -
Denmark–Norway, 1761–1769: Two Missed Opportunities?
MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 Denmark–Norway, 1761–1769: Two Missed Opportunities? Per Pippin Aspaas University Library of Tromsø, N-9037 Norway Abstract. Despite a promising start in the sixteenth and seventeenth centuries, Denmark–Norway was not a Great Power of Astronomy any longer when the eight- eenth-century transits of Venus occurred. Official activity relating to the transit of 1761 was very limited; in this respect, Denmark–Norway was completely overshad- owed by Sweden and Russia. In 1769 steps were taken to invite an astronomer of international reputation, the Jesuit Father Maximilianus Hell. He arrived in 1768 and left the country two years later, having published an elaborate report in the name of the King Christian VII. Although Hell’s observations from Vardøhus were successful, Denmark–Norway failed to re-establish itself as a country capable of deliv- ering noteworthy contributions to the European community of astronomers. Sweden and Russia displayed a higher level of activity, both quantitatively and qualitatively, making the impression of Denmark–Norway’s lagging behind even stronger. 1. Introduction Throughout the eighteenth century, the northernmost part of Europe was divided between three powers: Denmark–Norway, Sweden, and Russia. They all encom- passed territories with very similar advantages as far as the transits of Venus were concerned. However, the history of Venus transit activity in the three countries men- tioned is far from uniform. Other contributions to these Proceedings analyze Venus transit activities in Sweden (Widmalm) and Russia (Bucher). There are also case studies on individual astronomers active in these parts (Pekonen, St´en & Aspaas, Voje Johansen, Kontler). -
Moon-Earth-Sun: the Oldest Three-Body Problem
Moon-Earth-Sun: The oldest three-body problem Martin C. Gutzwiller IBM Research Center, Yorktown Heights, New York 10598 The daily motion of the Moon through the sky has many unusual features that a careful observer can discover without the help of instruments. The three different frequencies for the three degrees of freedom have been known very accurately for 3000 years, and the geometric explanation of the Greek astronomers was basically correct. Whereas Kepler’s laws are sufficient for describing the motion of the planets around the Sun, even the most obvious facts about the lunar motion cannot be understood without the gravitational attraction of both the Earth and the Sun. Newton discussed this problem at great length, and with mixed success; it was the only testing ground for his Universal Gravitation. This background for today’s many-body theory is discussed in some detail because all the guiding principles for our understanding can be traced to the earliest developments of astronomy. They are the oldest results of scientific inquiry, and they were the first ones to be confirmed by the great physicist-mathematicians of the 18th century. By a variety of methods, Laplace was able to claim complete agreement of celestial mechanics with the astronomical observations. Lagrange initiated a new trend wherein the mathematical problems of mechanics could all be solved by the same uniform process; canonical transformations eventually won the field. They were used for the first time on a large scale by Delaunay to find the ultimate solution of the lunar problem by perturbing the solution of the two-body Earth-Moon problem. -
This Is an Electronic Reprint of the Original Article. This Reprint May Differ from the Original in Pagination and Typographic Detail
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Sterken, Christiaan; Aspaas, Per Pippin; Dunér, David; Kontler, László; Neul, Reinhard; Pekonen, Osmo; Posch, Thomas Title: A voyage to Vardø - A scientific account of an unscientific expedition Year: 2013 Version: Please cite the original version: Sterken, C., Aspaas, P. P., Dunér, D., Kontler, L., Neul, R., Pekonen, O., & Posch, T. (2013). A voyage to Vardø - A scientific account of an unscientific expedition. The Journal of Astronomical Data, 19(1), 203-232. http://www.vub.ac.be/STER/JAD/JAD19/jad19.htm All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 A Voyage to Vardø. A Scientific Account of an Unscientific Expedition Christiaan Sterken1, Per Pippin Aspaas,2 David Dun´er,3,4 L´aszl´oKontler,5 Reinhard Neul,6 Osmo Pekonen,7 and Thomas Posch8 1Vrije Universiteit Brussel, Brussels, Belgium 2University of Tromsø, Norway 3History of Science and Ideas, Lund University, Sweden 4Centre for Cognitive Semiotics, Lund University, Sweden 5Central European University, Budapest, Hungary 6Robert Bosch GmbH, Stuttgart, Germany 7University of Jyv¨askyl¨a, Finland 8Institut f¨ur Astronomie, University of Vienna, Austria Abstract. -
A Classified Bibliography on the History of Scientific Instruments by G.L'e
A Classified Bibliography on the History of Scientific Instruments by G.L'E. Turner and D.J. Bryden Originally published in 1997, this Classified Bibliography is "Based on the SIC Annual Bibliographies of books, pamphlets, catalogues and articles on studies of historic scientific instruments, compiled by G.L'E. Turner, 1983 to 1995, and issued by the Scientific Instrument Commission. Classified and edited by D.J. Bryden" (text from the inside cover page of the original printed document). Dates for items in this bibliography range from 1979 to 1996. The following "Acknowledgments" text is from page iv of the original printed document: The compiler thanks the many colleagues throughout the world who over the years have drawn his attention to publications for inclusion in the Annual Bibliography. The editor thanks Miss Veronica Thomson for capturing on disc the first 6 bibliographies. G.L'E. Turner, Oxford D.J. Bryden, Edinburgh April 1997 ASTROLABE ACKERMANN, S., ‘Mutabor: Die Umarbeitung eines mittelalterlichen Astrolabs im 17. Jahrhundert’, in: von GOTSTEDTER, A. (ed), Ad Radices: Festband zum fünfzigjährrigen Bestehen des Instituts für Geschichte der Naturwissenschaften der Johann Wolfgang Goethe- Universtät Frankfurt am Main (Stuttgart: Franz Steiner Verlag, 1994), 193-209. ARCHINARD, M., Astrolabe (Geneva: Musée d'histoire des Sciences de Genève, 1983). 40pp. BORST, A., Astrolab und Klosterreform an der Jahrtausendwende (Heidelberg: Carl Winter Universitatsverlag, 1989) (Sitzungsberichte der Heidelberger Akademie der Wissenschaften Philosophisch-historische Klasse). 134pp. BROUGHTON, P., ‘The Christian Island "Astrolabe" ’, Journal of the Royal Astronomical Society of Canada, 80, no.3 (1986), 142-53. DEKKER, E., ‘An Unrecorded Medieval Astrolabe Quadrant c.1300’, Annals of Science, 52 (1995), 1-47. -
Article: XXVIII, Le 2 Septembre 1859, (Letter Du R
CMYK RGB Hist. Geo Space Sci., 3, 33–45, 2012 History of www.hist-geo-space-sci.net/3/33/2012/ Geo- and Space doi:10.5194/hgss-3-33-2012 © Author(s) 2012. CC Attribution 3.0 License. Access Open Sciences Advances in Science & Research Open Access Proceedings Father Secchi and the first Italian magnetic observatoryDrinking Water Drinking Water Engineering and Science N. Ptitsyna1 and A. Altamore2 Engineering and Science Open Access Access Open Discussions 1Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Science, St. Petersburg Filial, Russia 2Physical Department “E. Amaldi”, University “Roma Tre”, Rome, Italy Discussions Earth System Earth System Correspondence to: N. Ptitsyna ([email protected]) Science Science Received: 23 October 2011 – Revised: 19 January 2012 – Accepted: 30 January 2012 – Published: 28 February 2012 Open Access Open Abstract. The first permanent magnetic observatory in Italy was built in 1858 by Pietro AngeloAccess Open Data Secchi, a Data Jesuit priest who made significant contributions in a wide variety of scientific fields, ranging from astronomy to astrophysics and meteorology. In this paper we consider his studies in geomagnetism, which have never Discussions been adequately addressed in the literature. We mainly focus on the creation of the magnetic observatory on the roof of the church of Sant’Ignazio, adjacent to the pontifical university, known as the CollegioSocial Romano. Social From 1859 onwards, systematic monitoring of the geomagnetic field was conducted in the Collegio Romano Open Access Open Geography Observatory, for long the only one of its kind in Italy. We also look at the magnetic instrumentsAccess Open Geography installed in the observatory, which were the most advanced for the time, as well as scientific studies conducted there in its early years. -
Geomagnetic Research in the 19Th Century: a Case Study of the German Contribution
Journal of Atmospheric and Solar-Terrestrial Physics 63 (2001) 1649–1660 www.elsevier.com/locate/jastp Geomagnetic research in the 19th century: a case study of the German contribution Wilfried Schr,oder ∗, Karl-Heinrich Wiederkehr Geophysical Institute, Hechelstrasse 8, D 28777 Bremen, Germany Received 20 October 2000; received in revised form 2 March 2001; accepted 1 May 2001 Abstract Even before the discovery of electromagnetism by Oersted, and before the work of AmpÂere, who attributed all magnetism to the 7ux of electrical currents, A.v. Humboldt and Hansteen had turned to geomagnetism. Through the “G,ottinger Mag- netischer Verein”, a worldwide cooperation under the leadership of Gauss came into existence. Even today, Gauss’s theory of geomagnetism is one of the pillars of geomagnetic research. Thereafter, J.v. Lamont, in Munich, took over the leadership in Germany. In England, the Magnetic Crusade was started by the initiative of John Herschel and E. Sabine. At the beginning of the 1840s, James Clarke Ross advanced to the vicinity of the southern magnetic pole on the Antarctic Continent, which was then quite unknown. Ten years later, Sabine was able to demonstrate solar–terrestrial relations from the data of the colonial observatories. In the 1980s, Arthur Schuster, following Balfour Stewart’s ideas, succeeded in interpreting the daily variations of the electrical process in the high atmosphere. Geomagnetic research work in Germany was given a fresh impetus by the programme of the First Polar Year 1882–1883. Georg Neumayer, director of the “Deutsche Seewarte” in Hamburg, was one of the initiators of the Polar Year. -
Geophysical Journal International
Geophysical Journal International Geophys. J. Int. (2017) 210, 1347–1359 doi: 10.1093/gji/ggx245 Advance Access publication 2017 June 7 GJI Geomagnetism, rock magnetism and palaeomagnetism The HISTMAG database: combining historical, archaeomagnetic and volcanic data Patrick Arneitz,1 Roman Leonhardt,1 Elisabeth Schnepp,2 Balazs´ Heilig,3 Franziska Mayrhofer,1,4 Peter Kovacs,3 Pavel Hejda,5 Fridrich Valach,6 Gergely Vadasz,3 Christa Hammerl,1 Ramon Egli,1 Karl Fabian7 and Niko Kompein1 1ZAMG, 1190 Vienna, Austria. E-mail: [email protected] 2Palaeomagnetic Laboratory Gams, 8130 Frohnleiten, Austria 3Geological and Geophysical Institute of Hungary, 8237 Tihany, Hungary 4Department for Geodynamics and Sedimentology, University of Vienna, 1090 Vienna, Austria 5Institute of Geophysics, Czech Academy of Sciences, Praha 4, Czech Republic 6Geomagnetic Observatory, Earth Science Institute, Slovak Academy of Sciences, 947 01 Hurbanovo 7Geological Survey of Norway, 7491 Trondheim, Norway Accepted 2017 June 6. Received 2017 May 23; in original form 2017 February 10 SUMMARY Records of the past geomagnetic field can be divided into two main categories. These are instru- mental historical observations on the one hand, and field estimates based on the magnetization acquired by rocks, sediments and archaeological artefacts on the other hand. In this paper, a new database combining historical, archaeomagnetic and volcanic records is presented. HISTMAG is a relational database, implemented in MySQL, and can be accessed via a web-based inter- face (http://www.conrad-observatory.at/zamg/index.php/data-en/histmag-database). It com- bines available global historical data compilations covering the last ∼500 yr as well as archaeomagnetic and volcanic data collections from the last 50 000 yr. -
5 »¥ S) 2 Torgeir Bjørge Andersen
The Structure of the Magerøy Nappe, Finnmark, North Norway TORGEIR BJORGE ANDERSEN Andersen, T. B. 1981: The structure av the Mageroy Nappe, Finnmark, North Norway. Norges geol. Undas. 363, 1-23. The Magerøy Nappe was emplaced during the Scandinavian phase of the Cale donian orogeny, of Middle/Upper Silurian age. Two main episodes of deformation (D, and D 2) with attendant Barrovian-type regional metamorphism are recorded in the xnetasediments of Upper Ordovician/Lower Silurian age forming the Magerov Supergroup (minimum thickness 5.5 km). The D, deformation produced overturned to recumbent regional folds which due to opposite vergence form a mushroom-like culmination in central Mageroy. D, folds east of the structural divergence zone are tight, recumbent folds with eastward vergence, while those to the west are overturned asymmetncal folds verging to the west. Textural and structural observations indicate that D, consisted ot two deformationa events (D, and D n ) of which the later coincides with the final movements along the basal thrust of the nappe. The metamorphism reached its peak in the penod between D, and D,, and was accompanied by acid and mafic/ultramafic intru sions (417 + Hm.;., Finnvik Granite). D2> which occurred under retrograde metamorphism, produced a large synformal structure, essentially coaxial with the F folds but with a subvertical axial surface. In the structural depression along the axial trace of this fold the highest structural levels of the Magerøy Nappe mushroom-strueture, and an erosional klippe of a higher nappe, the Skarsvag Nappe, are preserved. The F, folding of Mageroy is correlated with the late large-scale buckling of the Finnmarkian phase nappes of the ma.nland in West Finnmark. -
Cooley Family
Genealogical Works of Robert M Willis Volume II Cooley Family 1 COOLEY COMMUNIQUÉ Issued by THE COOLEY FAMILY ASSOCIATION OF AMERICA at: 39 Woodland Place, Fort Thomas, Kentucky -------------------------------------------------------------------------------------------------------------------------------- October 1968 Number 45 -------------------------------------------------------------------------------------------------------------------------------- Officers 1969-70 President Daniel P Cooley 6312 N W 36, PO Box 12362 OklaHoma City, OklaHoma 73112 Vice President Charles L Cooley 1170 Cornwall Ave, Waterloo, Iowa 50702 Secretary Mrs J Austin Beard 1614 Aliso Dr NE, Albuquerque, New Mexico 87110 Treasurer FranK E Cooley Jr 39 Woodland Place, Fort Thomas, Kentucky 41075 Genealogist Mrs Dewey G Force 1126 West FourtH Street Willmar, Minnesota 56210 -------------------------------------------------------------------------------------------------------------------------------- Editor ElizabetH M Cooley (Mrs FranK E Cooley, Jr) 39 Woodland Place, Fort Thomas, Kentucky 41075 -------------------------------------------------------------------------------------------------------------------------------- From the Pen of the Editor WitH tHis issue of tHe “Cooley Communiqué” we start tHe twelftH year of publication. Your contributions of newspaper and magazine articles and data relating to those of Cooley descent, have helped to make this all possible. Please continue to send in anything of interest. Don’t forget, the items also are placed in