Istros 2013 Proceedings Download Link

Total Page:16

File Type:pdf, Size:1020Kb

Istros 2013 Proceedings Download Link Proceedings of the ISTROS 2013 International Conference Editors: M. Veselský and M. Venhart INSTITUTE OF PHYSICS, SLOVAK ACADEMY OF SCIENCES Bratislava 2015 ISBN 978-80-971975-0-6 Dear participants, we bring to you the proceedings of the conference ISTROS (Isospin, STructure, Reactions and energy Of Symmetry), which took place in the period between Sept 23 – - for meeting of Sept 27 2013 in Častá withPapiernička. experimental The declared and theoretical aim of theaspects conference of physics was of to exotic provide nuclei platform and states of nuclear international and Slovak scientists, active in the field of nuclear physics, specifically dealing matter, and we hope that this aim was fulfilled. presentationDuring the conference, is represented 36 invited in this and proceedings contributed in talks the formwere ofpresented, short artic coveringles, while the otheropen participantsproblems in decidedthe physics to abstain of exotic from nuclei this and thusof the their states presentations of nuclear matter.are represented Part of these only by their abstracts. In general, present time appears to modify traditional procedures and one of the victims are the conference proceedings in their habitual form. We are still convinced complementthat publication the of proceedi proceedingsngs iswith a part a briefof our summaryduties as organizersof history as of a servicenatural to sciences participants and and with this in mind we bring to you these proceedings. Besides the contributed articles, we technology in the territory of Slovakia, which bring some interesting facts about the progress of scientific and technical knowledge in Slovakia. - discussing interesting physics, and thus we aim to bring the second edition of the ISTROS As far as we can judge, you had a productive time at Častá Papiernička, spent meaningfully conference in the near future. We hope to see many of you in Slovakia again. Martin Veselský and Martin Venhart Brief summary of History of Natural Sciences and Technology in Slovakia Dear participants, - Thusmany weof wouldyou visited like to Slovakia present fora short the summaryfirst time ofduring the history the Istros of science conference and specifically in Častá Papiernička, and you may have known only some basic facts about Slovakia prior to your visit. andnatural of natural sciences sciences and technology in particular, in Slovakia. and notable In this pers brief summary, we will mention selected places and historical events in Slovakia, which are relevant for history of science in general ons, who either were born in Slovakia or were closely related to it or lived and worked in Slovakia and contributed to scientific progress.Most ancient signs of technology and of exact thinking in the territory of Central Europe and with only few passages through Carpathians between fertile lowlands of Poland and Hungary of Slovakia in particular can be dated to paleolithic era. Slovakia, due to its mountainous relief used large mammoth bones in analogous way as candles were used in later eras, with bone was inhabited by the mammoth hunters. Archaeological finds show that mammoth hunters awareness of marrow gradually running out and feeding the fire for long periods of time. Such technique can be understood as a primitive tool of time measurement or at least a sign of quantitative nature of time. Paleolithic people of Central Europe to 30 hold thousand also important years, which priority was in technology, since first documented evidence of the ceramics is the famous female clay statuette known as Venus of Dolní Věstonice, old between 25 found in Dolní Věstonice, a village in Czech Republic (Moravia) just about 30 km from trijunctionMost ancient of Czechproof Republic,of existence Slovakia of astronomical and Austria. knowledge (and scientific in general) in settlementsSlovakia was of demonstrated round shape, recentlyattributed by tocollaborative neolithic Lengyel work ofculture scientists and fromdated Archaeological to first half of and Astronomical Institutes of the Slovak Academy of Sciences. Monumental neolithic countries5th millenium like Czech B.C., with republic, diameters Hungary, from Austria 50 to 200and meters,a were identified recently using air surveillance in Slovakia (most notably in Svodín, Žlkovce and Bučany) and in neighboring they were in fact astronomical tools, used by the predominantlylso in Germany. agricultural Archaeologist Lengyel Ján culture Pavúk toand determine astronomer important Vladimír dates Karlovský in t studied the shapes or these rondels and concluded that objects, older than the famous heirStonehenge calendar. As(a onecomplex can imagine, analogous such to observatories Stonehenge could was not be built without prior astronomical observations and accumulated knowledge. These unearthed also in Slovakia in the city of Holíč, unfortunately it happened during construction andworks existen and when experts were notified important archaeological evidence was already destroyed), demonstrate the considerable level of civilization in the society which built them, ce of the class, most probably priests of the cult of the Sun, who devoted their time to astronomical observations. al and later as a material for weapons and Another important progress in the knowledge of natural sciences was achieved when the metals started to be used, first as a valuable materi tools. The knowledge of metallurgy arrived into Slovakia around 4000 B.C. At the time, the Lengyel culture was superseded by Corded Ware culture (known in Western Europe also as the Battle Axe culture, named after weapons made of quartz), and knowledge of metallurgy located,was brought and fromfrom the the West Sou thby- the Bell Beaker culture, in the process forming the mixed- FÚněticeü and Nitra cultures in Western Slovakia and southern Moravia where Únětice site is as Hungary, Rumania and PolandEast and via had Balkans, a trade withforming the regionamong of othersAegean the sea Otomani(thus the namezesabonyi Carpathian culture, Troy), which was located in Eastern Slovakia and in neighboring countries such as documented by some Minoian finds. The mountainous relief of scientificSlovakia provided prog many sites where raw metals, such as copper and gold, could be found, and mining became important economical activity, which determined the civilizational and ress in the territory of Slovakia ever since then. After 7th century B.C. invasion of Celts from the West lead to introduction of iron metallurgy to territory of Slovakia. hed its Next civilizational impulse came with expansion of the Roman empire, which establis border on the Danube river (which is a southern border of present Slovakia) military and organizedcampaign military campaigns and set up trade contacts across the river. Besides this general civilizational influence on immediate Celtic and later Germanic neighbors, against Germanic Markomans brought to the territory of Slovakia one of the most learned workedpersons onof hishis era philosophical and a great treatise humanist, Meditations, the emperor which Marcus is thus Aurelius. first documented During the campaign, scientific spent mostly in the vicinity of the river Granua (nowadays called Hron) in Central Slovakia he text, which was (partially) written on the territory of Slovakia. After collapse of Roman empire and invasion of Huns the territory of Slovakia entered the cultureMigration of theperiod Roman in Europe, era was which lost and resulted it started in arrival to reappear of Slavic only tribes, after most the probablyrise of the from state the of territory to the East of Vistula river. During this period of instability the knowledge and th Great Moravia, along the rivers Morava (which joins Danube below Devín castle in Bratislava) and Nitra. In 9 century the Great Moravian ruler Rastislav invited a mission from Byzantine empire, which brought to the territory of Slovakia one of the most learned men of that time, Constantine the Philosopher (later known as St. Cyril), together with his brother Methodius. Along with Eastern Christianity they introduced first system of writing in Slavic language (glagolitsa), used it to translate the Bible, and also founded in the city of Nitra first higher empire,educational where institution they founded in Slavic kyrillitsa world, writing, teaching used innowadays Slavic language. by many EasternAs it is andknown Southern from history, their pupils were later expelled from Great Moravia, emigrated to the Bulgarian Slavic nations. al of Magyar (Hungarian) tribes again led to a period of instability, which ended by the rise of the multi-ethnic Kingdom of Hungary, of which territory Fall of Great Moravia and arriv th century when most of of Slovakia became a northern part (except for a period of about 20 years in 11 the Slovak territory belonged to Poland of the Boleslaw the Valiant) in the formments, of depopulationNitra principality. of the Not country, much is destructionknown about of thethe first abbeys, period then until centers the year of 1241,learning, when and a Mongolian (known also as Tartar) invasion lead to destruction of most of the settle consequently to the loss of practically all written records. In terms of natural sciences, Mongolian invasion introduced to Europe black powder and the principle of reactive propulsion, however other, more peaceful achievements of Chinese civilization remained obscureRest of the for 13 Europeansth century untilwas spent Marco by Polo. construction of a system of fortified castles (which made - l impulse was Slovakia
Recommended publications
  • Eclipse Science Results: Past and Present
    The Last Total Solar Eclipse of the Mil lennium in Turkey ASP Conference Series Vol W Livingston and A Ozgu c eds Eclipse Science Results Past and Present W Livingston National Solar Observatory NOAO PO Box Tucson AZ USA S Koutchmy Institut dAstrophysique de ParisCNRS Bis Boulevard Arago F Paris France Abstract We review the signicant advances that havebeenachieved by eclipse exp eriments First we note the anomaly that the corona was not even seen until relatively mo dern times Beginning in whitelight WL photographs suggested structures that must have b een dominated by magnetic elds This led to the disco very of surface magnetism in sunsp ots by Hale in the rst detection of cosmic magnetism Deli cate direct photographic observations conrmed the b ending of starlight near the eclipsed Sun as predicted by Einsteins General Theory of Rela tivity Chromospheric ash sp ectra indicated that the outer layer of the Sun was much hotter than the underlying photosphere leading to non lo cal thermo dynamic equilibrium concepts and the idea of various me chanical and wave pro cesses to maintain it Decades have been devoted to understanding the corona Discovery of its million degree plus tem p erature and guring howto heat it how co ol prominences can coexist within it all are topics to which eclipse observations havecontributed Totality without a Corona Eclipses have b een chronicled for o ver years but the corona escap ed b eing noticed until mo dern times The single exception Leonis Deaconis in AD mentions a certain dull and feeble glow
    [Show full text]
  • EPSC2015-913, 2015 European Planetary Science Congress 2015 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2015
    EPSC Abstracts Vol. 10, EPSC2015-913, 2015 European Planetary Science Congress 2015 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2015 The “Station de Planétologie des Pyrénées” (S2P), a collaborative science program in the course of a long history at Pic du Midi observatory. F. Colas (1), A. Klotz (2), F. Vachier (1), M. Birlan (1), B. Sicardy (3), J. Lecacheux (3), M. Antuna (6), R. Behrend (4), C. Birnbaum (6), G. Blanchard (6), C. Buil (4,5), J. Caquel (6), M. Castets (5), C. Cavadore (4), B. Christophe (6), F. Cochard (4), J.L. Dauvergne (6), F. Deladerriere (6), M. Delcroix (6), V. Denoux (4), J.B. DeVanssay (6), P. Devechere (6), P. Dupouy (5), E. Frappa (6), S. Fauvaud (5), B. Gaillard (6), F. Jabet (6), M. Lavayssiere (6), T. Legault (6), A. Leroy (5), A. Maury (6), M. Meunier (6), C. Pellier (6), C. Rinner (4), E. Rolland (6), O. Stenuit (6), I. Testar (6), P. Thierry (4), O. Thizy (4), B. Tregon (5), F. Vaissiere (4), S. Vauclair (6), C. Viladrich (6), C. Angeli (6), J.E. Arlot (1), M. Assafin (28), D. Bancelin (1), D. Baratoux (29), N. Barrado-Izagirre (8), M.A. Barucci (3), L. Beauvalet (9), P. Bendjoya (13), J. Berthier (1), N. Biver (3), D. Bockelee-Morvan (3), D. Berard (3), S. Bouley (10), S. Bouquillon (9), P. Bourget (11), F. Bragas- Ribas (7), J. Camargo (7), B. Carry (1), S. Chevrel (2), M; Chevreton, (3), P. Colom (3), J. Crovisier (3), J. Demars (1), R. Despiau (2), P. Descamps (1), N. Dolez (2), A.
    [Show full text]
  • Maximilian Hell of Shining Stars
    Obverse Coin details The coin’s obverse design depicts Father Hell as a Denomination: €10 standing astronomer observing a starry night sky through a period telescope. At the left edge is the Composition: .900 silver, .100 copper Slovak coat of arms, and in the lower centre, betwe- Weight: 18 g en the figure and the telescope, are the coin’s deno- Diameter: 34 mm mination ‘10’ and currency ‘EURO’, one above the other. The name of the issuing country ‘SLOVEN- Edge lettering: PRIEKOPNÍK MODERNEJ SKO’ appears along the upper edge of the design, ASTRONOMICKEJ VEDY) followed by the year of issuance ‘2020’. At the lower (Pioneer of modern astronomy) right are the stylised letters ‘KL’, referring to the de- Issuing volume: limited to a maximum of signer Karol Ličko, and the mint mark of the Krem- 11,000 coins nica Mint (Mincovňa Kremnica), consisting of the Designer: Karol Ličko letters ‘MK’ placed between two dies. Engraver: Filip Čerťaský Producer: Kremnica Mint Published by Národná banka Slovenska, May 2020 © Národná banka Slovenska 2020 19th century illustration entitled “Transit of Venus in 1761” Original Slovak text written by Dr Ingrid Kušniráková Photographs: www.alamy.com, Reverse www.slovenskivynalezcovia.webz.cz www.nbs.sk/sk/bankovky-a-mince/ 300th anniversary of The reverse depicts, on the right side, Father Hell eurove-mince/zberatelske dressed for his journey to the Arctic Circle, where the birth of he observed the transit of Venus across the Sun. The transit is shown on the left side above a cluster Maximilian Hell of shining stars. In the midst of the stars are dates of Father Hell’s birth ‘1720’ and death ‘1792’, one abo- ve the other.
    [Show full text]
  • February 2014 the Newsletter of the Barnard-Seyfert Astronomical Society
    February TheECLIPSE 2014 The Newsletter of the Barnard-Seyfert Astronomical Society From the President Next Membership Meeting: February 19, 2014, 7:30 pm Cumberland Valley Professionals vs. amateurs… the distinctions have Girl Scout Council Building blurred over the years in different ways. There was 4522 Granny White Pike a time when mere money could get you the gear to have a professional observatory. Many large Program Topic: telescopes were built with private funds by Joshua Emery - interested individuals… think of William Hershel and the “Don Quixote” object (details on page 5) Percival Lowell. Then amateurs were pushed aside by large scale photography and the truly large telescopes that needed institutions to care for and run them… like the Mt. Wilson and Mt. Palomar observatories. Expensive ccd cameras, exotic cooling, the computing power needed even after In this Issue: glass plates were replaced put meaningful observations out of reach of amateurs. Then with President’s Message 1 the advent of the personal computer and digital Observing Highlights 2 cameras, the playing field was leveled by computers that anyone could own, low noise digital Happy Birthday, cameras and powerful software. Bernard Ferdinand Lyot by Robin Byrne 3Today, you can take the hobby or second life in astronomy as far as you wish, in partnership with Board Meeting Minutes January 8, 2014 6professionals. On any given clear night, enthusiasts around the world are recording not just pretty Membership Meeting Minutes pictures, but data. Our sheer numbers allow us to January 15, 2013 9look at things in depth and at a frequency not possible if we depended just on the large research Membership Information 10 telescopes.
    [Show full text]
  • Camoenae Hungaricae 6(2009)
    Camoenae Hungaricae 6(2009) ANDREA MOLNÁR MIHÁLY PAINTNER’S MANUSCRIPT BIOGRAPHY ON MAXIMILIAN HELL Maximilian Hell (1720–1792), Maria Theresa’s royal and imperial astronomer was a well-known figure of the scientific life of contemporary Europe. He published his astro- nomical yearbook (Ephemerides Astronomicae) annually from 1756 to his death in 1792 reporting his astronomical observations, theoretical conclusions. Maximilian Hell, how- ever, made his reputation in 1769, when invited by King Christian VII of Denmark and Norway to the small town of Vardø situated beyond the Arctic Circle, he gave the scien- 1 tific description of the transit of Venus in front of the Sun. Hell also made various scien- tific observations in the Scandinavian peninsula. The succeeding generations did not cherish his memory (and his fellow Jesuit brothers’) as it would have been appropriate for his importance, albeit he can be honoured not only as a famous astronomer but also as a linguist who, among others, lay the scientific foundations of the Finno-Ugrian linguistic 2 relation. There is only scattered information of his life and works available. History of science is still to come up with an up-to-date monograph based on the thorough study of sources.3 The first steps were only taken in recent years to present his astronomical and geophysical results and evaluate them on the basis of his published and unpublished 4 works from the perspective of the history of science. The current knowledge of Maximilian Hell is not much greater than it was at the end of the 18th century. The pursuit of the history of literature and science started spreading in that century in Hungary, therefore more and more educated people engaged in compil- ing encyclopaedias of writers.
    [Show full text]
  • CIRCULAR No. 163 (OCTOBER 2007)
    INTERNATIONAL ASTRONOMICAL UNION COMMISSION 26 (DOUBLE STARS) INFORMATION CIRCULAR No. 163 (OCTOBER 2007) NEW ORBITS ADS Name P T e ­(2000) 2007 Author(s) ®2000± n a i ! Last ob. 2008 450 A 111 AB 21y38 1947.17 0.020 104±5 156±7 000156 BRENDLEY 00321-0511 16.8382 000172 150±0 18±7 1994.7083 139.5 0.161 & HARTKOPF 504 A 914 467. 1905.32 0.107 35.3 24.2 0.436 LING 00366+5609 0.7709 0.468 118.2 291.9 2005.034 23.8 0.435 865 MLR 87 55.97 2020.45 0.513 139.7 29.0 0.240 BRENDLEY 01036+6341 6.4320 0.238 145.1 246.4 2003.9517 24.4 0.233 & MASON 1538 STF 186 165.72 1892.28 0.726 219.7 65.0 0.906 BRENDLEY 01559+0151 2.1723 0.986 72.4 40.2 2006.9180 65.6 0.888 & MASON 3032 A 469 124.87 1968.61 0.885 236.8 320.3 1.723 BRENDLEY 04093-0756 2.8830 2.435 65.5 277.0 1996.8984 321.4 1.736 & MASON - CHR 17 13.93 1995.87 0.600 125.3 290.7 0.168 CVETKOVIC 04340+1510 25.8455 0.150 45.4 297.9 2001.7531 304.7 0.135 3389 A 1014 74.83 1969.67 0.465 111.9 10.2 0.349 BRENDLEY 04430+5712 4.8109 0.244 13.0 78.8 1999.8859 12.3 0.348 & HARTKOPF - BTZ 1Aa 18.75 1992.57 0.297 120.9 265.0 0.040 CVETKOVIC 06290+2013 19.1992 0.081 72.9 228.4 1997.1366 281.9 0.053 5625 A 2681 208.33 1938.47 0.793 118.2 329.9 0.442 BRENDLEY 06575+0253 1.7280 0.273 119.4 339.1 1997.2000 329.6 0.445 & MASON 6796 HU 856 80.35 1949.90 0.589 185.5 299.7 0.231 BRENDLEY 08254+3723 4.4804 0.201 36.2 263.6 2004.2017 302.0 0.228 & HARTKOPF 7555 AC 5 AB 77.82 1957.65 0.736 194.7 53.1 0.585 BRENDLEY 09525-0806 4.6261 0.397 141.1 303.3 2006.3199 51.9 0.582 & HARTKOPF 1 NEW ORBITS (continuation) ADS Name P T e ­(2000) 2007 Author(s) ®2000± n a i ! Last ob.
    [Show full text]
  • Observation of Venus and Mercury Transits from the Pic-Du-Midi Observatory
    MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 Observation of Venus and Mercury Transits from the Pic-du-Midi Observatory Guy Ratier 43 rue des Longues All´ees, F-45800 Saint-Jean-de-Braye, France Sylvain Rondi Soci´et´eAstronomique de France, 3 rue Beethoven, F-75016 Paris France Abstract. The Pic-du-Midi, on the French side of the Pyr´en´ees, became a state observatory in the summer of 1882. The first major astronomical event to be observed was the Venus transit of 6 December 1882. Unfortunately this attempt by the well-known Henry brothers was unsuccessful due to bad weather conditions. During the twentieth century, the Pic-du-Midi became famous for the quality of its solar and planetary observations. In the sixties, Jean R¨osch decided to use this experience to monitor the transits of Mercury. The objective was not to measure the parallax, but to determine the diameter of the planet in order to confirm its high density. Observations were made using a photometric method – the Hertzsprung method – during the transits of 1960, 1970 and 1973. The pioneer work of Ch. Boyer on the rotation of the Venus atmosphere as well as some experiments involving Lyot coronographs are also noteworthy. A Venus transit was finally observed on 8 June 2004 with a new CCD camera, providing a significant contribution to the model of the Venus mesosphere. This opened the field for new observations in 2012. 1. Early days of the Pic-du-Midi Observatory The site of the “Pic-du-Midi de Bigorre”, on the forefront of the Pyr´en´ees, has been known since ages as an ideal location to carry out astronomical observations.
    [Show full text]
  • Denmark–Norway, 1761–1769: Two Missed Opportunities?
    MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 Denmark–Norway, 1761–1769: Two Missed Opportunities? Per Pippin Aspaas University Library of Tromsø, N-9037 Norway Abstract. Despite a promising start in the sixteenth and seventeenth centuries, Denmark–Norway was not a Great Power of Astronomy any longer when the eight- eenth-century transits of Venus occurred. Official activity relating to the transit of 1761 was very limited; in this respect, Denmark–Norway was completely overshad- owed by Sweden and Russia. In 1769 steps were taken to invite an astronomer of international reputation, the Jesuit Father Maximilianus Hell. He arrived in 1768 and left the country two years later, having published an elaborate report in the name of the King Christian VII. Although Hell’s observations from Vardøhus were successful, Denmark–Norway failed to re-establish itself as a country capable of deliv- ering noteworthy contributions to the European community of astronomers. Sweden and Russia displayed a higher level of activity, both quantitatively and qualitatively, making the impression of Denmark–Norway’s lagging behind even stronger. 1. Introduction Throughout the eighteenth century, the northernmost part of Europe was divided between three powers: Denmark–Norway, Sweden, and Russia. They all encom- passed territories with very similar advantages as far as the transits of Venus were concerned. However, the history of Venus transit activity in the three countries men- tioned is far from uniform. Other contributions to these Proceedings analyze Venus transit activities in Sweden (Widmalm) and Russia (Bucher). There are also case studies on individual astronomers active in these parts (Pekonen, St´en & Aspaas, Voje Johansen, Kontler).
    [Show full text]
  • This Is an Electronic Reprint of the Original Article. This Reprint May Differ from the Original in Pagination and Typographic Detail
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Sterken, Christiaan; Aspaas, Per Pippin; Dunér, David; Kontler, László; Neul, Reinhard; Pekonen, Osmo; Posch, Thomas Title: A voyage to Vardø - A scientific account of an unscientific expedition Year: 2013 Version: Please cite the original version: Sterken, C., Aspaas, P. P., Dunér, D., Kontler, L., Neul, R., Pekonen, O., & Posch, T. (2013). A voyage to Vardø - A scientific account of an unscientific expedition. The Journal of Astronomical Data, 19(1), 203-232. http://www.vub.ac.be/STER/JAD/JAD19/jad19.htm All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 A Voyage to Vardø. A Scientific Account of an Unscientific Expedition Christiaan Sterken1, Per Pippin Aspaas,2 David Dun´er,3,4 L´aszl´oKontler,5 Reinhard Neul,6 Osmo Pekonen,7 and Thomas Posch8 1Vrije Universiteit Brussel, Brussels, Belgium 2University of Tromsø, Norway 3History of Science and Ideas, Lund University, Sweden 4Centre for Cognitive Semiotics, Lund University, Sweden 5Central European University, Budapest, Hungary 6Robert Bosch GmbH, Stuttgart, Germany 7University of Jyv¨askyl¨a, Finland 8Institut f¨ur Astronomie, University of Vienna, Austria Abstract.
    [Show full text]
  • 1 Accepted for Publication in the Journal of the British
    1 David Elijah Packer: cluster variables, meteors and the solar corona Jeremy Shears Abstract David Elijah Packer (1862-1936), a librarian by profession, was an enthusiastic amateur astronomer who observed from London and Birmingham. He first came to the attention of the astronomical community in 1890 when he discovered a variable star in the globular cluster M5, only the second periodic variable to be discovered in a globular cluster. He also observed meteors and nebulae, on one occasion reporting a brightening in the nucleus of the galaxy M77. However, his remarkable claims in 1896 that he had photographed the solar corona in daylight were soon shown to be flawed. Biographical sketch David Elijah Packer was born in Bermondsey, London, in 1862 April (1) the eldest child of Edward Packer (1820-1896) and Emma (Bidmead) Packer (1831-1918) (2). David attended the Free Grammar School of Saint Olave and Saint John at Southwark, where he performed well, especially in arithmetic, algebra and general mathematics (3). Edward Packer was a basket maker, as was his father and grandfather before him, the Packer family originally coming to London from Thanet, in Kent. The English basket-making industry was in decline during the second half of the nineteenth century due to the availability of cheaper imports from the continent. In spite of this, Edward was still in business in 1881, but the prospects for his son continuing in a trade that had made a living for generations of his ancestors were probably limited (4). Thus at the age of 18 we find David Elijah Packer working as an Oilman’s Assistant, supplying fuel for the oil lamps of London (5).
    [Show full text]
  • A Synoptic Overview of Selected Key People and Key Places Involved in Historical Transits of Venus
    MEETING VENUS C. Sterken, P. P. Aspaas (Eds.) The Journal of Astronomical Data 19, 1, 2013 A Synoptic Overview of Selected Key People and Key Places Involved in Historical Transits of Venus Christiaan Sterken Vrije Universiteit Brussel, Brussels, Belgium Per Pippin Aspaas University of Tromsø, Norway Abstract. This paper presents an overview of the dramatis personae et situs, or significant characters and places dealt with in this book. Several geographical and political maps, and timelines are provided as an aid to the reader. 1. Introduction The transits of Venus are landmarks in the history of science, principally because of their use in historical attempts to measure the scale of our solar system. Eight transits of Venus have occurred since the prediction of the first such event by Jo- hannes Kepler in 1629. These transits appeared in four pairs spaced by 8 years, with each pair separated by a time interval of more than one century.1 The transit pairs alternatively happen in early June and in early December. Figure 1 shows the timeline of occurrence of the events, together with the publication date of four historical works that played a crucial role in the transit of Venus science, viz., 1. In 1629, Johannes Kepler published in his De raris mirisq[ue] Anni 1631. Phaenomenis, Veneris put`a& Mercurii in Solem incursu,2 the very first pre- dictions that a transit of Mercury will occur in November 1631, followed by a transit of Venus one month later. Kepler died a year before the events. 2. Isaac Newton’s Philosophiae naturalis principia mathematica, that layed down the theoretical basis for Kepler’s laws, was published in London in 1687.
    [Show full text]
  • Communications in Observations
    ISSN 0917-7388 COMMUNICATIONS IN CMO Since 1986 MARS No.378 25 November 2010 OBSERVATIONS No.04 PublishedbytheInternational Society of the Mars Observers Audouin Charles DOLLFUS, 1924-2010 By Richard McKIM ith the death of Audouin Dollfus W(Figure 1), a few weeks prior to his 86th birthday, planetary astronomy has lost one of its greatest exponents. He was born in Paris on 1924 November 12, son of famous balloonist and airship pilot Charles Dollfus. Later, Audouin would set several world records for balloon flights. At age 14 he made himself a small refractor, and by 1943 a 20 cm Newtonian reflector. Despite few meters stood Gabrielle Flammarion, E‐M. wartime restrictions he was also able to ob‐ Antoniadi, F. Baldet, A. Danjon, G. de serve with the instruments of the observatory Vaucouleurs and many other planetary ob‐ of the Société astronomique de France at the servers whose names have passed into histo‐ Sorbonne, where his mentor was Romanian ry. Within a year the German occupation amateur and fellow University student Jean would be over. Fifty years later I stood in the Dragesco. same spot with Dollfus and Juvisy’s curator One day in the summer of 1943 there as‐ Jacques Pernet when we inspected the prepa‐ sembled a galaxy of French astronomers at rations being made to preserve this famous the graveside of SAF founder Camille butbythenrun‐down estate. During his Flammarion, for the annual celebration of the Presidency of the SAF in the 1980s, Dollfus life of that great populariser. Dollfus was in had started the restoration ball rolling, and goodcompanyatJuvisythatday:withina this year Flammarion’s famous telescope will Ser3-0049 CMO No.
    [Show full text]