Chapter 5 Hydropower

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5 Hydropower Zero Order Draft Special Report Renewable Energy Sources (SRREN) Chapter 5 Hydropower Second Order Draft Contribution to Special Report Renewable Energy Sources (SRREN) Chapter: 5 Title: Hydropower (Sub)Section: All Author(s): CLAs: Arun Kumar, Tormod A. Schei LAs: Alfred K. Ofosu Ahenkorah, Jesus Rodolfo Caceres, Jean-Michel Devernay, Marcos Freitas, Douglas G. Hall, Ånund Killingtveit, Zhiyu Liu CAs: Emmanuel Branche, Karin Seelos Remarks: Second Order Draft Version: 01 File name: SRREN_Draft2_Ch05 Date: 16-Jun-10 19:02 Time-zone: CET Template Version: 9 1 2 COMMENTS ON TEXT BY TSU TO REVIEWER: 3 Yellow highlighted – original chapter text to which comments are referenced 4 Turquoise highlighted – inserted comment text from Authors or TSU i.e. [AUTHOR/TSU: ….] 5 Chapter 5 has been allocated a maximum of 68 (with a mean of 51) pages in the SRREN. The actual 6 chapter length (excluding references & cover page) is 71 pages: a total of 3 pages over the 7 maximum (20 over the mean, respectively). All chapters should aim for the mean number allocated, 8 if any. Expert reviewers are therefore kindly asked to indicate where the Chapter could be shortened 9 by up to 20 pages in terms of text and/or figures and tables to reach the mean length. 10 11 All monetary values provided in this document will need to be adjusted for inflation/deflation and 12 converted to US$ for the base year 2005. 13 Do Not Cite or Quote 1 of 78 Chapter 5 SRREN_Draft2_Ch05 Second Order Draft Contribution to Special Report Renewable Energy Sources (SRREN) 1 Chapter 5: Hydropower 2 CONTENTS 3 Chapter 5: Hydropower ....................................................................................................................2 4 CONTENTS.........................................................................................................................................2 5 EXECUTIVE SUMMARY .................................................................................................................4 6 5.1 Introduction......................................................................................................................6 7 5.1.1 Source of energy.........................................................................................................6 8 5.1.2 History of hydropower development..........................................................................6 9 5.1.3 Classification of hydropower projects........................................................................7 10 5.1.4 Multipurpose projects.................................................................................................8 11 5.1.5 Maturity of technology...............................................................................................8 12 5.1.6 Policy..........................................................................................................................9 13 5.2 Resource potential..........................................................................................................10 14 5.2.1 Worldwide Hydropower Potential............................................................................10 15 5.2.2 Impact of climate change on resource potential.......................................................12 16 5.2.3 Projected changes in precipitation............................................................................13 17 5.2.4 Projected changes in river flow................................................................................13 18 5.2.5 Projected effects on hydropower potential – Studies in AR4 ..................................14 19 5.2.5.1 Africa ..................................................................................................................14 20 5.2.5.2 Asia .....................................................................................................................14 21 5.2.5.3 Europe .................................................................................................................14 22 5.2.5.4 Australia and New-Zealand ................................................................................15 23 5.2.5.5 South-America ....................................................................................................15 24 5.2.5.6 North-America ....................................................................................................15 25 5.2.5.7 An assessment of global effect on hydropower resources ..................................16 26 5.3 Technology and applications.........................................................................................17 27 5.3.1 Types ........................................................................................................................17 28 5.3.1.1 Run of River (RoR).............................................................................................17 29 5.3.1.2 Reservoir .............................................................................................................18 30 5.3.1.3 Pumped-storage...................................................................................................18 31 5.3.1.4 Instream technology using existing facilities......................................................19 32 5.3.2 Status and current trends in technology development..............................................19 33 5.3.2.1 Efficiency............................................................................................................19 34 5.3.2.2 Tunneling capacity..............................................................................................21 35 5.3.3 Sedimentation Problem in Hydropower Projects .....................................................22 36 5.3.4 Renovation and Modernization trends .....................................................................24 37 5.3.5 Storage of water and energy.....................................................................................24 38 5.4 Global and regional status of market and industry development...................................25 39 5.4.1 Existing generation, TWh/year (per region/total) ....................................................25 40 5.4.2 Deployment: Regional Aspects (organizations).......................................................26 41 5.4.3 Role of Hydropower in the Present Energy Markets (flexibility)............................28 42 5.4.4 Carbon credit market................................................................................................28 43 5.4.5 Removing barriers to hydropower development......................................................30 44 5.4.5.1 Financing.............................................................................................................30 45 5.4.5.2 Administrative and Licensing process ................................................................31 46 5.5 Integration into broader energy systems ........................................................................32 47 5.5.1 Contribute to less GHG from thermal by allowing steady state operation ..............32 Do Not Cite or Quote 2 of 78 Chapter 5 SRREN_Draft2_Ch05 Second Order Draft Contribution to Special Report Renewable Energy Sources (SRREN) 1 5.5.2 Grid/independent applications (isolated grids, captive power plants) .....................32 2 5.5.3 Rural electrification..................................................................................................33 3 5.5.4 Hydropower peaking................................................................................................35 4 5.5.5 Energy storage (in reservoirs) ..................................................................................35 5 5.5.6 Supply characteristics...............................................................................................37 6 5.5.6.1 Electrical services and use factors ......................................................................37 7 5.5.6.2 Security ...............................................................................................................38 8 5.5.6.3 Reliability/quality................................................................................................38 9 5.5.6.4 Ancillary services................................................................................................38 10 5.5.7 Regional cooperation................................................................................................39 11 5.5.8 Support to other renewables.....................................................................................39 12 5.6 Environmental and social impacts .................................................................................40 13 5.6.1 Typical impacts and possible mitigation measures ..................................................41 14 5.6.1.1 Hydrological Regimes.........................................................................................42 15 5.6.1.2 Reservoir Creation ..............................................................................................43 16 5.6.1.3 Water Quality......................................................................................................44 17 5.6.1.4 Sedimentation......................................................................................................44 18 5.6.1.5 Biological Diversity............................................................................................45 19 5.6.1.6 Barriers for Fish Migration and Navigation........................................................46
Recommended publications
  • Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing
    energies Article Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing Dawid Chudy * and Adam Le´sniak Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The continuous development of energy storage (ES) technologies and their wider utiliza- tion in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems. Citation: Chudy, D.; Le´sniak,A. Keywords: load-generation balancing; large-scale energy storage; power system services modeling; Advantages of Applying Large-Scale power system operation; power system optimization Energy Storage for Load-Generation Balancing.
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • (Hydropower) Technology in South African Narrow-Reef Hard-Rock Mines
    The Southern African Institute of Mining and Metallurgy Platinum 2012 P. Fraser THE USE OF HIGH-PRESSURE, WATER-HYDRAULIC (HYDROPOWER) TECHNOLOGY IN SOUTH AFRICAN NARROW-REEF HARD-ROCK MINES P. Fraser Hydro Power Equipment (Pty) Ltd Abstract This paper examines the new water-hydraulic (hydropowered) drill rigs that have been developed and proven in the last decade primarily in tabular, shallow-dipping, narrow-reef hard-rock South African mines. These include drill rigs for flat-end tunnel development, narrow inclined raises and winzes, large inclines and declines and longhole-based developments such as ore passes and vent raises. The hydropower technology rigs offer advantages both in safety and performance over traditional compressed-air-powered, hand-held development, and are generally more cost-effective than imported oil electro-hydraulic drill rigs. Furthermore, hydropowered rigs are inherently energy-efficient. The benefits of hydropower are discussed and a ‘comprehensive development model’ is presented which demonstrates that ore-bodies can be accessed in significantly shorter times. ‘Localized’ half level hydropower systems are introduced and a range of ancillary equipment available is listed. Introduction According to Neville Nicolau, CEO of Anglo Platinum, ’Safety is our moral licence to operate’ and, ’if we don’t get our safety right, then you must expect society to take away our licence to operate, and then we would be responsible for closing mines and destroying work 1. While the long-term trend in the Fatal Injury Frequency Rate (FIFR) is downward, fatalities are not acceptable to any of the stakeholders in the mining industry or investor community. Safety is therefore a non-negotiable imperative.
    [Show full text]
  • The Contribution of Hydropower Reservoirs to Flood Control in the Austrian Alps
    Ilydrology in Mountainous Regions. II - Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 194,1990. The contribution of hydropower reservoirs to flood control in the Austrian Alps W. PIRCHER Tiroler Wasserkraftwerke Aktiengesellschaft (TIWAG) Landhausplatz 2, A-6o2o Innsbruck, Austria ABSTRACT A considerable improvement to flood control is a significant - and free - additional utility accruing to the general public from the construction of hydropower storage reservoirs. By way of illustration, the author presents a comparative study on the basis of a number of flood events in valleys influenced by storage power plants. INTRODUCTION Austria has approximately thirty major storage reservoirs built by hy­ dropower companies and operated on a seasonal basis. Since they tend to be located at high altitudes, total stored energy from a combined active storage of 1.3oo hm^ is over 3.5oo GWh for winter and peak power generation, and this forms the backbone of electricity generation in Austria. Taking into account also the smaller reservoirs for daily and weekly storage, approximately 31% of the country's present annual total hydroelectric generation of 34.ooo GWh is controlled by reservoir sto­ rage, with the high degree of control and flexibility this offers. The primary goal in the construction of all storage power schemes in Austria, and the only source of subsequent earnings for the hydro- power companies, is of course electricity generation, but such schemes also involve a whole series of additional utilities that accrue to the general public free of charge. As a rule, significant improvements in flood control are the most important of these spin-offs, although be­ nefits to the local infrastructure and tourism as well as a markable increase of flow during the winter period are not to be underestimated, either.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • A Case Study in the Dudh Koshi Basin of Nepal
    water Article Hydropower Potential of Run of River Schemes in the Himalayas under Climate Change: A Case Study in the Dudh Koshi Basin of Nepal Daniele Bocchiola 1,2,* , Mattia Manara 1 and Riccardo Mereu 3 1 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, L. da Vinci 32, 20133 Milano, Italy; [email protected] 2 EVK2CNR Committee of Italy, S. Bernardino 145, 24122 Bergamo, Italy 3 Department of Energy Engineering (DENG), Politecnico di Milano, Campus-Bovisa, Lambruschini, 4a, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 20 July 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: In spite of the very large hydropower potential given from the melting snow and ice of Himalayas, Nepal’s population has little hydropower production. The high use of fossil fuels and biomasses results in measurable air pollution, even in the mountain areas. Hydropower planning and implementation, in the face of the changing climate, is therefore paramount important. We focus here on Nepal, and particularly on the Dudh Koshi river basin, with a population of ca. 170,000 people, within an area with large potential for hydropower production. Our main objectives are to (i) preliminarily design a local hydropower grid based on a distributed run of river ROR scheme, and (ii) verify the resilience of the grid against modified hydrology under perspective climate change, until the end of the century. To do so, we set up and tune the Poli-Hydro semi-distributed glacio-hydrological model, mimicking the complex hydrology of the area. We then modify a state of the art algorithm to develop and exploit a heuristic, resource-demand based model, called Poli-ROR.
    [Show full text]
  • An Experimental Investigation of Helical Gear Efficiency
    AN EXPERIMENTAL INVESTIGATION OF HELICAL GEAR EFFICIENCY A Thesis Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of the Ohio State University By Aarthy Vaidyanathan, B. Tech. * * * * * The Ohio State University 2009 Masters Examination Committee: Dr. Ahmet Kahraman Approved by Dr. Donald R Houser Advisor Graduate Program in Mechanical Engineering ABSTRACT In this study, a test methodology for measuring load-dependent (mechanical) and load- independent power losses of helical gear pairs is developed. A high-speed four-square type test machine is adapted for this purpose. Several sets of helical gears having varying module, pressure angle and helix angle are procured, and their power losses under jet- lubricated conditions are measured at various speed and torque levels. The experimental results are compared to a helical gear mechanical power loss model from a companion study to assess the accuracy of the power loss predictions. The validated model is then used to perform parameter sensitivity studies to quantify the impact of various key gear design parameters on mechanical power losses and to demonstrate the trade off that must take place to arrive at a gear design that is balanced in all essential aspects including noise, durability (bending and contact) and power loss. ii Dedicated to all those before me who had far fewer opportunities, and yet accomplished so much more. iii ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Ahmet Kahraman, who has been instrumental in fostering interest and enthusiasm in all my research endeavors. His encouragement throughout the course of my studies was invaluable, and I look to him for guidance in all my future undertakings.
    [Show full text]
  • Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
    energies Article Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Vasileios Kitsikoudis 1,*, Pierre Archambeau 1 , Benjamin Dewals 1, Estanislao Pujades 2, Philippe Orban 3, Alain Dassargues 3 , Michel Pirotton 1 and Sebastien Erpicum 1 1 Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.A.); [email protected] (B.D.); [email protected] (M.P.); [email protected] (S.E.) 2 Department of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 3 Hydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.O.); [email protected] (A.D.) * Correspondence: [email protected] or [email protected]; Tel.: +32-478-112388 Received: 22 April 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems.
    [Show full text]
  • Carbon Emissions MANAGEMENT PLAN
    Carbon Emissions MANAGEMENT PLAN Prepared for SWACO February 2020 prepared by Contents Section 1.0 Introduction .........................................................1 A Changing Climate . .. 1 SWACO’s Commitment . 2 Using this Plan . 2 Section 2.0 Carbon Footprint Evaluation .......................................3 Footprint Definition . 3 Methodology . 3 Monitoring . 4 Section 3.0 Benchmarking ..............................................5 Section 4.0 Goal Setting ..............................................6 Methodology . 6 Organization-wide Goal . 6 Section 5.0 Implementing .........................................7 Landfill Gas Emissions Management . 7 Vehicle and Equipment Fuel Management . 8 Building Energy Management . 8 Waste Management . 8 Section 6.0 Future Considerations ............................9 Appendices Appendix A: Benchmarking Assessment . 11 Appendix B: Carbon Management Strategic Initiatives Matrix . 15 Appendix C: Strategic Initiative Decision Trees . 17 Photo Caption LIST OF ACRONYMS CH4 GWP SBTI Methane Global Warming Science-Based Potential Target Initiative CO2 IPCC SWACO Carbon Dioxide Intergovernmental Solid Waste Authority Panel on Climate of Central Ohio Control CO2e N2O Carbon Dioxide Nitrous Oxide Equivalent Introduction SECTION 1.0 Introduction A CHANGING CLIMATE In the atmosphere, carbon dioxide (CO2), methane above 1.5°C (2.7°F) will result in increasingly significant (CH4), nitrous oxide (N2O), and certain fluorinated impacts of climate change. To limit the increase to gases, collectively referred
    [Show full text]
  • Minnesota Energy Systems, a Primer Developed for the Clean Energy Resource Teams
    Minnesota Energy Systems, A Primer Developed for the Clean Energy Resource Teams The Minnesota Project University of Minnesota’s Regional Sustainable Development Partnerships. March 2004 Communities and Local Energy Minnesota Energy Systems, A Primer Communities and Local Energy ENERGY SYSTEMS IN MINNESOTA This booklet provides CERTS members with a general overview of the systems that deliver the energy that runs our economy, keeps us warm, and provides necessities and conveniences of modern life. The energy system is divided into four end use sectors: residential, commercial, industrial and transportation. End use of energy refers to the point where energy is consumed to provide some benefit or service, such as light or heat. Basic energy resources are referred to a primary energy sources. Primary energy sources include resources like Figure 1. Energy End Use in coal, petroleum, natural gas, nuclear fuels, flowing water, Minnesota, 1999 wind, and solar radiation. Minnesota’s total energy use in the four end use sectors was approximately 1,700 trillion Btus in 2000. Industry and transportation are the largest end use sectors in the state. They each use somewhat more than one-third of the energy consumed in Minnesota. The remaining one- forth to one-third of energy consumption is divided between the residential and commercial sectors-with the residential sector taking a little larger share. Source: Minnesota Department of Commerce Fossil fuels Figure 2. Inputs Used to Produce dominate the market for primary energy sources in Energy Consumed in Minnesota, 1999 Minnesota. Petroleum, coal and natural gas supply about 88% of the energy used in Minnesota.
    [Show full text]
  • Economics of Power Generation Prepared by the Legislative Finance Committee July 2017 Understanding Electric Power Generation
    Economics of Power Generation Prepared by the Legislative Finance Committee July 2017 Understanding Electric Power Generation Following the Great Recession, electricity demand in the United States contracted, and energy efficiency improvements in buildings, lighting, and appliances stunted its recovery. Globally, a slowdown in Chinese coal demand depressed coal prices worldwide and reduced the market for U.S. exports, and coal demand in emerging markets is unlikely to make up for the slowdown in Chinese coal consumption. According to Columbia University’s Center on Global Energy Policy (CGEP), over half of the decline in coal company revenue between 2011 and 2015 is due to international factors.i Given current technological constraints, electricity cannot be stored on a large scale at a reasonable cost. Therefore, entities operating the transmission grid must keep supply and demand matched in “real-time” – from minute to minute. Imbalances in supply and demand can destroy machinery, cause power outages, and become very costly over time. The need to continually balance supply and demand plays a key role in how electricity generation sources are dispatched. In the 1980s, electricity supply was relatively straightforward, with less flexible coal and nuclear plants supplying base load power needs, and more flexible gas turbines and hydroelectric plants supplying peak load power needs. Developments over the last decade challenged this traditional mix of power generation. Natural gas, wind, and solar now meet 40 percent of U.S. power needs, up from 22 percent a decade ago. Early July 2017, The Wall Street Journal reported three of every 10 coal generators has closed permanently in the last five years.
    [Show full text]
  • Energy Conversion and Efficiency in Turboshaft Engines
    E3S Web of Conferences 85, 01001 (2019) https://doi.org/10.1051/e3sconf/20198501001 EENVIRO 2018 Energy conversion and efficiency in turboshaft engines Cristian Dobromirescu1, and Valeriu Vilag1,* 1 Research and development institute for gas turbines COMOTI, Aviation and industrial turbines. Gas-turbines assembly department, 220 D Iuliu Maniu Bd., sector 6, Bucharest Romania Abstract. This paper discusses the methods of energy conversion in a turboshaft engine. Those methods cover the thermodynamic cycle and the engine performances, the possible energy sources and their impact on environment as well as the optimal solutions for maximum efficiency in regards to turbine design and application. The paper also analyzes the constructive solutions that limit the efficiency and performances of turboshaft engines. For the purpose of this paper a gas-turbine design task is performed on an existing engine to appreciate the methods presented. In the final part of this paper it is concluded that in order to design an engine it is necessary to balance the thermodynamic aspects, for maximum efficiency, and the constructive elements, so that the engine can be manufactured. − Pressure. 1 Introduction The source of energy for the engine is the fuel. For the combustion to take place in optimal conditions, or at Since the creation of the first internal combustion engine all at high altitudes, it is necessary to increase the it is a top priority to use as much energy and as pressure of the intake air through a compressor. The efficiently as possible [1]. Thus, the study of energy compressor consumes work and increases the potential conversion and energy efficiency is very important and energy of the air by raising its pressure.
    [Show full text]