Fourdimensional String and M-Theory Compactifications

Total Page:16

File Type:pdf, Size:1020Kb

Fourdimensional String and M-Theory Compactifications Chapter 5 Fourdimensional String and M-theory Compactifications In the last two chapters we discussed N = 2 supergravity and its black hole solutions. Since supergravity is not consistent as a quantum theory, it must be embedded into a larger consistent theory. The most promissing candidate is string theory, and in this chapter we review how four- dimensional N = 2 supergravity arises as the low energy effective theory of compactifications of ten-dimensional string theories and of eleven-dimensional M-theory. 5.1 Type II String Theory on a Calabi-Yau Threefold One way to obtain four-dimensional N = 2 supergravity from string theory is by compactifying type II string theory on a complex-three-dimensional Calabi-Yau manifold. Such spaces are Ricci-flat K¨ahler manifolds with vanishing first Chern class.1 Since they have holonomy group SU(3) they posess Killing spinors and the number of supercharges of the four-dimensional theory is 1/4 of the number of supercharges of the ten-dimensional theory. In the following we review some facts about Calabi-Yau compactifications of string theory. For a more complete account we refer to the reviews [147, 148, 149]. The four-dimensional theory has a massless spectrum that consists of the N = 2 supergravity multiplet plus a model-dependent number of abelian vector multiplets and neutral hypermulti- plets. A hypermultiplet contains two Weyl spinors and four real scalars as its on-shell degrees of freedom. The kinetic term of the hypermultiplet scalars is a non-linear sigma-model with a target space that is restricted to be quaternionic by local N = 2 supersymmetry [150]. Local N = 2 supersymmetry forbids neutral couplings between vector and hypermultiplets [15]. Since the string compactification for generic moduli only contains gauge-neutral fields, the total mod- uli space factorizes into a product of the special K¨ahler manifold of vector multiplet moduli and the quaternionic manifold of hypermultiplet moduli. This factorization breaks down at special points in the moduli space, where the Calabi-Yau manifold becomes singular in such a way that the moduli space metric and the low energy effective action are singular, too.2 The most popular case of such a singularity is the conifold singularity [151]. The conifold point and other more complicated singular points in the moduli space are at finite distance from regular points. The fact that string backgrounds can become singular under finite changes of the parameters was long considered as a severe problem. Then it was observed by Strominger that the conifold singularity could be physically explained by the presence of a charged hypermultiplet that be- comes massless at the conifold point [152]. The additional massless state corresponds to a type IIB threebrane, which is wrapped on the three-cycle which degenerates at the conifold point. 1 6 2 We also include the condition h1;0 = 0 in order to exclude from the definition the six-torus T and K3 × T , where K3 denotes the K3 surface. 2There exist milder singularities, such as orbifold singularities and flop transitions, which do not give rise to singularities of string theory. 81 82CHAPTER 5. FOURDIMENSIONAL STRING AND M-THEORY COMPACTIFICATIONS When the additional state is taken into account, all physical quantities behave smooth at the conifold point. Subsequent work generalized this to other types of singularities. In particular it was shown that more complicated singularities correspond to multicritical points in the scalar potential of N = 2 supergravity coupled to charged matter [153]. At these points one has the option to go to different branches of the theory, such as the Coulomb and Higgs branch, which we discussed in chapter 2. The corresponding geometric mechanism is that a singularity can be resolved in several non-equivalent ways. The transition between branches of the scalar potential corresponds to a topological phase transition, i.e. a change in the topology of the Calabi-Yau manifold. In such transitions physics, or more precisely the low energy effective action is smooth. We refer to [149] for a review and references. In the following we will only consider generic compactifications where all fields in the Lagrangian are gauge-neutral and the moduli space factorizes into a vector multiplet and a hypermultiplet part. In type IIA compactifications the numbers NV ,NH of vector and hypermultiplets are given by NV = h1,1 and NH = h2,1 +1, (5.1) where h1,1,h2,1 are Hodge numbers of the Calabi-Yau manifold. Part of the scalar fields are geometric moduli of the internal space. The h1,1 vector multiplet moduli describe deforma- tions of the K¨ahler structure and of the internal part of the stringy B-field. Both data can be conveniently combined into the so-called complexified K¨ahler structure. Among the 4h2,1 real hypermultiplet moduli 2h2,1 describe deformations of the complex structure whereas the other 2h2,1 moduli come from the fields of the Ramond-Ramond sector. There is one additional hy- permultiplet which is always present, even when the Calabi-Yau manifold has a unique complex structure, h2,1 = 0. It is called the universal hypermultiplet because of its independence from Calabi-Yau data. One of its scalars is the dilaton φ, whose vacuum expectation value is related hφi to the four-dimensional IIA string coupling by gIIA = e . In addition it contains the stringy axion, which is obtained from the space-time part of the B-field by Hodge duality, and two scalars from the Ramond-Ramond sector. In type IIB compactifications the role of vector and hypermultiplets is reversed, (B) (B) NV = h2,1 and NH = h1,1 +1. (5.2) By mirror symmetry type IIB string theory on a Calabi-Yau manifold is equivalent to type IIA string theory on a so-called mirror manifold [154, 155], see [156, 149] for a review. A Calabi-Yau manifold and its mirror are related by exchanging the roles of the complex structure moduli and (complexified) K¨ahler moduli spaces.3 In particular the Hodge numbers are related by e e h1,1 = h2,1 and h2,1 = h1,1. Due to mirror symmetry we can restrict our attention to one of the two type II theories. For our purposes it is convenient to consider the type IIA theory. The part of the effective Lagrangian that we are interested in is the vector multiplet sector which is encoded in the function F (X, Ab). By expansion of the function, X∞ F (X, Ab)= F (g)(X)Abg , (5.3) g=0 one finds the prepotential F (0)(X) which describes the minimal part of the Lagrangian and the coefficients F (g≥1)(X) of higher derivative couplings of the form C2T 2g−2. In string perturba- tion theory one can compute on-shell scattering amplitudes and obtain an effective action. This action has ambiguities because string perturbation theory has only access to on-shell quanti- ties. Therefore terms in the effective action are only known up to terms which vanish on-shell. For example the difference between the square of the Riemann tensor and the square of the 3The precise statement of mirror symmetry is that IIA and IIB string theory in the corresponding string backgrounds are equivalent. String backgrounds are defined in terms of conformal field theories. It is important to take into accoung stringy α0 corrections of the classical geometry. Moreover one has to include regions of the moduli space, so-called non-geometric phases, which do not have a geometrical interpretation in terms of a Calabi-Yau sigma model. 5.1. TYPE II STRING THEORY ON A CALABI-YAU THREEFOLD 83 Weyl tensor vanishes in a Ricci-flat background and therefore string perturbation cannot decide whether the curvature squared term with coupling F (1)(X) involves the Riemann or the Weyl tensor. We can invoke the off-shell formalism of chapter 3 to identify this term as the square of the Weyl tensor. Conversely, the effective supergravity Lagrangian of chapter 3 needs the function F (1)(X) as input from string theory, because supergravity is not a consistent quantum theory. As discussed in chapter 3 the relation between the auxiliary T -field and the graviphoton is complicated in the off-shell formulation. In [157] a relation is found by requiring that the effective action reproduces the on-shell scattering amplitudes. In this context the graviphoton is defined through its vertex operator. The string computation involves the physical scalars zA rather then the sections XI .In order to rewrite the couplings F (g)(X) we introduce the holomorphic sections XI (z)by 1 I K(z,z) I X =mPlancke 2 X (z) , (5.4) where K(z,z)istheK¨ahler potential. Note that we have restored the Planck mass in order to be able to do dimensional analysis later. We go to special coordinates zA by imposing X0(z)=1,XA(z)=zA.NextweusethatF(g)(X) is homogenous of degree 2 − 2g and define (g) g−1 −(1−g)K (g) F (z)=i[mPlanck] e F (X) . (5.5) In the language of chapter 3 the quantity F (g)(z) is a holomorphic section of L2(1−g), whereas F (g) is a covariantly holomorphic section of P2(1−g). (g) In order to display the dependence of F (X) on the string coupling gS,wehavetoreplace the Planck mass by the string mass mString = mPlanckgS. This yields (g) − 2−2g −2+2g (1−g)K F (g) F (X)= imStringgS e (z) . (5.6) Next we use that the string coupling is given by the vacuum expectation value of the dilaton and that in type II compactifications the dilaton sits in a hypermultiplet.
Recommended publications
  • Wall Crossing and M-Theory
    Wall Crossing and M-theory The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Aganagic, Mina, Hirosi Ooguri, Cumrun Vafa, and Masahito Yamazaki. 2011. Wall crossing and M-theory. Publications of the Research Institute for Mathematical Sciences 47(2): 569-584. Published Version doi:10.2977/PRIMS/44 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:7561260 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP CALT-68-2746 IPMU09-0091 UT-09-18 Wall Crossing and M-Theory Mina Aganagic1, Hirosi Ooguri2,3, Cumrun Vafa4 and Masahito Yamazaki2,3,5 1Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA 2California Institute of Technology, Pasadena, CA 91125, USA 3 IPMU, University of Tokyo, Chiba 277-8586, Japan 4Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 5Department of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract arXiv:0908.1194v1 [hep-th] 8 Aug 2009 We study BPS bound states of D0 and D2 branes on a single D6 brane wrapping a Calabi- Yau 3-fold X. When X has no compact 4-cyles, the BPS bound states are organized into a free field Fock space, whose generators correspond to BPS states of spinning M2 branes in M- theory compactified down to 5 dimensions by a Calabi-Yau 3-fold X.
    [Show full text]
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Off-Shell Interactions for Closed-String Tachyons
    Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds.
    [Show full text]
  • TASI Lectures on String Compactification, Model Building
    CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics.
    [Show full text]
  • Tachyon-Dilaton Inflation As an Α'-Non Perturbative Solution in First
    Anna Kostouki Work in progress with J. Alexandre and N. Mavromatos TachyonTachyon --DilatonDilaton InflationInflation asas anan αα''--nonnon perturbativeperturbative solutionsolution inin firstfirst quantizedquantized StringString CosmologyCosmology Oxford, 23 September 2008 A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 1 OutlineOutline • Motivation : String Inflation in 4 dimensions • Closed Bosonic String in Graviton, Dilaton and Tachyon Backgrounds; a non – perturbative configuration • Conformal Invariance of this model • Cosmological Implications of this model: FRW universe & inflation (under conditions) • Open Issues: Exit from the inflationary phase; reheating A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 2 MotivationMotivation Inflation : • elegant & simple idea • explains many cosmological observations (e.g. “horizon problem”, large - scale structure) Inflation in String Theory: • effective theory • in traditional string theories: compactification of extra dimensions of space-time is needed • other models exist too, but no longer “simple & elegant” A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 3 ProposalProposal • Closed Bosonic String • graviton, dilaton and tachyon background • field configuration non-perturbative in Does it satisfy conformal invariance conditions? A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 4 ConformalConformal propertiesproperties ofof thethe configurationconfiguration General field redefinition: • Theory is invariant • The Weyl anomaly coefficients transform : ( ) A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 5 ConformalConformal propertiesproperties ofof thethe configurationconfiguration • 1-loop beta-functions: homogeneous dependence on X0, besides one term in the tachyon beta-function • Power counting → Every other term that appears at higher loops in the beta-functions is homogeneous A. Kostouki 2 nd UniverseNet School, Oxford, 23/09/08 6 ConformalConformal propertiesproperties ofof thethe configurationconfiguration One can find a general field redefinition , that: 1.
    [Show full text]
  • S-Duality of D-Brane Action at Order $ O (\Alpha'^ 2) $
    S-duality of D-brane action 2 at order O(α′ ) Mohammad R. Garousi1 Department of Physics, Ferdowsi University of Mashhad P.O. Box 1436, Mashhad, Iran Abstract Using the compatibility of the DBI and the Chern-Simons actions with the T- duality transformations, the curvature corrections to these actions have been recently extended to include the quadratic B-field couplings at order O(α′2). In this paper, we use the compatibility of the couplings on D3-brane with the S-duality to find the nonlinear RR couplings at order O(α′2). We confirm the quadratic RR couplings in the DBI part with the disk-level scattering amplitude. Using the regularized non- holomorphic Eisenstein series E1, we then write the results in SL(2,Z) invariant form. arXiv:1103.3121v5 [hep-th] 25 Dec 2013 [email protected] 1 Introduction The low energy effective field theory of D-branes consists of the Dirac-Born-Infeld (DBI) [1] and the Chern-Simons (CS) actions [2]. The curvature corrections to the CS part can be found by requiring that the chiral anomaly on the world volume of intersecting D-branes (I-brane) cancels with the anomalous variation of the CS action. This action for a single ′2 Dp-brane at order O(α ) is given by [3, 4, 5], 2 ′2 π α Tp (p−3) SCS C tr(RT RT ) tr(RN RN ) (1) p+1 ⊃ − 24 ZM ∧ ∧ − ∧ p+1 where M represents the world volume of the Dp-brane. For totally-geodesic embeddings of world-volume in the ambient spacetime, RT,N are the pulled back curvature 2-forms of the tangent and normal bundles respectively (see the appendix in ref.
    [Show full text]
  • Abdus Salam Educational, Scientific and Cultural XA0500266 Organization International Centre
    the united nations abdus salam educational, scientific and cultural XA0500266 organization international centre international atomic energy agency for theoretical physics 1 a M THEORY AND SINGULARITIES OF EXCEPTIONAL HOLONOMY MANIFOLDS Bobby S. Acharya and Sergei Gukov Available at: http://www.ictp.it/-pub-off IC/2004/127 HUTP-03/A053 RUNHETC-2003-26 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS M THEORY AND SINGULARITIES OF EXCEPTIONAL HOLONOMY MANIFOLDS Bobby S. Acharya1 The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy and Sergei Gukov2 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA. Abstract M theory compactifications on Gi holonomy manifolds, whilst supersymmetric, require sin- gularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a
    [Show full text]
  • Open Gromov-Witten Invariants and Syz Under Local Conifold Transitions
    OPEN GROMOV-WITTEN INVARIANTS AND SYZ UNDER LOCAL CONIFOLD TRANSITIONS SIU-CHEONG LAU Abstract. For a local non-toric Calabi-Yau manifold which arises as smoothing of a toric Gorenstein singularity, this paper derives the open Gromov-Witten invariants of a generic fiber of the special Lagrangian fibration constructed by Gross and thereby constructs its SYZ mirror. Moreover it proves that the SYZ mirrors and disc potentials vary smoothly under conifold transitions, giving a global picture of SYZ mirror symmetry. 1. Introduction Let N be a lattice and P a lattice polytope in NR. It is an interesting classical problem in combinatorial geometry to construct Minkowski decompositions of P . P v On the other hand, consider the family of polynomials v2P \N cvz for cv 2 C with cv 6= 0 when v is a vertex of P . All these polynomials have P as their Newton polytopes. This establishes a relation between geometry and algebra, and the geometric problem of finding Minkowski decompositions is transformed to the algebraic problem of finding polynomial factorizations. One purpose of this paper is to show that the beautiful algebro-geometric correspondence between Minkowski decompositions and polynomial factorizations can be realized via SYZ mirror symmetry. A key step leading to the miracle is brought by a result of Altmann [3]. First of all, a lattice polytope corresponds to a toric Gorenstein singularity X. Altmann showed that Minkowski decompositions of the lattice polytope correspond to (partial) smoothings of X. From string- theoretic point of view different smoothings of X belong to different sectors of the same stringy K¨ahlermoduli.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • Flux Backgrounds, Ads/CFT and Generalized Geometry Praxitelis Ntokos
    Flux backgrounds, AdS/CFT and Generalized Geometry Praxitelis Ntokos To cite this version: Praxitelis Ntokos. Flux backgrounds, AdS/CFT and Generalized Geometry. Physics [physics]. Uni- versité Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066206. tel-01620214 HAL Id: tel-01620214 https://tel.archives-ouvertes.fr/tel-01620214 Submitted on 20 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : « Physique en Île-de-France » réalisée à l’Institut de Physique Thèorique CEA/Saclay présentée par Praxitelis NTOKOS pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Flux backgrounds, AdS/CFT and Generalized Geometry soutenue le 23 septembre 2016 devant le jury composé de : M. Ignatios ANTONIADIS Examinateur M. Stephano GIUSTO Rapporteur Mme Mariana GRAÑA Directeur de thèse M. Alessandro TOMASIELLO Rapporteur Abstract: The search for string theory vacuum solutions with non-trivial fluxes is of particular importance for the construction of models relevant for particle physics phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional gauge theories which can be considered to descend from N = 4 SYM are dual to ten- dimensional field configurations with geometries having an asymptotically AdS5 factor.
    [Show full text]
  • Singlet Glueballs in Klebanov-Strassler Theory
    Singlet Glueballs In Klebanov-Strassler Theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY IVAN GORDELI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy ARKADY VAINSHTEIN April, 2016 c IVAN GORDELI 2016 ALL RIGHTS RESERVED Acknowledgements First of all I would like to thank my scientific adviser - Arkady Vainshtein for his incredible patience and support throughout the course of my Ph.D. program. I would also like to thank my committee members for taking time to read and review my thesis, namely Ronald Poling, Mikhail Shifman and Alexander Voronov. I am deeply grateful to Vasily Pestun for his support and motivation. Same applies to my collaborators Dmitry Melnikov and Anatoly Dymarsky who have suggested this research topic to me. I am thankful to my other collaborator - Peter Koroteev. I would like to thank Emil Akhmedov, A.Yu. Morozov, Andrey Mironov, M.A. Olshanetsky, Antti Niemi, K.A. Ter-Martirosyan, M.B. Voloshin, Andrey Levin, Andrei Losev, Alexander Gorsky, S.M. Kozel, S.S. Gershtein, M. Vysotsky, Alexander Grosberg, Tony Gherghetta, R.B. Nevzorov, D.I. Kazakov, M.V. Danilov, A. Chervov and all other great teachers who have shaped everything I know about Theoretical Physics. I am deeply grateful to all my friends and colleagues who have contributed to discus- sions and supported me throughout those years including A. Arbuzov, L. Kushnir, K. Kozlova, A. Shestov, V. Averina, A. Talkachova, A. Talkachou, A. Abyzov, V. Poberezh- niy, A. Alexandrov, G. Nozadze, S. Solovyov, A. Zotov, Y. Chernyakov, N.
    [Show full text]
  • Dilaton and Off-Shell (Non-Critical String) Effects in Boltzmann Equation for Species Abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5
    Research article Open Access Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5 Address: 1University of Athens, Physics Department, Nuclear and Particle Physics Section, GR157 71, Athens, Greece., 2King's College London, University of London, Department of Physics, Strand WC2R 2LS, London, UK., 3George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA., 4Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA. and 5Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. Email: AB Lahanas - [email protected]; NE Mavromatos - [email protected]; DV Nanopoulos - [email protected] Published: 2 October 2007 Received: 3 June 2007 Accepted: 2 October 2007 PMC Physics A 2007, 1:2 doi:10.1186/1754-0410-1-2 This article is available from: http://www.physmathcentral.com/1754-0410/1/2 © 2007 Lahanas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.
    [Show full text]