Low Energy Physics from Type IIB String Theory

Total Page:16

File Type:pdf, Size:1020Kb

Low Energy Physics from Type IIB String Theory Katholieke Universiteit Leuven Faculteit der Wetenschapp en Instituut vo or Theoretische Fysica Low energy physics from typ e IIB string theory Frederik Denef Promotor Prof Dr W Tro ost Pro efschrift ingediend voor het b ehalen van de graad van Do ctor in de Wetenschapp en Deze thesis kwam tot stand met de nanciele steun van het Fonds voor Wetenschapp elijk Onderzo ek Een geest een en al logica is als een mes dat een en al lemmet is Het doet de hand die het gebruikt bloeden Tagore De wijze waarop het eten wordt opgediend is minstens even belangrijk als de wijze waarop het wordt toebereid Ons Kookboek KVLV Vo orwo ord Een thesis schrijf je niet alleen Ik b en daarom iedereen die de vo orbije zes entwintig jaar heeft bijgedragen tot het tot stand komen van dit werk bijzonder dankbaar In de eerste plaats denk ik daarbij natuurlijk aan mijn promotor Walter Tro ost voor het op gang brengen en aanwakkeren van mijn interesse in string theorie en theoretische fysica in het algemeen vo or zijn advies hulp en aanmo edi ging en om me te laten meegenieten van zijn scherp e fysische inzichten humor en relativeringsvermogen Ook Toine Van Pro eyen zou ik sp eciaal willen bedanken omwille van wat hij mij op wetenschapp elijk en menselijk vlak heeft bijgebracht voor de internationale contacten en vo or zijn no oit tanende gedrevenheid waaraan het instituut wellicht een gro ot deel van haar huidige internationale uitstraling te danken heeft Heel wat collegafysici ben ik bovendien dankbaar voor de soms verduisterende maar meestal verhelderende uiteenzettingen en discussies die ik van en met hen mo cht hebb en Joris Raeymaekers vo or de talloze metafysische conversaties al vanaf de eerste kandidatuur Fred Ro ose vo or de al dan niet met Ouzo overgoten brainstormsessies tot er geen krijt of b ord meer over was Ben Craps vo or zijn consequentscherp e en verhelderende vragen en antwo orden Jan Tro ost voor zijn diep e inzichten en intellectuele provo caties ook ver buiten de fysica Marco Billo als b ondgeno ot in vele samenwerkingen Piet Claus en Jeanne Dejaegher voor de uitwisseling van fysicop olitieke ideeen Daniela Zanon en Pietro erkingen en Italiaanse gastvrijheid Alex Sevrin vo or zijn enthou Fre vo or samenw siasme en aanmo ediging Martijn Derix vo or zijn ecientie en droge humor Mieke De Co ck vo or een verdubb eling van de aangenaamheid van het leven op het zesde Lies Van Moaert voor haar attentheid Magda Marganska om mee te help en het instituut o ok s nachts b emand te houden Kor Van Ho of vo or zijn gevatheid Chris Van Den Bro ecken PieterJan Desmet voor hun losoe Christine voor de gezellige babb els en AndreVerb eure Christ Maes Mark Fannes Desire Bolle en Raymond Gastmans vo or geanimeerde koepauzediscussies en wat ik van hen mo cht leren niet alleen over olie en ko elvlo eistof Een fysicus die ik tenslotte zeer sp eciaal zou willen b edanken is Henk Schets onder andere voor de talloze met zin en onzin gevulde avonden die er jaren lang vo or gezorgd hebb en dat de fysica mij niet in een so ciale coma dreef Twee mensen ben ik verder onmetelijk dankbaar voor de impact die ze ge had hebb en op mijn wetenschapp elijke ontplo oiing De eerste is mijn nonkel wiskundige Jan Denef Iedereen die o oit met hem in contact is gekomen weet ho e heerlijk aanstekelijk zijn passie voor de wiskunde werkt Onze regelmatige discussienamiddagen die wegens onze genetische tijdsb esefhandicap vaak uit liep en tot diep in de nacht en waarin ik de ene keer mo cht pro even van zijn wonderlijkegave zijn diep inzicht in de wiskunde over te brengen aan de jargon analfab eet en de andere keer een dankbaar oprecht enthousiast oor vond voor mijn verhalen over strings waren een p ermanente bron van energie en motiva tie De andere p erso on die ik in dat opzicht zou willen b edanken is Herman Van Bauwel mijn leraar wiskunde en fysica in de middelbare scho ol Ik denk niet dat iemand meer invlo ed heeft gehad op mijn manier van denken Zijn consequente logica zijn inzicht in het feit dat de vo ornaamste taak v an een lesgever niet het bijbrengen van kennis maar het bijbrengen van een denkkader is en zijn enthou siaste b eleving van de natuurkunde heb ik gedurende heel mijn opleiding zelden of no oit do or iemand evenaard gezien Maar de wereld b estaat niet uit fysica alleen De meest intense herinneringen van de vo orbije vier jaar heb ik to chovergehouden aan vrienden en familie Mijn bro ertje Vincent en zusjes Natalie en Barbara zou ik heel hard willen b edanken vo or de plezierige momenten samen en voor hun onvoorwaardelijkehulp en steun op elk moment zoals je die alleen van bro ers en zussen kan krijgen Mijn nonkel loso of Philipp e Van Parijs b en ik zeer erkentelijk vo or zijn interesse en wijze wo orden op mo eilijkere momenten Als een tweede familie waren de vrienden waarmee ik heb samengewo ond gedurende de laatste drie jaar van mijn doktoraat waarvan ik sommigen al kende van vo or ik b esefte dat de aarde rond de zon draait met wie ik zoveel heb meegemaakt en aan wie ik zo veel dank versch uldigd b en dat een opsomming daarvan onmogelijk is Rigo Belpaire Joachim De Weerdt Jo Seldeslachts Rudy Mecano Bjorn Van Camp enhout en Katleen Van Den Bro eck Bjorn en zijn sprankelende zielsgeno otje Els Lecoutere zou ik hier b ovendien nog eens heel heel sp eciaal willen b edanken voor de ontelbare prachtige dingen die we samen b eleefd hebb en de vo orbije twee jaar voor hun b egrip steun en opvang wanneer ik er weer in slaagde de trein of iets anders te missen vo or de grappige situaties waarin we samen gerold zijn en hop elijk nog zullen rollen en voor nog zoveel meer Voor een p erso on vind ik het bijna onmogelijk de go ede wo orden te vinden om haar gepast te b edanken en dat is Katleen Zonder haar zou deze thesis er no oit geweest zijn Zij heeft ervo or gezorgd dat ik niet van ondervoeding en eenzaamheid omkwam gedurende de drie maanden afzondering die ik mijzelf vo or het schrijven van dit werk had opgelegd Zij was het die me een jaar geleden w eer de kracht gaf de fysica in te duiken Zij is het vo orbije jaar mijn reddingsb o ei muze en zon geweest Aan haar in drie b ep erkte wo orden thanks for living Tenslotte zou ik mijn ouders willen b edanken voor een kwart eeuw liefde aanmo ediging tro ost wijze raad b ezorgdheid en steun voor mijn eerste fysica lessen met b ehulp van twee app elsienen en een lamp vo or mijn eerste schrijessen met b ehulp van Fisher Price letters en een ko elkast en vo or al het andere Aan hen draag ik deze thesis op Contents Intro duction Why not strings Why Why not Beyond p erturbation theory Strings and low energy physics Outline and summary of results Low energy eective eld theories PI Wilson and Seib ergWitten PI eective action Wilsonian eective action Seib ergWitten eective action Relation with b etafunction From lo cal to rigid sp ecial geometry Lo cal sp ecial geometry Rigid sp ecial geometry The rigid limit of lo cal sp ecial geometry Low energy eective action of N YangMills theory Contents CalabiYau compactications of I IB string theory Four dimensional low energy eective action Typ e I IB string theory CalabiYau manifolds and sp ecial geometry of the complex structure mo duli space Four dimensional massless sp ectrum Four dimensional action BPS states from wrapp ed branes States in string theory BPS branes Mass and charge of wrapp ed branes Spin BPS states from the D eective action attractors Static spherically symmetric congurations BPS solutions the attractor ow equations Existence of the BPS state Multicenter case Attractor technology Validity of the Dbrane and eld theory pictures Quantum YangMills gravity from I IB strings Near ALE brations and the light BPS sp ectrum Vector branes Hyp er branes Reduction to Seib ergWitten p erio ds The weak gravity limit Unication scales and the heterotic picture Dynamics of the dynamical dynamically generated scale An explicit example Contents Fibration structure Construction of cycles and p erio ds The SU rigid limit Attractors at weak gravity Attractor ow equations in the weak gravity limit Spherically symmetric congurations at weak gravity Rigid limit Solutions in the rigid limit Multi monop ole dynamics A Samenvatting Chapter Intro duction Two thousand ve hundred years ago Plato had the brilliant insight that space time and matter as we see it might very well be only a pale shadowofa much more complex underlying reality inaccessible by direct observation In a b eautiful pap er he describ ed the following gedanken exp eriment Imagine a bunch of p eople sitting next to each other staring
Recommended publications
  • TASI Lectures on String Compactification, Model Building
    CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics.
    [Show full text]
  • Flux Backgrounds, Ads/CFT and Generalized Geometry Praxitelis Ntokos
    Flux backgrounds, AdS/CFT and Generalized Geometry Praxitelis Ntokos To cite this version: Praxitelis Ntokos. Flux backgrounds, AdS/CFT and Generalized Geometry. Physics [physics]. Uni- versité Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066206. tel-01620214 HAL Id: tel-01620214 https://tel.archives-ouvertes.fr/tel-01620214 Submitted on 20 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : « Physique en Île-de-France » réalisée à l’Institut de Physique Thèorique CEA/Saclay présentée par Praxitelis NTOKOS pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Flux backgrounds, AdS/CFT and Generalized Geometry soutenue le 23 septembre 2016 devant le jury composé de : M. Ignatios ANTONIADIS Examinateur M. Stephano GIUSTO Rapporteur Mme Mariana GRAÑA Directeur de thèse M. Alessandro TOMASIELLO Rapporteur Abstract: The search for string theory vacuum solutions with non-trivial fluxes is of particular importance for the construction of models relevant for particle physics phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional gauge theories which can be considered to descend from N = 4 SYM are dual to ten- dimensional field configurations with geometries having an asymptotically AdS5 factor.
    [Show full text]
  • Introduction to String Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Introduction to String Theory Thomas Mohaupt Friedrich-Schiller Universit¨at Jena, Max-Wien-Platz 1, D-07743 Jena, Germany Abstract. We give a pedagogical introduction to string theory, D-branes and p-brane solutions. 1 Introductory remarks These notes are based on lectures given at the 271-th WE-Haereus-Seminar ‘Aspects of Quantum Gravity’. Their aim is to give an introduction to string theory for students and interested researches. No previous knowledge of string theory is assumed. The focus is on gravitational aspects and we explain in some detail how gravity is described in string theory in terms of the graviton excitation of the string and through background gravitational fields. We include Dirichlet boundary conditions and D-branes from the beginning and devote one section to p-brane solutions and their relation to D-branes. In the final section we briefly indicate how string theory fits into the larger picture of M-theory and mention some of the more recent developments, like brane world scenarios. The WE-Haereus-Seminar ‘Aspects of Quantum Gravity’ covered both main approaches to quantum gravity: string theory and canonical quantum gravity. Both are complementary in many respects. While the canonical approach stresses background independence and provides a non-perturbative framework, the cor- nerstone of string theory still is perturbation theory in a fixed background ge- ometry. Another difference is that in the canonical approach gravity and other interactions are independent from each other, while string theory automatically is a unified theory of gravity, other interactions and matter.
    [Show full text]
  • Arxiv:Hep-Th/9508143V5 10 Jun 1997 1 Okspotdi Atb H ..Dp.O Nryudrgrant Under Energy of Dept
    CALT-68-2013 hep-th/9508143 An SL(2,Z) Multiplet of Type IIB Superstrings1 John H. Schwarz California Institute of Technology, Pasadena, CA 91125, USA Abstract An SL(2, Z) family of string solutions of type IIB supergravity in ten dimensions is constructed. The solutions are labeled by a pair of relatively prime integers, which characterize charges of the three-form field strengths. The string tensions depend on these charges in an SL(2, Z) covariant way. Compactifying on a circle and identifying with eleven-dimensional supergravity compactified on a torus implies that the modulus of the IIB theory should be equated to the modular arXiv:hep-th/9508143v5 10 Jun 1997 parameter of the torus. 1Work supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-92-ER40701. Among the various conjectured duality symmetries of superstring theories, the proposed SL(2, Z) symmetry of the type IIB superstring theory in ten dimensions is especially inter- esting [1, 2]. Like the SL(2, Z) S duality of the N =4 D = 4 heterotic string [3, 4], it relates weak and strong coupling. However, unlike the heterotic example in which the symmetry relates electrically and magnetically charged states of the same gauge field, the IIB duality relates electrically charged states of two different gauge fields. In this respect it is more like a T duality [5]. Combined with ordinary T dualities, the IIB SL(2, Z) duality implies the complete U duality symmetry of toroidally compactified type II strings in dimensions D< 10 [1, 6].
    [Show full text]
  • Hagedorn Behavior of Little String Theories1
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server NBI-HE-00-35 SPIN-2000/25 ITF-UU-00/27 hep-th/0010169 HAGEDORN BEHAVIOR OF LITTLE STRING THEORIES1 T. Harmark1 and N.A. Obers2;3 1 Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark, 2 Spinoza Institute, Utrecht University, 3584 CE Utrecht, The Netherlands 3 Institute for Theoretical Physics, Utrecht Universty 3508 TA Utrecht, The Netherlands We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string- corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string correction generates the correct temperature dependence of the entropy near the Hagedorn tempera- ture. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals. 1TALK PRESENTED BY N.O. AT CONFERENCE "QUANTIZATION, GAUGE THEORY, AND STRINGS", DEDICATED TO THE MEMORY OF PROF. E. FRADKIN, MOSCOW, RUSSIA, JUNE 5-10. 1 Introduction The near-horizon limit of NS5-branes is conjectured to be dual to Little String Theory (LST) with 16 supercharges [1]. LST is a 5+1 dimensional non- gravitational and non-local theory of strings [2] (see also [3]). As for any string theory, the statistical mechanics description of LST breaks down at a certain temperature, known as the Hagedorn temperature [4] (see also e.g. [5]). This raises the question whether it is possible to observe, via the con- jectured near-horizon-NS5/LST duality, Hagedorn behavior of LST from the thermodynamics of near-horizon NS5-branes.
    [Show full text]
  • Arxiv:Hep-Th/9611050V2 23 Apr 1997
    TASI LECTURES ON D-BRANES JOSEPH POLCHINSKI Institute for Theoretical Physics University of California, Santa Barbara, CA 93106-4030 This is an introduction to the properties of D-branes, topological defects in string theory on which string endpoints can live. D-branes provide a simple description of various nonperturbative objects required by string duality, and give new insight into the quantum mechanics of black holes and the nature of spacetime at the shortest distances. The first two thirds of these lectures closely follow the earlier ITP lectures hep-th/9602052, written with S. Chaudhuri and C. Johnson. The final third includes more extensive applications to string duality. D-branes are extended objects, topological defects in a sense, defined by the property that strings can end on them. One way to see that these objects must be present in string theory is by studying the R 0 limit of open string theory, where the different behaviors of open and clos→ed strings lead to a seeming paradox.1 From the study of this limit one can argue that the usual Type I, Type IIA and Type IIB string theories are different states in a single theory, which also contains states with arbitrary configurations of D-branes. Moreover this argument is purely perturbative, in that it does not require any strong-coupling continuation or use of the BPS property. However, this subject remained obscure until the advent of string duality. It was then observed that D-branes have precisely the correct properties to fill out duality multiplets,2 whose other members are fundamental string states and ordinary field-theoretic solitons.
    [Show full text]
  • The Spectra of Supersymmetric States in String Theory
    The Spectra of Supersymmetric States in String Theory PhD Thesis 2008 University of Amsterdam arXiv:0807.3099v1 [hep-th] 19 Jul 2008 by Miranda Chih-Ning Cheng Contents Preface v I Superstring Theory 1 1 Type IIA and Type IIB Superstring Theory 5 1.1 The World-Sheet Action ............................ 5 1.1.1 Canonical Quantisation ......................... 6 1.1.2 Massless Spectrum ........................... 7 1.1.3 T-Duality ................................. 10 1.2 Low Energy Effective Action ........................... 13 1.2.1 Supergravity Theory in Eleven and Ten Dimensions . 13 1.2.2 Couplings of String Theory ....................... 15 1.3 Non-Perturbative Aspects ............................ 17 1.3.1 M-theory ................................. 17 1.3.2 Branes .................................. 18 1.3.3 D-brane World-Volume Action ...................... 24 1.3.4 Gauge/Gravity Correspondence ..................... 27 1.3.5 S-duality ................................. 28 II String Compactification 33 2 Calabi-Yau Compactifications 37 2.1 (2,2) Superconformal Field Theory ....................... 37 2.1.1 = 2 Superconformal Algebra ..................... 37 N 2.1.2 Chiral Ring ................................ 39 2.1.3 Spectral Flow .............................. 42 2.1.4 Topological String Theory ........................ 43 2.1.5 Elliptic Genus and Vector-Valued Modular Forms . 45 2.1.6 Mirror Symmetry and Non-perturbative Effects ............. 49 2.2 Spacetime Physics ................................ 50 i ii Contents 2.2.1 Moduli Space and Special Geometry . 50 2.2.2 Four- and Five-Dimensional Low Energy Supergravity Theory . 56 2.2.3 Range of Validity and Higher Order Corrections . 62 3 K3 Compactification 65 3.1 (4,4) Superconformal Field Theory ....................... 65 3.2 Moduli Space of K3 ............................... 67 3.3 Four-Dimensional Theories and Heterotic String Dualities .
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural Organization International XA0102967 Centre
    the abdus salam united nations educational, scientific and cultural organization international XA0102967 centre international atomic energy agency for theoretical physics STACKING NON-BPS D-BRANES Gian Luigi Alberghi Elena Caceres Kevin Goldstein and David A. Lowe 32/ 40 Available at: http://www.ictp.trieste.it/~pub_off IC/2001/27 BROWN-HET-1263 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS STACKING NON-BPS D-BRANES Gian Luigi Alberghi Dipartimento di Fisica, Universitd di Bologna and I.N.F.N, Sezione di Bologna, Via Irnerio, 46, 40126 Bologna, Italy, Elena Caceres The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, Kevin Goldstein and David A. Lowe Brown University, Providence, RI 02912, USA. Abstract We present a candidate supergravity solution for a stacked configuration of stable non- BPS D-branes in Type II string theory compactified on T4/^. This gives a supergravity description of nonabelian tachyon condensation on the brane worldvolume. MIRAMARE - TRIESTE August 2001 E-mail addresses: [email protected]; [email protected]; [email protected]; lowe@het. brown. edu I. INTRODUCTION The seminal work of Sen [1-3] underlined the importance of understanding stable non- BPS branes in string theory. Non-BPS branes provide us with new ways to construct stable non-supersymmetric states in string theory, which ultimately may lead to realistic brane world models as exact solutions. It seems likely they will lead to new insights into the outstanding phenomenological difficulties of string theory. Review articles on non-BPS branes may be found in [4].
    [Show full text]
  • Introductory Lectures on String Theory and the Ads/CFT Correspondence
    AEI-2002-034 Introductory Lectures on String Theory and the AdS/CFT Correspondence Ari Pankiewicz and Stefan Theisen 1 Max-Planck-Institut f¨ur Gravitationsphysik, Albert-Einstein-Institut, Am M¨uhlenberg 1,D-14476 Golm, Germany Summary: The first lecture is of a qualitative nature. We explain the concept and the uses of duality in string theory and field theory. The prospects to understand QCD, the theory of the strong interactions, via string theory are discussed and we mention the AdS/CFT correspondence. In the remaining three lectures we introduce some of the tools which are necessary to understand many (but not all) of the issues which were raised in the first lecture. In the second lecture we give an elementary introduction to string theory, concentrating on those aspects which are necessary for understanding the AdS/CFT correspondence. We present both open and closed strings, introduce D-branes and determine the spectra of the type II string theories in ten dimensions. In lecture three we discuss brane solutions of the low energy effective actions, the type II supergravity theories. In the final lecture we compare the two brane pictures – D-branes and supergravity branes. This leads to the formulation of the Maldacena conjecture, or the AdS/CFT correspondence. We also give a brief introduction to the conformal group and AdS space. 1Based on lectures given in July 2001 at the Universidad Simon Bolivar and at the Summer School on ”Geometric and Topological Methods for Quantum Field Theory” in Villa de Leyva, Colombia. Lecture 1: Introduction There are two central open problems in theoretical high energy physics: the search for a quantum theory of gravity and • the solution of QCD at low energies.
    [Show full text]
  • Calabi-Yau Compactification of Type II String Theories Sibasish Banerjee
    Calabi-Yau compactification of type II string theories Sibasish Banerjee Composition of the thesis committee : Supervisor : Sergei Alexandrov, charg´ede Recherche, L2C CNRS, UMR-5221 Examiner : Boris Pioline, Professor LPTHE, Jussieu ; CERN PH-TH Examiner : Stefan Vandoren, Professor, ITP- Utrecht Chair : Andr´eNeveu, Professor Emeritus, L2C CNRS, UMR-5221 Examiner : Vasily Pestun, IHES,´ Bures-sur-yvette Examiner : Philippe Roche, Directeur de Recherche, IMAG, CNRS, Universit´ede Montpellier arXiv:1609.04454v1 [hep-th] 14 Sep 2016 Thesis defended at Laboratoire Charles Coulomb, Universit´ede Mont- pellier on 29th September, 2015. Contents 1 Some basic facts about string theory 1 1.1 A brief history of string theory . .2 1.2 Bosonic strings and Polyakov action . .3 1.2.1 World sheet point of view . .4 1.2.2 Weyl invariance . .4 1.3 Low energy limits primer . .6 1.4 Superstring theories . .7 1.4.1 M-theory and dualities . .9 1.5 String compactifications . 10 2 Compactification of type II string theories on Calabi-Yau three- folds and their moduli spaces 12 2.1 Calabi-Yau manifolds and their moduli spaces . 12 2.1.1 Complex structure moduli . 13 2.1.2 Kähler moduli . 14 2.2 Field content of type II supergravities in four dimensions . 15 2.2.1 Type IIA . 16 2.2.2 Type IIB . 17 2.3 Low energy effective actions . 18 2.4 Hypermultiplet moduli space . 20 2.4.1 Classical hypermultiplet metric . 20 2.4.2 Symmetries of the classical metric . 22 2.5 Qualitative nature of quantum correction . 24 2.6 Present status .
    [Show full text]
  • Little String Theory at A
    CERN-TH/2001-066, RI-07-00, Stanford ITP-01/04 hep-th/0103033 Little String Theory at a TeV Ignatios Antoniadis1,2, Savas Dimopoulos3 and Amit Giveon4 2Theory Division, CERN CH-1211, Geneva 23, Switzerland 3Physics Department, Stanford University Stanford CA 94305, USA 4Racah Institute of Physics, The Hebrew University Jerusalem 91904, Israel We propose a framework where the string scale as well as all compact dimensions are at the electroweak scale TeV−1. The weakness of gravity is attributed to the small value of ∼ the string coupling g 10−16, presumably a remnant of the dilaton’s runaway behavior, s ∼ suggesting the possibility of a common solution to the hierarchy and dilaton-runaway problems. In spite of the small gs, in type II string theories with gauge interactions arXiv:hep-th/0103033v2 26 Jun 2001 localized in the vicinity of NS5-branes, the standard model gauge couplings are of order one and are associated with the sizes of compact dimensions. At a TeV these theories exhibit higher dimensional and stringy behavior. The models are holographically dual to a higher dimensional non-critical string theory and this can be used to compute the experimentally accessible spectrum and self-couplings of the little strings. In spite of the stringy behavior, gravity remains weak and can be ignored at collider energies. The Damour-Polyakov mechanism is an automatic consequence of our scenario and suggests the presence of a massless conformally-coupled scalar, leading to potentially observable deviations from Einstein’s theory, including violations of the equivalence principle. 2/2001 1 On leave of absence from CPHT, Ecole Polytechnique, UMR du CNRS 7644.
    [Show full text]
  • Spacetime–Filling Branes and Strings with Sixteen Supercharges
    UG-15/98 QMW-PH-98-39 SPIN-98/14 hep-th/9812224 December, 1998 Spacetime–Filling Branes and Strings with Sixteen Supercharges E. Bergshoeff 1, E. Eyras 2, R. Halbersma 3, J.P. van der Schaar 4 Institute for Theoretical Physics, University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands C.M. Hull 5 Physics Department, Queen Mary and Westfield College, Mile End Road, London E1 4NS, U.K. Y. Lozano 6 Spinoza Institute, University of Utrecht, Leuvenlaan 4, 3508 TD Utrecht, The Netherlands Abstract arXiv:hep-th/9812224v2 17 Aug 1999 We discuss branes whose worldvolume dimension equals the target spacetime dimension, i.e. “spacetime-filling branes”. In addition to the D9-branes, there are 9-branes in the NS-NS sectors of both the IIA and IIB strings. The worldvolume actions of these branes are constructed, via duality, from the known actions of branes with codimension larger than zero. Each of these types of branes is used in the construction of a string theory with sixteen supercharges by modding out a type II string by an appropriate discrete symmetry and adding 32 9-branes. These constructions are related by a web of dualities and each arises as a different limit of the Hoˇrava-Witten construction. 1E-mail address: [email protected] 2E-mail address: [email protected] 3E-mail address: [email protected] 4E-mail address: [email protected] 5E-mail address: [email protected] 6E-mail address: [email protected] 1 1 Introduction and Overview This paper is concerned with spacetime-filling branes and their role in the construction of string theories with 16 supersymmetries.
    [Show full text]