Universidad Autónoma De Madrid Facultad De Ciencias Departamento De F´Isica Teórica Type II String Duality and Massive Super

Total Page:16

File Type:pdf, Size:1020Kb

Universidad Autónoma De Madrid Facultad De Ciencias Departamento De F´Isica Teórica Type II String Duality and Massive Super Universidad Aut´onomade Madrid Facultad de Ciencias Departamento de F´ısicaTe´orica Type II String Duality and Massive Supergravity Memoria de Tesis presentada por: Patrick A.A. Meessen Madrid - 2000 Vielleicht ist es aber auch unerlaubt, warf Walters Mutter ein, immer gleich an die großen Gestalten wie Mozart oder Einstein zu denken. Der Einzelne hat meist nicht die M¨oglichkeit, an einer entscheidenen Stelle mitzuwirken. Er nimmt mehr im stillen, im kleinen Kreise teil, und da muß man sich doch eben uberlegen,¨ ob es nicht sch¨oner ist, das D-Dur-Trio von Schubert zu spielen, als Apparate zu bauen oder mathematische Formeln zu schreiben. Ich best¨atigte, daß mir gerade an dieser Stelle viele Skrupel gekommen w¨aren, und ich berichtete auch uber¨ mein Gespr¨ach mit Sommerfeld und daruber,¨ daß mein zukunftiger¨ Lehrer das Schillerwort zitiert hatte: Wenn die K¨onige bauen, haben die K¨arner zu tun. Rolf meinte dazu: Darin geht es naturlich¨ uns allen gleich. Als Musiker muß man zun¨achst unendlich viel Arbeit allein fur¨ die technische Beherrschung des Instru- ments aufwenden, und selbst dann kann man nur immer wieder Stucke¨ spielen, die schon von hundert anderen Musikern noch besser interpretiert worden sind. Und du wirst, wenn du Physik studierst, zun¨achst in langer muhevoller¨ Arbeit Apparate bauen mussen,¨ die schon von anderen besser gebaut, oder wirst mathematischen Uberlegungen¨ nachgehen, die schon von anderen in aller Sch¨arfe vorgedacht worden sind. Wenn dies alles geleistet ist, bleibt bei uns, sofern man eben zu den K¨arnern geh¨ort, immerhin der st¨andige Umgang mit herrlicher Musik und gelegentlich die Freude daran, daß eine Interpretation besonders gut geraten ist. Bei euch wird es dann und wann gelingen, einen Zusammenhang noch etwas besser zu verstehen, als es vorher m¨oglich war, oder einen Sachverhalt noch etwas genauer zu vermessen, als die Vorg¨anger es gekonnt haben. Darauf, daß man an noch wichtigerem mit- wirkt, daß man an entscheidener Stelle weiterkommen k¨onnte, darf man nicht alzu bestimmt rechnen. Selbst dann nicht, wenn man an einem Gebiet mitarbeitet, in dem es noch viel Neuland zu erkunden gibt.[58] Contents Introducci´on III 1. String Theory: A Short Introduction 1 1.1. Bosonic Strings . 1 1.1.1. Closed Strings in Minkowski Space . 3 1.1.2. Open Strings in Minkowski Space . 5 1.1.3. Compactification and T-duality . 5 1.2. Fermionic Strings . 7 1.3. Strings on Curved Manifolds . 12 1.3.1. T-duality and Background Fields: Buscher’s Map . 18 1.4. D = 11 Sugra and M Theory . 19 2. Black holes and Duality 21 2.1. The Derivation of the Duality Transformations . 22 2.1.1. T Duality Transformations . 24 2.1.2. S Duality Transformations . 26 2.2. TNbh Asymptotics . 28 2.2.1. Inclusion of Constant Terms . 31 2.3. Transformation of the Charges under Duality . 33 2.3.1. Deriving the Form for the T Duality Transformation Matrices . 33 2.3.2. The One-Parameter Subgroups of the T Duality Group . 34 (B) 2.3.3. The Mapping-Class Group T Duality Transformations Z2 . 38 2.3.4. Constant Parts in the Gauge Fields and the Closed Set of Asymptotic “Charges” Under τ ............................... 39 2.3.5. Transformation of the Charges under S Duality . 40 2.4. The Asymptotic Duality Subgroup . 42 2.4.1. Identification of the Asymptotic Duality Subgroup . 42 2.4.2. The Bogomol’nyi Bound and its Variation . 43 2.4.3. Primary Scalar Hair and Unbroken Supersymmetry . 45 2.5. Conclusions . 50 3. Massive Supergravity in D = 10, i.e. IIAm 53 3.1. Massive D = 10 IIA Supergravity . 53 3.1.1. Equations of Motion etc. ............................ 55 3.2. Sl(2, R) Covariant D = 9 Sugra and T-duality . 57 3.2.1. Generalized Dimensional Reduction: A Toy Model . 57 i 3.2.2. The Sl(2, R)-Covariant Generalized Dimensional Reduction of Type IIB Supergravity: An S Duality Multiplet of N = 2, d = 9 Massive Super- gravities . 61 3.2.3. An Alternative Recipe for Generalized Dimensional Reduction: Gauging of Global Symmetries . 68 3.3. The Eleven-Dimensional Origin of IIAm . 71 2 3.3.1. Compactification of 11-Dimensional Supergravity on T and Sl(2, R) Sym- metry ...................................... 71 3.3.2. Sl(2, R)-Covariant Massive 11-Dimensional Supergravity . 75 3.4. BPS Solutions and Intersections . 79 3.4.1. Standard Intersections . 82 3.4.2. Massive String . 84 3.4.3. Massive D6-Brane . 86 3.5. More on D7-branes . 87 3.5.1. Point-Like (in Transverse Space) 7-Branes . 88 3.5.2. 7-Branes with a Compact Transverse Dimension . 93 3.6. KK-7A- and KK-8A-branes and T Duality . 94 Acknowledgements 101 A. Conventions et. al. 103 B. KK Decompositions and T-Duality 105 B.1. 9-Dimensional Einstein Fields Vs. 10-Dimensional Type IIA String Fields . 105 B.2. 9-Dimensional Einstein Fields Vs. 10-Dimensional Type IIB String Fields . 107 B.3. Generalized Buscher T-Duality Rules . 107 ii Introducci´on Aunque la formulaci´onde la teor´ıade las (super)cuerdas aun se desconoce, lo que s´ıse sabe promete mucho [4, 53, 83, 95]. Una cuerda es la idealizaci´onde un cord´on, donde se ignora su gordura: la cuerda es un espacio unidimensional cuando lo miramos a un tiempo fijo. Para los espacios unidimensionales s´olo existen dos topolog´ıasdiferentes: el c´ırculo y el intervalo. As´ıque antes de empezar tenemos que distinguir entre las cuerdas cerradas, el c´ırculo, y las cuerdas abiertas, el intervalo. La idea b´asicaes la de introducir las interacciones: dos cuerdas cerradas pueden juntarse as´ıformando una cuerda cerrada y a la inversa. En caso de la cuerda abierta, las interacciones se hacen jun- tando los extremos de las cuerdas abiertas. Esto tambi´enquiere decir que una cuerda abierta se puede cerrar: una teor´ıade cuerdas abiertas necesita las cuerdas cerradas para su consistencia. Empezando en el primer cap´ıtulo con la acci´onde Nambu-Goto, que describe cl´asicamente c´omo una cuerda se mueve en el espacio de Minkowski, se linealiza ´esta, lo cual resulta en la acci´onde Polyakov. Utilizando las invariancias de la acci´onde Polyakov, ´esta es equivalente a una teor´ıa dos dimensional de D bosones libres, donde D es la dimensi´onen la que la cuerda se mueve. Esta teor´ıa,cuando se cuantiza s´olo es consistente, es decir que no haya estados de norma negativa en el espectro f´ısico, si D = 26. Al igual que para una cuerda de un viol´ın, las vibraciones de la cuerda se clasifican en modos (tonos). La cuerda cerrada tiene dos tipos de modos: las vibraciones que se mueven a la derecha y las que se mueven a la izquierda.1 La cuerda abierta s´olotiene, gracias a las condiciones de contorno, un tipo de modos. Analizando estos modos en t´erminos del grupo de Poincar´een D = 26, las cuerdas siempre tienen un escalar de masa imaginario, un taqui´on, en el espectro (de hecho, el taqui´ones el vac´ıodel espacio de Fock.). Las part´ıculassin masa son un gravit´on, Gµν, un escalar, Φ, llamado el dilat´on y un campo antisim´etrico, Bµν, llamado el Kalb-Ramond para la cuerda cerrada2 y un campo vectorial para la cuerda abierta. Un hecho decepcionante de las cuerdas, aparte de vivir en 26 dimensiones y ser, posiblemente, inestables gracias al ta- qui´on,es la ausencia de fermiones en el espacio-tiempo. La supercuerda soluciona este problema introduci´endolos en la s´abana por medio de supersimetr´ıa. Supersimetr´ıaes una simetr´ıaque intercambia bosones y fermiones. Sabiendo esto, las cargas que generan las transformaciones de supersimetr´ıatienen que ser spinores, lo cual implica que dos transformaciones de supersimetr´ıa tienen que generar, entre otras cosas, traslaciones. En la supercuerda, pues, aparte de los D bosones de la cuerda bos´onica, se introducen tambi´en D spinores de Majorana-Weyl en la s´abana, que se transforman como un vector bajo el grupo de Poincar´een D dimensiones. Las condiciones de contorno para los spinores admiten dos po- sibilidades: o bien se transforman con un signo menos o no; dependiendo del signo se les llama 1La teor´ıapone la pega que el n´umerode oscilaciones que van a la derecha tiene que ser el mismo que el de las que van a la izquierda. 2Estos tres estados aparecen en la mayor´ıade las teor´ıas de cuerdas, y se llama el sector com´unde la cuerda. iii spinores Neveu-Schwarz (NS) o spinores Ramond (R). La diferencia se nota cuando cuantiza- mos la cuerda fermi´onica: los spinores NS se comportan como bosones en el espacio-tiempo, mientras que los spinores R son aut´enticos spinores en el espacio-tiempo. Adem´as,la dimensi´on del espacio-tiempo para la supercuerda es 10. Aplicando estas ideas a las cuerdas, vemos que todav´ıa aparece el taqui´onen el espectro. Existe una projecci´onsobre el espectro que es consistente y hace que el taqui´ondesaparezca: la pro- yecci´onde Gliozzi, Scherk y Olive (GSO). La proyecci´onconsiste, m´aso menos, en tirar todos los estados que se generan a partir del taqui´onpor medio de la aplicaci´onde cualquier conjunto de operadores de creaci´onque no sea fermi´onico. La proyecci´onde GSO quiere decir que, ya que los estados de la cuerda bos´onica se crean a partir del taqui´onutilizando s´olooperadores bos´onicos, todos los modos correspondientes a la cuerda bos´onicason eliminados por la proyec- ci´onde GSO.
Recommended publications
  • Classical Strings and Membranes in the Ads/CFT Correspondence
    Classical Strings and Membranes in the AdS/CFT Correspondence GEORGIOS LINARDOPOULOS Faculty of Physics, Department of Nuclear and Particle Physics National and Kapodistrian University of Athens and Institute of Nuclear and Particle Physics National Center for Scientific Research "Demokritos" Dissertation submitted for the Degree of Doctor of Philosophy at the National and Kapodistrian University of Athens June 2015 Doctoral Committee Supervisor Emmanuel Floratos Professor Emer., N.K.U.A. Co-Supervisor Minos Axenides Res. Director, N.C.S.R., "Demokritos" Supervising Committee Member Nikolaos Tetradis Professor, N.K.U.A. Thesis Defense Committee Ioannis Bakas Professor, N.T.U.A. Georgios Diamandis Assoc. Professor, N.K.U.A. Athanasios Lahanas Professor Emer., N.K.U.A. Konstantinos Sfetsos Professor, N.K.U.A. i This thesis is dedicated to my parents iii Acknowledgements This doctoral dissertation is based on the research that took place during the years 2012–2015 at the Institute of Nuclear & Particle Physics of the National Center for Sci- entific Research "Demokritos" and the Department of Nuclear & Particle Physics at the Physics Faculty of the National and Kapodistrian University of Athens. I had the privilege to have professors Emmanuel Floratos (principal supervisor), Mi- nos Axenides (co-supervisor) and Nikolaos Tetradis as the 3-member doctoral committee that supervised my PhD. I would like to thank them for the fruitful cooperation we had, their help and their guidance. I feel deeply grateful to my teacher Emmanuel Floratos for everything that he has taught me. It is extremely difficult for me to imagine a better and kinder supervisor. I thank him for his advices, his generosity and his love.
    [Show full text]
  • String Theory. Volume 1, Introduction to the Bosonic String
    This page intentionally left blank String Theory, An Introduction to the Bosonic String The two volumes that comprise String Theory provide an up-to-date, comprehensive, and pedagogic introduction to string theory. Volume I, An Introduction to the Bosonic String, provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory and of the Polyakov path integral, and the covariant quantization of the string. The next three chapters treat string interactions: the general formalism, and detailed treatments of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification and many important aspects of string physics, such as T-duality and D-branes. Chapter nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity, and various nonperturbative ideas. An appendix giving a short course on path integral methods is also included. Volume II, Superstring Theory and Beyond, begins with an introduction to supersym- metric string theories and goes on to a broad presentation of the important advances of recent years. The first three chapters introduce the type I, type II, and heterotic superstring theories and their interactions. The next two chapters present important recent discoveries about strongly coupled strings, beginning with a detailed treatment of D-branes and their dynamics, and covering string duality, M-theory, and black hole entropy. A following chapter collects many classic results in conformal field theory. The final four chapters are concerned with four-dimensional string theories, and have two goals: to show how some of the simplest string models connect with previous ideas for unifying the Standard Model; and to collect many important and beautiful general results on world-sheet and spacetime symmetries.
    [Show full text]
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • UV Behavior of Half-Maximal Supergravity Theories
    UV behavior of half-maximal supergravity theories. Piotr Tourkine, Quantum Gravity in Paris 2013, LPT Orsay In collaboration with Pierre Vanhove, based on 1202.3692, 1208.1255 Understand the pertubative structure of supergravity theories. ● Supergravities are theories of gravity with local supersymmetry. ● Those theories naturally arise in the low energy limit of superstring theory. ● String theory is then a UV completion for those and thus provides a good framework to study their UV behavior. → Maximal and half-maximal supergravities. Maximal supergravity ● Maximally extended supergravity: – Low energy limit of type IIA/B theory, – 32 real supercharges, unique (ungauged) – N=8 in d=4 ● Long standing problem to determine if maximal supergravity can be a consistent theory of quantum gravity in d=4. ● Current consensus on the subject : it is not UV finite, the first divergence could occur at the 7-loop order. ● Impressive progresses made during last 5 years in the field of scattering amplitudes computations. [Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Rozowsky etc.] Half-maximal supergravity ● Half-maximal supergravity: – Heterotic string, but also type II strings on orbifolds – 16 real supercharges, – N=4 in d=4 ● Richer structure, and still a lot of SUSY so explicit computations are still possible. ● There are UV divergences in d=4, [Fischler 1979] at one loop for external matter states ● UV divergence in gravity amplitudes ? As we will see the divergence is expected to arise at the four loop order. String models that give half-maximal supergravity “(4,0)” susy “(0,4)” susy ● Type IIA/B string = Superstring ⊗ Superstring Torus compactification : preserves full (4,4) supersymmetry.
    [Show full text]
  • TASI Lectures on String Compactification, Model Building
    CERN-PH-TH/2005-205 IFT-UAM/CSIC-05-044 TASI lectures on String Compactification, Model Building, and Fluxes Angel M. Uranga TH Unit, CERN, CH-1211 Geneve 23, Switzerland Instituto de F´ısica Te´orica, C-XVI Universidad Aut´onoma de Madrid Cantoblanco, 28049 Madrid, Spain angel.uranga@cern,ch We review the construction of chiral four-dimensional compactifications of string the- ory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Stan- dard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms. Lecture 1. Model building in IIA: Intersecting brane worlds 1 Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to `gauge interactions' in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics.
    [Show full text]
  • Towards a String Dual of SYK Arxiv:2103.03187V1 [Hep-Th] 4 Mar
    Towards A String Dual of SYK Akash Goel and Herman Verlinde Department of Physics, Princeton University, Princeton, NJ 08544, USA Abstract: We propose a paradigm for realizing the SYK model within string theory. Using the large N matrix description of c < 1 string theory, we show that the effective theory on a large number Q of FZZT D-branes in (p; 1) minimal string theory takes the form of the disorder averaged SYK model with J p interaction. The SYK fermions represent open strings between the FZZT branes and the ZZ branes that underly the matrix model. The continuum SYK dynamics arises upon taking the large Q limit. We observe several qualitative and quantitative links between the SYK model and (p; q) minimal string theory and propose that the two describe different phases of a single system. We comment on the dual string interpretation of double scaled SYK and on the relevance of our results to the recent discussion of the role of ensemble averaging in holography. arXiv:2103.03187v2 [hep-th] 24 Aug 2021 Contents 1 Introduction2 2 SYK from the Two Matrix Model4 2.1 FZZT-branes in the two matrix model4 2.2 Kontsevich matrix model from FZZT branes6 2.3 SYK matrix model from FZZT branes7 3 Towards the Continuum SYK model8 3.1 Non-commutative SYK8 4 From Minimal Strings to SYK 10 4.1 SYK and the (p; q) spectral curve 11 4.2 FZZT brane correlation function 12 4.3 Minimal String-SYK phase diagram 13 5 SYK as a Non-Critical String 14 6 Conclusion 16 A D-branes in Minimal String Theory 18 A.1 Matrices and the non-commutative torus 23 A.2 Non-commutative SYK 24 A.3 Matrix SYK 26 A.4 Mapping between Matrix SYK and Non-Commutative SYK 27 { 1 { 1 Introduction The SYK model is the prototype of a maximally chaotic quantum system with low energy dynamics given by near-AdS2 gravity.
    [Show full text]
  • Pitp Lectures
    MIFPA-10-34 PiTP Lectures Katrin Becker1 Department of Physics, Texas A&M University, College Station, TX 77843, USA [email protected] Contents 1 Introduction 2 2 String duality 3 2.1 T-duality and closed bosonic strings .................... 3 2.2 T-duality and open strings ......................... 4 2.3 Buscher rules ................................ 5 3 Low-energy effective actions 5 3.1 Type II theories ............................... 5 3.1.1 Massless bosons ........................... 6 3.1.2 Charges of D-branes ........................ 7 3.1.3 T-duality for type II theories .................... 7 3.1.4 Low-energy effective actions .................... 8 3.2 M-theory ................................... 8 3.2.1 2-derivative action ......................... 8 3.2.2 8-derivative action ......................... 9 3.3 Type IIB and F-theory ........................... 9 3.4 Type I .................................... 13 3.5 SO(32) heterotic string ........................... 13 4 Compactification and moduli 14 4.1 The torus .................................. 14 4.2 Calabi-Yau 3-folds ............................. 16 5 M-theory compactified on Calabi-Yau 4-folds 17 5.1 The supersymmetric flux background ................... 18 5.2 The warp factor ............................... 18 5.3 SUSY breaking solutions .......................... 19 1 These are two lectures dealing with supersymmetry (SUSY) for branes and strings. These lectures are mainly based on ref. [1] which the reader should consult for original references and additional discussions. 1 Introduction To make contact between superstring theory and the real world we have to understand the vacua of the theory. Of particular interest for vacuum construction are, on the one hand, D-branes. These are hyper-planes on which open strings can end. On the world-volume of coincident D-branes, non-abelian gauge fields can exist.
    [Show full text]
  • Duality and the Nature of Quantum Space-Time
    Duality and the nature of quantum space-time Sanjaye Ramgoolam Queen Mary, University of London Oxford, January 24, 2009 INTRODUCTION Strings provide a working theory of quantum gravity existing in harmony with particle physics Successes include computations of quantum graviton scattering, new models of beyond-standard-model particle physics based on branes, computation of black hole entropy A powerful new discovery : Duality I An unexpected equivalence between two systems, which a priori look completely unrelated, if not manifest opposites. I Large and Small (T-duality) I Gravitational and non-Gravitational. (Gauge-String duality) Unification and Duality I They are both powerful results of string theory. They allow us to calculate things we could not calculate before. I Unification : We asked for it and found it. We kind of know why it had to be there. I Duality : We didn’t ask for it. We use it. We don’t know what it really means. Unification v/s Duality I Unification has an illustrious history dating back to the days of Maxwell. I Before Maxwell, we thought magnets attracting iron on the one hand and lightning on the other had nothing to do with each other I After Maxwell : Magnets produce B-field. Electric discharge in lightning is caused by E-fields. The coupled equations of both allow fluctuating E, B-fields which transport energy travelling at the speed of light. In fact light is electromagnetic waves. Unification v/s Duality I Einstein tried to unify gravity with quantum phsyics. I String Theory goes a long way. I Computes graviton interaction probablities.
    [Show full text]
  • 6D Fractional Quantum Hall Effect
    Published for SISSA by Springer Received: March 21, 2018 Accepted: May 7, 2018 Published: May 18, 2018 6D fractional quantum Hall effect JHEP05(2018)120 Jonathan J. Heckmana and Luigi Tizzanob aDepartment of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. bDepartment of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden E-mail: [email protected], [email protected] Abstract: We present a 6D generalization of the fractional quantum Hall effect involv- ing membranes coupled to a three-form potential in the presence of a large background four-form flux. The low energy physics is governed by a bulk 7D topological field theory of abelian three-form potentials with a single derivative Chern-Simons-like action coupled to a 6D anti-chiral theory of Euclidean effective strings. We derive the fractional conductivity, and explain how continued fractions which figure prominently in the classification of 6D su- perconformal field theories correspond to a hierarchy of excited states. Using methods from conformal field theory we also compute the analog of the Laughlin wavefunction. Com- pactification of the 7D theory provides a uniform perspective on various lower-dimensional gapped systems coupled to boundary degrees of freedom. We also show that a supersym- metric version of the 7D theory embeds in M-theory, and can be decoupled from gravity. Encouraged by this, we present a conjecture in which IIB string theory is an edge mode of a 10+2-dimensional bulk topological theory, thus placing all twelve dimensions of F-theory on a physical footing.
    [Show full text]
  • Flux Backgrounds, Ads/CFT and Generalized Geometry Praxitelis Ntokos
    Flux backgrounds, AdS/CFT and Generalized Geometry Praxitelis Ntokos To cite this version: Praxitelis Ntokos. Flux backgrounds, AdS/CFT and Generalized Geometry. Physics [physics]. Uni- versité Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066206. tel-01620214 HAL Id: tel-01620214 https://tel.archives-ouvertes.fr/tel-01620214 Submitted on 20 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale : « Physique en Île-de-France » réalisée à l’Institut de Physique Thèorique CEA/Saclay présentée par Praxitelis NTOKOS pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Flux backgrounds, AdS/CFT and Generalized Geometry soutenue le 23 septembre 2016 devant le jury composé de : M. Ignatios ANTONIADIS Examinateur M. Stephano GIUSTO Rapporteur Mme Mariana GRAÑA Directeur de thèse M. Alessandro TOMASIELLO Rapporteur Abstract: The search for string theory vacuum solutions with non-trivial fluxes is of particular importance for the construction of models relevant for particle physics phenomenology. In the framework of the AdS/CFT correspondence, four-dimensional gauge theories which can be considered to descend from N = 4 SYM are dual to ten- dimensional field configurations with geometries having an asymptotically AdS5 factor.
    [Show full text]
  • LOCALIZATION and STRING DUALITY 1. Introduction According
    LOCALIZATION AND STRING DUALITY KEFENG LIU 1. Introduction According to string theorists, String Theory, as the most promising candidate for the grand unification of all fundamental forces in the nature, should be the final theory of the world, and should be unique. But now there are five different looking string theories. As argued by the physicists, these theories should be equivalent, in a way dual to each other. On the other hand all previous theories like the Yang-Mills and the Chern-Simons theory should be parts of string theory. In particular their partition functions should be equal or equivalent to each other in the sense that they are equal after certain transformation. To compute partition functions, physicists use localization technique, a modern version of residue theorem, on infinite dimen- sional spaces. More precisely they apply localization formally to path integrals which is not well-defined yet in mathematics. In many cases such computations reduce the path integrals to certain integrals of various Chern classes on various finite dimensional moduli spaces, such as the moduli spaces of stable maps and the moduli spaces of vector bundles. The identifications of these partition functions among different theories have produced many surprisingly beautiful mathematical formulas like the famous mirror formula [22], as well as the Mari˜no-Vafa formula [25]. The mathematical proofs of these formulas from the string duality also depend on localization techniques on these various finite dimensional moduli spaces. The purpose of this note is to discuss our recent work on the subject. I will briefly discuss the proof of the Marin˜o-Vafa formula, its generalizations and the related topological vertex theory [1].
    [Show full text]
  • M-Theory Solutions and Intersecting D-Brane Systems
    M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity.
    [Show full text]