RING1B/RNF2 Rabbit Pab

Total Page:16

File Type:pdf, Size:1020Kb

RING1B/RNF2 Rabbit Pab Leader in Biomolecular Solutions for Life Science [KO Validated] RING1B/RNF2 Rabbit pAb Catalog No.: A18076 KO Validated Basic Information Background Catalog No. Polycomb group (PcG) of proteins form the multiprotein complexes that are important A18076 for the transcription repression of various genes involved in development and cell proliferation. The protein encoded by this gene is one of the PcG proteins. It has been Observed MW shown to interact with, and suppress the activity of, transcription factor CP2 38kDa (TFCP2/CP2). Studies of the mouse counterpart suggested the involvement of this gene in the specification of anterior-posterior axis, as well as in cell proliferation in early Calculated MW development. This protein was also found to interact with huntingtin interacting protein 29kDa/37kDa 2 (HIP2), an ubiquitin-conjugating enzyme, and possess ubiquitin ligase activity. Category Primary antibody Applications WB, IHC, IF, IP, ChIP Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 6045 Q99496 IHC 1:50 - 1:200 Immunogen 1:50 - 1:200 IF Recombinant fusion protein containing a sequence corresponding to amino acids 1-336 of human RING1B/RING1B/RNF2 (NP_009143.1). IP 1:50 - 1:200 Synonyms ChIP 1:50 - 1:200 RNF2;BAP-1;BAP1;DING;HIPI3;RING1B;RING2 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts from normal (control) and RING1B/RNF2 knockout (KO) HeLa cells, using RING1B/RNF2 antibody (A18076) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 180s. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products..
Recommended publications
  • RNF2/Ring1b Negatively Regulates P53 Expression in Selective Cancer Cell Types to Promote Tumor Development
    RNF2/Ring1b negatively regulates p53 expression in selective cancer cell types to promote tumor development Wen-jing Sua,b, Jun-shun Fanga, Feng Chenga,b, Chao Liua, Fang Zhoua, and Jian Zhanga,1 aState Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology and bGraduate School, Chinese Academy of Sciences, Beijing 100101, China Edited by Carol Prives, Columbia University, New York, NY, and approved December 19, 2012 (received for review July 15, 2012) Large numbers of studies have focused on the posttranslational evolution in some invertebrates, such as Caenorhabditis elegans regulation of p53 activity. One of the best-known negative regu- and Drosophila melanogaster, suggesting that other factors (in- lators for p53 is MDM2, an E3 ubiquitin ligase that promotes p53 cluding other E3 ligases) might be involved in controlling p53 degradation through proteasome degradation pathways. Additional activities in these animals. For example, Bonus is a homolog of E3 ligases have also been reported to negatively regulate p53. How- TRIM 24, a p53 ligase in vertebrates. The results from loss-of- ever, whether these E3 ligases have distinct/overlapping roles in function studies indicated that Bonus is critical for maintaining the regulation of p53 is largely unknown. In this study, we identify p53 activity in Drosophila, suggesting that Bonus might be an RNF2 (ring finger protein 2) as an E3 ligase that targets p53 for evolutionarily conserved E3 ligase for p53 (14). The existence of multiple E3 ligases for p53 strongly suggests that specialization degradation. The E3 ligase activity of RNF2 requires Bmi1 protein, among them must be required for controlling p53 at multiple a component of the polycomb group (PcG) complex.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • RNF2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD7403 RNF2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: E3 ubiquitin-protein ligase that mediates monoubiquitination of 'Lys-119' of histone H2A (H2AK119Ub), thereby playing a central role in histone code and gene regulation. H2AK119Ub gives a specific tag for epigenetic transcriptional repression and participates in X chromosome inactivation of female mammals. May be involved in the initiation of both imprinted and random X inactivation (By similarity). Essential component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones, rendering chromatin heritably changed in its expressibility. E3 ubiquitin-protein ligase activity is enhanced by BMI1/PCGF4. Acts as the main E3 ubiquitin ligase on histone H2A of the PRC1 complex, while RING1 may rather act as a modulator of RNF2/RING2 activity (Probable). Association with the chromosomal DNA is cell-cycle dependent. In resting B- and T-lymphocytes, interaction with AURKB leads to block its activity, thereby maintaining transcription in resting lymphocytes (By similarity). Uniprot:Q99496 Alternative Names: BAP 1; BAP1; DING; DinG protein; E3 ubiquitin protein ligase RING 2; E3 ubiquitin protein ligase RING2; E3 ubiquitin-protein ligase RING2; HIP2 interacting protein 3; HIP2- interacting protein 3; HIPI 3; HIPI3; Huntingtin interacting protein 2 interacting protein 3; Huntingtin-interacting protein 2-interacting protein 3; OTTHUMP00000060668; Polycomb M33 interacting protein Ring 1B; Polycomb M33 interacting protein Ring1B; Protein DinG; RING 1B; RING 2; RING finger protein 1B; RING finger protein 2; RING finger protein BAP 1; RING finger protein BAP-1; RING finger protein BAP1; RING1b; RING2_HUMAN; RNF 2; Rnf2; Specificity: RNF2 Antibody detects endogenous levels of total RNF2.
    [Show full text]
  • Product Data Sheet
    For research purposes only, not for human use Product Data Sheet RNF2 siRNA (Human) Catalog # Source Reactivity Applications CRH4092 Synthetic H RNAi Description siRNA to inhibit RNF2 expression using RNA interference Specificity RNF2 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Form Lyophilized powder Gene Symbol RNF2 Alternative Names BAP1; DING; HIPI3; RING1B; E3 ubiquitin-protein ligase RING2; Huntingtin-interacting protein 2-interacting protein 3; HIP2-interacting protein 3; Protein DinG; RING finger protein 1B; RING1b; RING finger protein 2; RING finger protein BAP-1 Entrez Gene 6045 (Human) SwissProt Q99496 (Human) Purity > 97% Quality Control Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency. Components We offers pre-designed sets of 3 different target-specific siRNA oligo duplexes of human RNF2 gene. Each vial contains 5 nmol of lyophilized siRNA. The duplexes can be transfected individually or pooled together to achieve knockdown of the target gene, which is most commonly assessed by qPCR or western blot. Our siRNA oligos Application key: E- ELISA, WB- Western blot, IH- Immunohistochemistry, IF- Immunofluorescence, FC-
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • E2-25K/Hip2 Antibody A
    Revision 1 C 0 2 - t E2-25K/Hip2 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 7 4 Web: [email protected] 8 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Mk Endogenous 25 Rabbit P61086 3093 Product Usage Information Application Dilution Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity E2-25K/Hip2 Antibody detects endogenous levels of total E2-25K/Hip2 protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Arg11 of human E2-25K/Hip2 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background Protein ubiquitination requires the concerted action of the E1, E2, and E3 ubiquitin- conjugating enzymes. Ubiquitin is first activated through ATP-dependent formation of a thiol ester with ubiquitin-activating enzyme E1. The activated ubiquitin is then transferred to a thiol group of ubiquitin-carrier enzyme E2. The final step is the transfer of ubiquitin from E2 to an ε-amino group of the target protein lysine residue, which is mediated by ubiquitin-ligase enzyme E3 (1). E2-25K (Hip2) is a member of the E2 protein family that catalyzes multiubiquitin chain synthesis via Lys48 of ubiquitin (2).
    [Show full text]
  • Chromatin Condensation of Xist Genomic Loci During Oogenesis In
    © 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 4049-4055 doi:10.1242/dev.127308 RESEARCH REPORT Chromatin condensation of Xist genomic loci during oogenesis in mice Atsushi Fukuda1, Atsushi Mitani1,2, Toshiyuki Miyashita2, Akihiro Umezawa1 and Hidenori Akutsu1,3,* ABSTRACT (Augui et al., 2011; Sado and Sakaguchi, 2013; Nesterova et al., Repression of maternal Xist (Xm-Xist) during preimplantation in 2001). This expression pattern leads to the establishment of mouse embryos is essential for establishing imprinted X chromosome imprinted XCI in extra-embryonic tissues (Takagi and Sasaki, Xist Xist inactivation. Nuclear transplantation (NT) studies using nuclei derived 1975). Paternal (Xp- ) expression is driven by the deposition – from non-growing (ng) and full-grown (fg) oocytes have indicated that of maternal Rnf12 (also known as Rlim Mouse Genome maternal-specific repressive modifications are imposed on Xm-Xist Informatics) (Shin et al., 2010; Jonkers et al., 2009). However, Xist during oogenesis, as well as on autosomal imprinted genes. Recent the locus on the maternal X chromosome (Xm) is tightly studies have revealed that histone H3 lysine 9 trimethylation protected by epigenetic factors. Using parthenogenetic embryos, (H3K9me3) enrichments on Xm-Xist promoter regions are involved which are composed of two maternal genomes, we previously in silencing at the preimplantation stages. However, whether demonstrated that histone 3 lysine 9 trimethylation (H3K9me3) is Xist H3K9me3 is imposed on Xm-Xist during oogenesis is not known. essential for Xm- repression during early preimplantation Here, we dissected the chromatin states in ng and fg oocytes and phases (Fukuda et al., 2014). early preimplantation stage embryos.
    [Show full text]
  • RNF2 Polyclonal Antibody Catalog No: Tcba9469
    Web: www.taiclone.com Tel: +886-2-2735-9682 Email: [email protected] RNF2 Polyclonal Antibody Catalog No: tcba9469 Available Sizes Size: 50ul Size: 100ul Size: 200ul Specifications Application: WB,IHC,IP,ChIP Research Area: ,Epigenetics, Species Reactivity: Human,Mouse,Rat Host Species: Rabbit Isotype: IgG Form: Liquid Storage Buffer: Buffer: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. Recommended Dilution: WB 1:500 - 1:2000 IHC 1:50 - 1:200 IP 1:50 - 1:200 ChIP 1:50 - 1:200 Copyright 2021 Taiclone Biotech Corp. Web: www.taiclone.com Tel: +886-2-2735-9682 Email: [email protected] Storage Instruction: Store at -20℃. Avoid freeze / thaw cycles. Alternative Names: BAP-1;BAP1;DING;HIPI3;RING1B;RING2 SwissProt: Q99496 Gene ID: 6045 (human); Calculated Molecular Weight: 29kDa/37kDa Purification: Affinity purification Cellular Location: Chromosome,Nucleus, Product Description Polycomb group (PcG) of proteins form the multiprotein complexes that are important for the transcription repression of various genes involved in development and cell proliferation. The protein encoded by this gene is one of the PcG proteins. It has been shown to interact with, and suppress the activity of, transcription factor CP2 (TFCP2/CP2). Studies of the mouse counterpart suggested the involvement of this gene in the specification of anterior-posterior axis, as well as in cell proliferation in early development. This protein was also found to interact with huntingtin interacting protein 2 (HIP2), an ubiquitin-conjugating enzyme, and possess ubiquitin ligase activity. Copyright 2021 Taiclone Biotech Corp. Web: www.taiclone.com Tel: +886-2-2735-9682 Email: [email protected] Western blot analysis of extracts of various cell lines, using RNF2 antibody at 1:1000 Immunohistochemistry of paraffin-embedded rat lung using RNF2 antibody at dilution.
    [Show full text]
  • Radiosensitization of Esophageal Carcinoma Cells by Knockdown of RNF2 Expression
    INTERNATIONAL JOURNAL OF ONCOLOGY 48: 1985-1996, 2016 Radiosensitization of esophageal carcinoma cells by knockdown of RNF2 expression XING-XIAO YANG1, MING MA2, MEI-XIANG SANG3, XUE-XIAO WANG4, HENG SoNG1, ZHI-KUN LIU1 and SHu-CHAI ZHu1 Departments of 1Radiation Oncology, 2Clinical Laboratory, 3Research Centre, Department of Biotherapy, and 4Division of Cancer Biotherapy, The Fourth Hospital of Hebei Medical university, Shijiazhuang, Hebei 050011, P.R. China Received December 4, 2015; Accepted January 26, 2016 DoI: 10.3892/ijo.2016.3404 Abstract. Radiotherapy has been widely used for the treat- RNF2. Expression of the short-hairpin RNA is also correlated ment of cancer patients, especially for esophageal cancer with the upregulation of p16 and Bax, and the downregula- patients. Ring finger protein 2 (RNF2) plays an important tion of cyclin D2, cyclin-dependent kinase (CDK)-4, H2AX role in promoting the growth of cancer cells after expo- and Bcl-2. RNF2 gene knockdown induces radiosensitivity sure to irradiation. The present study aims to characterize of esophageal cancer cells in vitro and significantly inhibits the proliferative effects of RNF2 on cancer cells, and its the growth of tumor cells. The mechanisms include inducing mechanisms on the growth of esophageal cancer cells. the cell cycle arrest at G0/G1 phase and promoting apoptosis. We demonstrate that expression of RNF2 was markedly upregulated in esophageal cancer cell lines and surgically Introduction resected cancer specimens. In addition, RNF2 expression level is positively correlated with the presence of tumor Esophageal carcinoma is one of alimentary canal malignan- size, lymph node metastases and negatively correlated with cies with high incidence of approximately 0.3104 million new patient survival rates, suggesting that it plays an important malignancies worldwide each year.
    [Show full text]
  • Juxtaposed Polycomb Complexes Co-Regulate Vertebral Identity
    RESEARCH ARTICLE 4957 Development 133, 4957-4968 (2006) doi:10.1242/dev.02677 Juxtaposed Polycomb complexes co-regulate vertebral identity Se Young Kim1, Suzanne W. Paylor1, Terry Magnuson2 and Armin Schumacher1,* Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3- K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co- regulation of vertebral identity. KEY WORDS: Polycomb, eed, Bmi1, Hox genes, Mouse development, Chromatin, Histones, Epigenetics INTRODUCTION Wang, H.
    [Show full text]
  • Molecular Markers of Early Parkinson's Disease Based on Gene Expression in Blood
    Molecular markers of early Parkinson’s disease based on gene expression in blood Clemens R. Scherzer*†‡§, Aron C. Eklund*, Lee J. Morse*, Zhixiang Liao*, Joseph J. Locascio†, Daniel Fefer*, Michael A. Schwarzschild†‡, Michael G. Schlossmacher*‡, Michael A. Hauser¶, Jeffery M. Vance¶, Lewis R. Sudarsky‡, David G. Standaert†‡, John H. Growdon†‡, Roderick V. Jensenʈ, and Steven R. Gullans* *Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA 02139; †Neurology Service, Massachusetts General Hospital, Boston, MA 02114; ‡Partners Parkinson and Movement Disorders Center, Boston, MA 02114; ¶Center for Human Genetics, Duke University Medical Center, Durham, NC 27710; and ʈDepartment of Physics, University of Massachusetts, Boston, MA 02125 Communicated by Gregory A. Petsko, Brandeis University, Waltham, MA, November 24, 2006 (received for review March 12, 2006) Parkinson’s disease (PD) progresses relentlessly and affects five For a biomarker to be clinically useful, noninvasive detection in million people worldwide. Laboratory tests for PD are critically peripheral blood is desirable. The power of this approach for needed for developing treatments designed to slow or prevent identifying disease-associated candidates in a neurodegenerative progression of the disease. We performed a transcriptome-wide disease is precedented by an expression screen of lymphoblasts scan in 105 individuals to interrogate the molecular processes of patients with Alzheimer’s disease (AD), in which we detected perturbed in cellular blood of patients with early-stage PD. The abnormally low signals of the neuronal sorting receptor LR11/ molecular multigene marker here identified is associated with risk SorLa (20). Subsequent analyses of LR11/SorLa’s mechanistic of PD in 66 samples of the training set comprising healthy and role in AD demonstrated that LR11/sorLA modulates APP disease controls [third tertile cross-validated odds ratio of 5.7 (P for trafficking and its processing to amyloid-␤ (21, 22).
    [Show full text]