Amer. Zool., 20:597-608 (1980) the Ecological Strategies of Sea

Total Page:16

File Type:pdf, Size:1020Kb

Amer. Zool., 20:597-608 (1980) the Ecological Strategies of Sea Amer. Zool., 20:597-608 (1980) The Ecological Strategies of Sea Turtles1 John R. Hendrickson Departmentof Ecology and EvolutionaryBiology, University of Arizona, Tucson, Arizona 85721 Synopsis. By employing concepts such as "option" and "strategy" from game theory, this study derives an ecologically-oriented dendrogram of the probable evolutionary history and the present relationships of sea turtles. An "armored tank" strategy is seen as differ- entiating the first ancestral testudines from the stem reptiles and providing enduring advantages while simultaneously imposing basic restrictions on all later forms. A "flipper" strategy is postulated as basic to development of the sea turtle line, again imposing limi- tations while conferring selective advantage. Modern sea turtle species are grouped into three lineages representing strategies of habitat-type resource partitioning (a split-habitat, migratory pattern, a neritic residence pattern, and a pelagic residence pattern). Within the split-habitat, migratory group, further resource-partitioning by food-type separates the herbivorous Chelonia mydas populations from omnivorous Eretmochelysimbricata and the (apparently) carnivorous Chelonia depressa. Herbivory is seen as integral to the split- habitat, migratory strategy and C. mydas is considered the most "traditional" species, with the migratory habit secondarily lost in the other two. At the same time, the enhanced philopatry selected for by the migration strategy is viewed as responsible for the fact that C. mydasseems to have the most active race-formation ofthe three species. Further habitat- type partitioning in the neritic group, together with food-type partitioning, separates Caretta caretta from the two Lepidochelysspecies. L. kempi is represented as a consequence of Panamanian separation from L. olivacea following the last establishment of the isthmus as a land barrier. The third, pelagic residence, strategy is represented by Dermochelys coriacea, with little further differentiation of the line. The paper attempts to show that the evolution of sea turtles has been ecologically logical, that most conceivable niches for marine turtles are presently filled successfully, and that some predictions may be made with regard to gaps in our existing information. Introduction gained currency in discussion of ecological and recent Although I suspect that few biologists evolutionary phenomena; pub? lications 1957, is the earliest will be in much doubt about the subject of (Waddington, reference I to know this discussion, the title itself is trouble- happen about) speak some because of the use of the word "strat? of reproductive strategies, foraging strat? sex ratio and r and egies." The word stems from the Greek egies, gene strategies, K and stratos (army, host) and agein (to lead); its strategies, ecological evolutionary even and English meaning is either strictly military strategies, community ecosystem ... all with reference to entities or a transferred meaning from this, and it strategies and which we cannot make is misused here. It implies rational choice, processes agree rational choices. Louw and an example of correct usage is a com- (1979) correctly ment on the conduct of medical research points out that these usages of the word are and attributed by Bates (1951) to Alan Gregg "strategy" semantically wrong I of Rockefeller Foundation: "Strategy is the philosophically misleading?besides, that most of the users art of deciding when and on what one will strongly suspect mean trick for engage his strength, and tactics is the skill, "stratagem" (synonym: a rather than economy, promptitude and grace with achieving goal) "strategy" of What we are which one utilizes his strength to attain the (art deciding, etc). really about in most cases are ends chosen by strategy." Yet the word has talking complexes of adaptive evolutionary changes, each of which has relative positive and negative 1 values in any one ecological circumstance. From the Symposium on Behavioral and Reproduc? These adaptive tive Biology of Sea Turtles presented at the Annual complexes (phenotypes) are moves in an "existential Meeting of the American Society of Zoologists, 27- game" (Slo- 30 December 1979, at Tampa, Florida. bodkin and Rapoport, 1974), the rules of 597 598 John R. Hendrickson which are the principles of natural selec? tral lines, and include speculation in the tion and probability, and the object of form of "best guesses" when describing the which is to "turn resources into babies" ecological niches of extant species. The (Colinvaux, 1973) so that recruitment rate point is to present, not documented fact, at least equals death rate; past moves, pos? but a way of thinking about sea turtles sibly under different ecological circum? which is consistent with present evolution? stances, place varying limitations on pres? ary and ecological theory and which ent options; there are clearly defined squares in a logical way with sea turtle bi? losers, and the winner's reward is the op- ology as we presently understand it. If the portunity to keep on playing. There is no main framework is correct, it should ac- cognition, no rational choice, no predic? cept embellishment in detail without dam? tion?chance and necessity are all-control- age, and it may in itself predict the content ling. of various information gaps which now ex? Smith (1979) coins the term "phenotype ist. It is conceivable that a haemoglobin set" which I would have preferred to chemist or an endocrinologist might weave "strategy," but then goes on to give this the same fabric from different lines of evi? useful phrase a distinct hierarchical con? dence. text and to speak of the possible behavioral The General Chelonian "Strategy" strategies within the phenotype set. Mitch- ell and Williams (1979) note the difference Obviously, the extant species of sea tur? between the dictionary definition and the tles did not have unlimited possibilities for biological usage of the word "strategy," but developing the phenotypes (ecological pat? then go on to consolidate the usage. I re- terns and attendant morphologies) which luctantly agree with Murtagh (1979) that they show today; earlier "options" selected it is a necessary evil for lack of a simpler during their evolutionary history con- way to label evolutionary designs in con? ferred certain. genetic parameters within text with present-day thought on the sub? which the present species had to develop. ject. It has become jargon, and, while I la- Whether of positive, negative, or neutral ment the birth of this bastard in our family value in any one life circumstance, these of words, I have little choice but to ac? parameters from the past are basic to what knowledge its existence as a counterpart of we can detect today. the nomina conservanda of The selected the " systematics. prime "option" by 'When I use a word/ Humpty Dumpty sprawl-legged ancestral chelonian line said, in rather a scornful tone, 'it means more than 200 million years ago was the just what I choose it to mean?neither "armored tank" mode of body form?the more nor less'^Carroll, 1935). drastic modification of the entire anatomy In the discussion which follows, I at? to provide for encasement in a rigid box tempt an heuristic approach to the evolu? of defensive armor, presumably for de? tionary history of sea turtles, speaking as fense against large, toothed predators. of a complex game played with nature Pritchard (1979) gives a succinct account over the past 200 million years. I try to of early chelonian evolution and mentions show how, given various mixes of oppor- a number of important references. I cher- tunities and limitations implicit in each ish Romer's (1945) statement that: "The "move" of the game, and given the strat? chelonians are the most bizarre, and yet in egies "chosen" by the ancestral sea turtle many respects the most conservative, of line, a logical outcome seems to be the reptilian groups. Because they are still liv? present mix of species and their various ing, turtles are commonplace objects to us; niche spaces. Limited knowledge and lim? were they entirely extinct, their shells?the ited space permit no more than an account most remarkable defensive armor ever as? which hits only the high spots of the game sumed by a tetrapod?would be a cause for and is simplistic in many respects?I con? wonder. From the Triassic the turtles have sider only a few major aspects of body come down to present times practically un- form and attendant function in the ances- changed; they have survived all the vicis- Ecological Strategies of Sea Turtles 599 situdes which have swamped most of the mode to occupy new niche-space, it did reptilian groups and are in as flourishing produce a new set of life challenges a condition today as at any time in the which?under natural selection?had to be past." (In 1945, and with his long view of accommodated by further phenotypic paleontological history, Romer can hardly "strategy." The fossil record appears to be faulted for not recognizing the disas- give evidence of a number of separate at? trous effects of man on these otherwise- tempts by chelonian lines to invade the flourishing species.) sea; I believe that a single group was ul- The highly successful "armored tank" timately successful to the extent of having defense mode adopted by the ancestral representatives living today.2 chelonians involved a number of drastic Compared with the swamp, river, and anatomical modifications which committed land habitats in which the chelonian "ar? the line irrevocably to several important mored tank" strategy proved so successful, limitations on their evolutionary future the vast extent of the ocean environment (see Zangerl, 1969). About a dozen verte- and its relative monotony (lack of local spa? brae were eliminated from the trunk re? tial heterogeneity) must have presented a gion; the ribs were freed from the sternum major new challenge; mobility must have and spread laterally, and the limb girdles become a prime factor for selection.
Recommended publications
  • Tagged Kemp's Ridley Sea Turtle
    Opinions expressedherein are those of the individual authors and do not necessar- ily representthe views of the TexasARM UniversitySea Grant College Program or the National SeaGrant Program.While specificproducts have been identified by namein various papers,this doesnot imply endorsementby the publishersor the sponsors. $20.00 TAMU-SG-89-1 05 Copies available from: 500 August 1989 Sca Grant College Program NA85AA-D-SG128 Texas ARM University A/I-I P.O. Box 1675 Galveston, Tex. 77553-1675 Proceedings of the First International Symposium on Kemp's Ridley Sea Turtle Biology, Conservation and Management ~88<!Mgpgyp Sponsors- ~88gf-,-.g,i " ' .Poslfpq National Marine Fisheries Service Southeast Fisheries Center Galveston Laboratory Departmentof Marine Biology Texas A&M University at Galveston October 1-4, 1985 Galveston, Texas Edited and updated by Charles W. Caillouet, Jr. National Marine Fisheries Service and Andre M. Landry, Jr. Texas A&M University at Galveston NATIONALSEA GRANT DEPOSITORY PELLLIBRARY BUILDING TAMU-~9 I05 URI,NARRAGANSETT BAYCAMPUS August 7989 NARRAGANSETI, R I02882 Publicationof this documentpartially supportedby Institutional GrantNo. NA85AA-D-SGI28to the TexasARM UniversitySea Grant CollegeProgram by the NationalSea Grant Program,National Oceanicand AtmosphericAdministration, Department of Commerce. jbr Carole Hoover Allen and HEART for dedicatedefforts tmuard Kemp'sridley sea turtle conservation Table of Conteuts .v Preface CharlesW. Caillouet,jr. and Andre M. Landry, Jr, Acknowledgements. vl SessionI -Historical
    [Show full text]
  • Glarichelys Knorri (Gray)-A Cheloniid from Carpathian Menilitic Shales (Poland)
    ACT A P A L A E 0 ~ T 0 LOG I CA P 0 LON IC A Vol. IV I 9 5 9 No . 2 MARIAN MLYN ARSKI GLARICHELYS KNORRI (GRAY) - A CHELONIID FROM CARPATHIAN MENILITIC SHALES (POLAND) Abstract . - The fossil remains here described belonged to a young indiv id ual of Glarichelys knorri (Gray), a sea turtle. They were collected from Carpathian me­ nilitic shales at Winnica near Jaslo. Its systematic position is discussed a nd general comments are made on some fossil and recent sea turtles, on problems concerning their mo rphology, on the taxonomic significance of p halanges in fossil sea turtles, a nd on the presence in cheloniids of foramina praenucha lia. Biological and ecological notes concernin g G. knorri (Gray) are likewise given. INTRODUCTlION The fossil sea turtle remains here described have been collected from an outcrop in the steep bank of the Jasiolka stream, near the Winnica farm, about 10 km to the east of Jaslo (P olish Carpathians). The specimen was found in greyish-brown menilitic shales intercalating the Kr osno sandstone beds, about 30 m above the foot of the men tioned bank. Unfortunately, the geological age of these beds has not, as yet, been definitely established. On their microfauna it is probably Lower Oligocene or Upper Eocene 1. The vertebrate fauna from the Jaslo area has lately attracted the attention of palaeontologists. Abundant and we ll preserved bon y fish remains have been collected there.They belong to several families, mostly to Clupeidae and Gadidae. They are n ow being worked out by A .J erz­ manska (1958) of the Wroclaw University.
    [Show full text]
  • The Turtles from the Upper Eocene, Osona County (Ebro Basin, Catalonia, Spain): New Material and Its Faunistic and Environmental Context
    Foss. Rec., 21, 237–284, 2018 https://doi.org/10.5194/fr-21-237-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. The turtles from the upper Eocene, Osona County (Ebro Basin, Catalonia, Spain): new material and its faunistic and environmental context France de Lapparent de Broin1, Xabier Murelaga2, Adán Pérez-García3, Francesc Farrés4, and Jacint Altimiras4 1Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements (CR2P: MNHN, CNRS, UPMC-Paris 6), Muséum national d’Histoire naturelle, Sorbonne Université, 57 rue Cuvier, CP 38, 75231 Paris CEDEX 5, France 2Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, UPV/EHU, Sarrienea s/n, 48940 Leioa, Spain 3Grupo de Biología Evolutiva, Facultad de Ciencias, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain 4Museu Geològic del Seminari de Barcelona, Diputacio 231, 08007 Barcelona – Geolab Vic, Spain Correspondence: France de Lapparent de Broin ([email protected]) Received: 8 November 2017 – Revised: 9 August 2018 – Accepted: 16 August 2018 – Published: 28 September 2018 Abstract. Eochelone voltregana n. sp. is a new marine 1 Introduction cryptodiran cheloniid found at the Priabonian levels (latest Eocene) of the Vespella marls member of the Vic–Manlleu 1.1 The cycle of Osona turtle study marls formation. It is the second cheloniid from Santa Cecília de Voltregà (Osona County, Spain), the first one being Os- The present examination closes a study cycle of turtle ma- onachelus decorata from the same formation. Shell parame- terial from the upper Eocene sediments of the area of Vic ters indicate that the new species belongs to a branch of sea in the Osona comarca (county) (Barcelona province, Catalo- turtles including the Eocene Anglo–Franco–Belgian forms nia, Spain) (Fig.
    [Show full text]
  • Comparative Bone Histology of the Turtle Shell (Carapace and Plastron)
    Comparative bone histology of the turtle shell (carapace and plastron): implications for turtle systematics, functional morphology and turtle origins Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn Vorgelegt von Dipl. Geol. Torsten Michael Scheyer aus Mannheim-Neckarau Bonn, 2007 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1 Referent: PD Dr. P. Martin Sander 2 Referent: Prof. Dr. Thomas Martin Tag der Promotion: 14. August 2007 Diese Dissertation ist 2007 auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Rheinische Friedrich-Wilhelms-Universität Bonn, Januar 2007 Institut für Paläontologie Nussallee 8 53115 Bonn Dipl.-Geol. Torsten M. Scheyer Erklärung Hiermit erkläre ich an Eides statt, dass ich für meine Promotion keine anderen als die angegebenen Hilfsmittel benutzt habe, und dass die inhaltlich und wörtlich aus anderen Werken entnommenen Stellen und Zitate als solche gekennzeichnet sind. Torsten Scheyer Zusammenfassung—Die Knochenhistologie von Schildkrötenpanzern liefert wertvolle Ergebnisse zur Osteoderm- und Panzergenese, zur Rekonstruktion von fossilen Weichgeweben, zu phylogenetischen Hypothesen und zu funktionellen Aspekten des Schildkrötenpanzers, wobei Carapax und das Plastron generell ähnliche Ergebnisse zeigen. Neben intrinsischen, physiologischen Faktoren wird die
    [Show full text]
  • Synopsis of the Biological Data on the Loggerhead Sea Turtle Caretta Caretta (Linnaeus 1758)
    OF THE BI sTt1cAL HE LOGGERHEAD SEA TURTLE CAC-Err' CARETTA(LINNAEUS 1758) Fish and Wildlife Service U.S. Department of the Interior Biological Report This publication series of the Fish and Wildlife Service comprises reports on the results of research, developments in technology, and ecological surveys and inventories of effects of land-use changes on fishery and wildlife resources. They may include proceedings of workshops, technical conferences, or symposia; and interpretive bibliographies. They also include resource and wetland inventory maps. Copies of this publication may be obtained from the Publications Unit, U.S. Fish and Wildlife Service, Washington, DC 20240, or may be purchased from the National Technical Information Ser- vice (NTIS), 5285 Port Royal Road, Springfield, VA 22161. Library of Congress Cataloging-in-Publication Data Dodd, C. Kenneth. Synopsis of the biological data on the loggerhead sea turtle. (Biological report; 88(14) (May 1988)) Supt. of Docs. no. : I 49.89/2:88(14) Bibliography: p. 1. Loggerhead turtle. I. U.S. Fish and Wildlife Service. II. Title. III. Series: Biological Report (Washington, D.C.) ; 88-14. QL666.C536D63 1988 597.92 88-600121 This report may be cit,-;c1 as follows: Dodd, C. Kenneth, Jr. 1988. Synopsis of the biological data on the Loggerhead Sea Turtle Caretta caretta (Linnaeus 1758). U.S. Fish Wildl. Serv., Biol. Rep. 88(14). 110 pp. Biological Report 88(14) May 1988 Synopsis of the Biological Dataon the Loggerhead Sea Turtle Caretta caretta(Linnaeus 1758) by C. Kenneth Dodd, Jr. U.S. Fish and Wildlife Service National Ecology Research Center 412 N.E.
    [Show full text]
  • The First Oligocene Sea Turtle (Pan-Cheloniidae) Record of South America
    The first Oligocene sea turtle (Pan-Cheloniidae) record of South America Edwin Cadena1, Juan Abella2,3 and Maria Gregori2 1 Escuela de Ciencias Geológicas e Ingeniería, Yachay Tech, San Miguel de Urcuquí, Imbabura, Ecuador 2 Universidad Estatal de la Peninsula de Santa Elena, La Libertad, Santa Elena, Ecuador 3 Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona, Barcelona, Spain ABSTRACT The evolution and occurrence of fossil sea turtles at the Pacific margin of South America is poorly known and restricted to Neogene (Miocene/Pliocene) findings from the Pisco Formation, Peru. Here we report and describe the first record of Oligocene (late Oligocene, ∼24 Ma) Pan-Cheloniidae sea turtle remains of South America. The fossil material corresponds to a single, isolated and well-preserved costal bone found at the Montañita/Olón locality, Santa Elena Province, Ecuador. Comparisons with other Oligocene and extant representatives allow us to confirm that belongs to a sea turtle characterized by: lack of lateral ossification, allowing the dorsal exposure of the distal end of ribs; dorsal surface of bone sculptured, changing from dense vermiculation at the vertebral scute region to anastomosing pattern of grooves at the most lateral portion of the costal. This fossil finding shows the high potential that the Ecuadorian Oligocene outcrops have in order to explore the evolution and paleobiogeography distribution of sea turtles by the time that the Pacific and the Atlantic oceans were connected via the Panama basin. Subjects Biogeography, Marine Biology, Paleontology, Zoology Keywords Montañita/Olón, Paleobiogeography, Ecuador, Testudines Submitted 17 February 2018 Accepted 9 March 2018 Published 23 March 2018 INTRODUCTION Corresponding author Sea turtles are iconic vertebrates that have inhabited Earth's oceans for at least 125 Ma (See Edwin Cadena, [email protected] Cadena & Parham, 2015).
    [Show full text]
  • The First Fossil Sea Turtles (Testudines: Cheloniidae)
    The first fossil sea turtles (Testudines: Cheloniidae) from the Cenozoic of Australia ERICH M. G. FITZGERALD and LESLEY KOOL FITZGERALD, E.M.G. & KOOL, L., XX.XX.2015. The first fossil sea turtles (Testudines: Cheloniidae) from the Cenozoic of Australia. Alcheringa 39, xxx–xxx. ISSN 0311-5518 An isolated dentary and costal identified as cf. Pacifichelys and Cheloniidae indet., respectively, are described from the upper Miocene–lower Plio- cene Black Rock Sandstone of Beaumaris, Victoria, Australia. These remains represent the first fossil evidence of sea turtles from the Cenozoic of Australia. Neither of the fossils can be referred to living genera, indicating that extinct cheloniids occurred in southeast Australian coastal waters for at least part of the late Neogene. Thus, the taxonomic composition of the current sea turtle fauna of Australia was apparently established within the last five to six million years. Erich M. G. Fitzgerald [efi[email protected]] and Lesley Kool [[email protected]], Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia. Received 26.6.2014; revised 9.8.2014; accepted 14.8.2014. Key words: Pacifichelys, Neogene, Miocene, Pliocene, Victoria, marine, vertebrate. AUSTRALIAN seas are inhabited by six of the seven liv- 2012), sirenians (Fitzgerald et al. 2013), phocid seals ing sea turtle species of the families Cheloniidae and (Fordyce & Flannery 1983), baleen whales (Fitzgerald Dermochelyidae, including one endemic species 2004, 2012), odontocetes (Chapman 1912, 1917) and (Márquez 1990). Cretaceous marine basins of northern rare remains of terrestrial dromornithid birds (Park & Australia have additionally produced an abundance of sea Fitzgerald 2012b) and marsupials (Piper et al.
    [Show full text]
  • New Sea Turtle from the Miocene of Peru and the Iterative Evolution of Feeding Ecomorphologies Since the Cretaceous
    J. Paleont., 84(2), 2010, pp. 231–247 Copyright ’ 2010, The Paleontological Society 0022-3360/10/0084-0231$03.00 NEW SEA TURTLE FROM THE MIOCENE OF PERU AND THE ITERATIVE EVOLUTION OF FEEDING ECOMORPHOLOGIES SINCE THE CRETACEOUS JAMES F. PARHAM1,2 AND NICHOLAS D. PYENSON3–5 1Biodiversity Synthesis Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA, ,[email protected].; 2Department of Herpetology, California Academy of Sciences, 55 Concourse Drive, San Francisco 94118, USA, ,[email protected].; 3Department of Zoology, University of British Columbia, #2370-6270 University Boulevard, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; 4Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA; and 5Current address: Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, P.O. Box 37012, Washington DC 20013-7012, USA ABSTRACT—The seven species of extant sea turtles show a diversity of diets and feeding specializations. Some of these species represent distinctive ecomorphs that can be recognized by osteological characters and therefore can be identified in fossil taxa. Specifically, modifications to the feeding apparatus for shearing or crushing (durophagy) are easily recognizable in the cranium and jaw. New sea turtle fossils from the Miocene of Peru, described as a new genus and species (Pacifichelys urbinai n. gen. and n. sp.), correspond to the durophagous ecomorph. This new taxon is closely related to a recently described sea turtle from the middle Miocene of California, USA (Pacifichelys hutchisoni n. comb.), providing additional information on the osteological characters of this lineage.
    [Show full text]
  • Paleogene Chelonians from Maryland and Virginia
    Peer Reviewed Title: Paleogene chelonians from Maryland and Virginia Journal Issue: PaleoBios, 31(1) Author: Weems, Robert E., Paleo Quest, Gainesville, Virginia Publication Date: 2014 Publication Info: PaleoBios Permalink: http://escholarship.org/uc/item/7253p3tf Acknowledgements: I wish to thank Mark Bennett, Dave Bohaska, Bill Counterman, Mike Folmer, George Fonger, Tom Gibson, Gary Grimsley, Melville Hurd, Ron Ison, Jason Osborne, Peter Kranz, Michael Smigaj, and Bob Wiest for donating their important finds of turtle material to the Calvert Marine Museum and the National Museum of Natural History collections, thereby making this material available for study. Without their tireless collecting efforts, this paper would not have been possible. Mel Gulotta made his exceptionally complete skull of available to Billy Palmer, who kindly volunteered to make an excellent cast of it for accession to the Calvert Marine Museum; to both I am grateful. Ned Gilmore (Academy of Natural Sciences, Philadelphia) provided very helpful insights on the museum records and the matrix associated with the type skull of in the ANSP collections, confirming that the specimen came from the Vincentown Formation. I thank James F. Parham and J. Howard Hutchison for their thorough and insightful reviews of this paper, and additionally I thank J. Howard Hutchison for pointing out to me the carettochelyid affinities of the turtle material from the Piney Point Formation. Last but certainly not least, I wish to express my gratitude to editors Mark Goodwin and Diane M.
    [Show full text]
  • Qt147611bv.Pdf
    UC Berkeley PaleoBios Title Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia Permalink https://escholarship.org/uc/item/147611bv Journal PaleoBios, 32(1) ISSN 0031-0298 Authors Cadena, Edwin A Parham, James F Publication Date 2015-09-07 DOI 10.5070/P9321028615 Supplemental Material https://escholarship.org/uc/item/147611bv#supplemental Peer reviewed eScholarship.org Powered by the California Digital Library University of California PaleoBios 32:1–42, September 7, 2015 PaleoBios OFFICIAL PUBLICATION OF THE UNIVERSITY OF CALIFORNIA MUSEUM OF PALEONTOLOGY Edwin A. Cadena and James F. Parham (2015). Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. Cover illustration: Desmatochelys padillai on an early Cretaceous beach. Reconstruction by artist Jorge Blanco, Argentina. Citation: Cadena, E.A. and J.F. Parham. 2015. Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. PaleoBios 32. ucmp_paleobios_28615. PaleoBios 32:1–42, September 7, 2015 Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia EDWIN A. CADENA1, 2*AND JAMES F. PARHAM3 1 Centro de Investigaciones Paleontológicas, Villa de Leyva, Colombia; [email protected]. 2 Department of Paleoherpetology, Senckenberg Naturmuseum, 60325 Frankfurt am Main, Germany. 3John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA; [email protected]. Recent studies suggested that many fossil marine turtles might not be closely related to extant marine turtles (Che- lonioidea). The uncertainty surrounding the origin and phylogenetic position of fossil marine turtles impacts our understanding of turtle evolution and complicates our attempts to develop and justify fossil calibrations for molecular divergence dating.
    [Show full text]
  • Annotated Checklist of Taxonomy, Synonymy, Distribution, and Conservation Status
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTurtles of the IUCN/SSC of the World Tortoise – 2012and Freshwater Checklist Turtle Specialist Group 000.243 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.000.checklist.v5.2012 © 2012 by Chelonian Research Foundation • Published 31 December 2012 Turtles of the World, 2012 Update: Annotated Checklist of Taxonomy, Synonymy, Distribution, and Conservation Status TUR T LE TAXONOMY WORKING GROUP * *Authorship of this article is by this working group of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, which for the purposes of this document consisted of the following contributors: PE T ER PAUL VAN DIJK 1, JOHN B. IVERSON 2, H. BRA D LEY SHAFFER 3, ROGER BOUR 4, AN D AN D ERS G.J. RHO D IN 5 1Co-Chair, IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]]; 2Department of Biology, Earlham College, Richmond, Indiana 47374 USA [[email protected]]; 3Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095 USA [[email protected]]; 4Laboratoire des Reptiles et Amphibiens, Muséum National d’Histoire Naturelle, Paris, France [[email protected]]; 5Chairman Emeritus, IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Foundation, 168 Goodrich St., Lunenburg, Massachusetts 01462 USA [[email protected]] AB S T RAC T .
    [Show full text]
  • Fossil Sea Turtles (Chelonii, Dermochelyidae and Cheloniidae) from the Miocene of Pietra Leccese (Late Burdigalian-Early Messinian), Southern Italy
    Fossil sea turtles (Chelonii, Dermochelyidae and Cheloniidae) from the Miocene of Pietra Leccese (late Burdigalian-early Messinian), Southern Italy Francesco CHESI Massimo DELFINO Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, I-50121 Florence (Italy) francesco.chesi@unifi .it Angelo VAROLA Museo dell’Ambiente, Centro Ecotekne, Università di Lecce, Via per Monteroni, I-73100 Lecce (Italy) Lorenzo ROOK Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, I-50121 Florence (Italy) Chesi F., Delfi no M., Varola A. & Rook L. 2007. — Fossil sea turtles (Chelonii, Dermochelyi- dae and Cheloniidae) from the Miocene of Pietra Leccese (late Burdigalian-early Messinian), Southern Italy. Geodiversitas 29 (2) : 321-333. ABSTRACT Th e presence of chelonian remains in the Miocene Pietra Leccese sediments (Lecce, Italy) is known since the 19th century. Two chelonian species have been recognized: Testudo varicosa Costa, 1851, and Euclastes melii Misuri, 1910. New KEY WORDS fossil fi ndings confi rm the presence of cheloniid sea turtles and testify for the Reptilia, Chelonii, existence of leatherback sea turtles. Th e dermochelyid remains are referred to Dermochelyidae, the species Psephophorus polygonus Meyer, 1846. Th e specimen MAUL 990/1a-l Cheloniidae, represents the largest carapace portion of this species so far reported in the lit- Miocene, late Burdigalian, erature. Th e combination of a sculptured carapace with the scute sulci pattern early Messinian, allows attributing three new cheloniid specimens and the type material of Testudo Euclastes melii, Psephophorus polygonus, varicosa to the species Trachyaspis lardyi Meyer, 1843, a cosmopolitan Miocene Testudo varicosa, species.
    [Show full text]